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t. Nondeterminism is useful in two ways. First, it is employed toderive simple and general programs, where the simpli
ity is a
hieved by avoid-ing unne
essary determinism; su
h programs 
an be optimized by limitingthe nondeterminism. Se
ond, some systems are inherently nondeterministi
;programs that represent su
h systems have to employ some nondeterministi

onstru
t. Nondeterministi
 programs 
an be mapped more easier on parallelma
hine, sin
e parallelism brings some nondeterminism by itself.In this arti
le, there are 
onstru
ted some nondeterministi
 programs,for some numeri
al methods, using the UNITY notation[3℄. The 
orre
tnessof the algorithms is proven, and some possible mappings are dis
ussed.1. Introdu
tionNondeterminism is useful in two ways. First, it is employed to derive simpleand general programs, where the simpli
ity is a
hieved by avoiding unne
essarydeterminism; su
h programs 
an be optimized by limiting the nondeterminism.Se
ond, some systems are inherently nondeterministi
; programs that representsu
h systems have to employ some nondeterministi
 
onstru
t.There is a variety of parallel ar
hite
tures, though parallel programs have to bedeveloped su
h that they 
an be mapped in di�erent ways, on di�erent ar
hite
-tures. A solution is to spe
ify little in the early stages of design, and spe
ify enoughin the �nal stages to ensure eÆ
ient exe
ution on target ar
hite
ture. Spe
ifyinglittle about program exe
ution means that the programs may be nondeterministi
.To express the nondeterministi
 programs, the model used for the developingthe programs is UNITY [3℄: "Unbounded Nondeterministi
 Iterative Transforma-tions", whi
h is brie
y des
ribed in the next se
tion.2. A Programming NotationThe UNITY program stru
ture is2000 Mathemati
s Subje
t Classi�
ation. 68N19.1998 CR Categories and Des
riptors. G.1.3. [Mathemati
s of Computing℄ : Numeri-
al Analysis { Numeri
al Linear Algebra; G.4. [Mathemati
s of Computing℄ : Mathemati
alSoftware; D.1.3 [Software℄ : Programming Te
hniques { Con
urrent Programming .51



52 VIRGINIA NICULESCUprogram ! Program program� namede
lare de
lare� se
tionalways always� se
tioninitially initially� se
tionassign assign� se
tionendThe de
lare � se
tion, names the variables used in the program and their types.The syntax is similar to that used in Pas
al. The always�se
tion is used to de�ne
ertain variables as fun
tion of others. This se
tion is not ne
essary for writingUNITY programs, but it is 
onvenient. The initially � se
tion is used to de�neinitial values of some of the variables; uninitialized variables have arbitrary initialvalues. The assign� se
tion 
ontains a set of assignment statements.The program exe
ution starts in a state where the values of variables are asspe
i�ed in the initially-se
tion. (A state is 
hara
terized by the values of allvariables.) In ea
h step, any one statement is exe
uted. Statements are sele
tedarbitrarily for exe
ution, though in an in�nite exe
ution of the program ea
h state-ment is exe
uted in�nitely often. A state of a program is 
alled a �xed point if andonly if exe
ution of any statement of the program, in this state, leaves the stateun
hanged. A predi
ate, 
alled FP, 
hara
terize the �xed points of the program.On
e FP holds, 
ontinued exe
ution leaves values of all variables un
hanged, andtherefore it makes no di�eren
e whether the exe
ution 
ontinues or terminates.The termination of a program is regarded as a feature of an implementation. Aprogram exe
ution is an in�nite sequen
e of statement exe
utions and an imple-mentation is a �nite pre�x of the sequen
e.2.1. Mapping Programs to Ar
hite
tures. One way to implement a programis to halt it after it rea
hes a �xed point.A mapping to a von Neumann ma
hine spe
i�es the s
hedule for exe
utingassignments and the manner in whi
h a program exe
ution terminates.In a syn
hronous shared-memory system, a �xed number of identi
al pro
essorsshare a 
ommon memory that 
an be read and written by any pro
essors. Thesyn
hronism inherent in a multiple-assignment makes it 
onvenient to map su
h astatement to this ar
hite
ture.A UNITY program 
an be mapped to asyn
hronous shared-memory system,by partitioning the statements of the program among the pro
essors. In addition,a s
hedule of exe
ution for ea
h pro
essor should be spe
i�ed that guarantees afair exe
ution for ea
h partition. If the exe
ution for every partition is fair, thenany fair interleaving of these exe
utions determines a fair exe
ution of the entireprogram. Two statements are not exe
uted 
on
urrently if one modi�es a variablethat the other uses.Other ar
hite
tures 
an be 
onsidered for mappings.



SOME PARALLEL NONDETERMINISTIC ALGORITHMS 532.2. Assignment Statement. It is allowed that a number of variables to beassigned simultaneously in a multiple assignment, as inx; y; z := 0; 1; 2:Su
h an assignment 
an also be written as a set of assignment-
omponents sepa-rated by k, as in x; y := 0; 1kz := 2or x := 0ky := 1kz := 2:The variables to be assigned and the values to be assigned to them may be de-s
ribed using quanti�
ation, rather than enumeration:< ki : 0 � i < N :: A[i℄ := B[i℄ > :A notation like the following is used for a 
onditional assignment:x := �1 if y < 0 �0 if y = 1 �1 if y > 0 :2.3. Assign-se
tion. The symbol z a
ts as a separator between the statements.A quanti�ed-statement-list denotes a set of statements obtained by instantiatingthe statement-list with the appropriate instan
es of bounded variables; if there isno instan
e, quanti�ed-statement-list denotes an empty set of statements. Thenumber of the instan
es must be �nite. The boolean expression in the quanti�
a-tion should no name program variables whose values may 
hange during programexe
ution.2.4. Initially-se
tion. The syntax of this se
tion is the same as that of the assign-se
tion ex
ept that symbol := is repla
ed with =. The equations de�ning the initialvalues should not be 
ir
ular.2.5. Always-se
tion. An always-se
tion is used to de�ne 
ertain program vari-ables as fun
tion of other variables. The syntax used in the always-se
tion is thesame as in the initially-se
tion.3. Nondeterministi
 Gauss EliminationWe 
onsider the Gaussian elimination s
heme for solving a set of linear equa-tions, A �X = B;where A[0::n � 1; 0::n � 1℄ and B[0::n � 1℄ are given and the solution is to bestored in X [0::n� 1℄. Gaussian elimination is presented typi
ally as a sequen
e ofn pivot steps. The following UNITY program allows nondeterministi
 
hoi
es inthe sele
tions of the pivot rows.



54 VIRGINIA NICULESCU3.1. A Solution. LetM(A;B) (orM for short) the matrix with n rows and n+1
olumns, where the �rst n 
olumns are from A and the last 
olumn is from B. Inthe Gaussian elimination M(A;B) is modi�ed to M(A0 ;B0) by 
ertain operationssu
h that A �X = Band A0 �X = B0have the same solutions for X . The goal of the algorithm is to apply a sequen
eof these operations to 
onvert M(A;B) to M(In;XF ), where In is the identitymatrix; then XF is the desired solution ve
tor. This goal 
an be realized if therank of A is n, whi
h we assume to be the 
ase.The program 
onsists of two kinds of statements:(1) Pivot with row u, provided thatM [u; u℄ 6= 0; this has the e�e
t of settingM [u; u℄ to 1 and M [v; u℄ to 0, for all v; v 6= u(2) Ex
hange two rows u and v, provided that both M [u; u℄ and M [v; v℄ arezero and at least one of M [u; v℄;M [v; u℄ is nonzero; this has the e�e
t ofrepla
ing a zero diagonal with a nonzero element.Due to the fa
t that there are some possible ex
hanges between the rows, theelements of the solution ve
tor will be ex
hanged also. The permutation of theelements is stored in an array p.Program Gaussde
lareM : array[0::n� 1; 0::n℄ of realp : array[0::n� 1℄ of integerinitially< i : 0 � i < n : p[i℄ = i >assignfpivot with row u if M [u; u℄ 6= 0g< zu : 0 � u < n ::< kv; j : 0 � j < n ^ 0 � v < n ^ v 6= u ::M [v; j℄ :=M [v; j℄�M [v; u℄ �M [u; j℄=M [u; u℄ if M [u; u℄ 6= 0>k < kj : 0 � j < n ::M [u; j℄ :=M [u; j℄=M [u; u℄ if M [u; u℄ 6= 0>>



SOME PARALLEL NONDETERMINISTIC ALGORITHMS 55zfex
hange two rows if both have zero diagonal elements and theex
hange results in at least one of these elements being set to nonzerog< zu; v : 0 � u < n ^ 0 � v < n ^ u 6= v ::< kj : 0 � j < n ::M [u; j℄;M [v; j℄; p[u℄; p[v℄ :=M [v; j℄;M [u; j℄; p[v℄; p[u℄if M [u; u℄ = 0 ^M [v; v℄ = 0 ^ (M [u; v℄ 6= 0 _M [v; u℄ 6= 0)>>endfGaussg3.2. Corre
tness. Let M0 denote the initial Z matrix. Sin
e ea
h statement inthe program modi�es M su
h that the solutions to the given linear equations arepreserved, we have the following invariant:invariant M0;M have the same solution:In the following, A refers to the n � n matrix in the left part of M , and B,to the last 
olumn of M . First, it is proven that the program Gauss rea
hes a�xed point and that at any �xed point, A is an identity matrix. Then, from theinvariant, B is the desired solution ve
tor. In the following, a unit 
olumn is a
olumn in whi
h the diagonal element is 1 and all other elements are 0. That is,
olumn u is a unit 
olumn means thatM [v; u℄ = 0 if u 6= v � 1 if u = v:To show that a �xed point is rea
hed, it is proven that the pair (p; q), wherep = number of unit 
olumns in Aq = number of nonzero diagonal elements in A;in
reases lexi
ographi
ally with every state 
hange.We 
onsider ea
h statement in turn. Pivoting with row u, where 
olumn u is aunit 
olumn, 
ause no state 
hange. A state 
hange results from a pivot operationwith row u only if 
olumn u is not a unit 
olumn; the e�e
t of the pivot operationis to set u to a unit 
olumn, thus in
reasing p.Two rows u and v are ex
hanged only when M [u; u℄ = 0 ^ M [v; v℄ = 0 ^(M [u; v℄ 6= 0_M [v; u℄ 6= 0). Hen
e neither of the 
olumns u or v is a unit 
olumn.The ex
hange preserves all the unit 
olumns, also preserving p. In addition, atleast one diagonal element, M [u; u℄ or M [v; v℄ is set to nonzero. Sin
e both ofthese elements were previously zero, q in
reases. Therefore, every state 
hangein program Gauss in
reases (p; q) lexi
ographi
ally. Sin
e ea
h of p; q is boundedfrom above by n, Gauss rea
hes a �x point.Now, it must be proved that A is an identity matrix at any �x point. The proofis as follows. Lemma 1 proves that if any diagonal element M [u; u℄ is nonzero at a�xed point, u is a unit 
olumn. Lemma 2 proves that if some diagonal element iszero at a �x point, all elements in the row are zero. This 
ontradi
ts the assumption



56 VIRGINIA NICULESCUthat the determinant of A is nonzero. (Note that exe
ution of any statement inGauss preserves the determinant.) Therefore every diagonal element is nonzeroand, using Lemma 1, A is an identity matrix.Lemma 1. At any �xed point of program Gauss,M [u; u℄ 6= 0) u is a unit 
olumn:Proof: Consider the statement for a pivot 
orresponding to row u. At any �xpoint, given that M [u; u℄ 6= 0, for any j and v; u 6= v,M [v; j℄ =M [v; j℄�M [v; u℄ �M [u; j℄=M [u; u℄and M [u; j℄ =M [u; j℄=M [u; u℄:In parti
ular, with j = u,M [v; u℄ =M [v; u℄�M [v; u℄ �M [u; u℄=M [u; u℄ = 0and M [u; u℄ =M [u; u℄=M [u; u℄ = 1:Therefore u is a unit 
olumn.Lemma 2. At any �xed point of program Gauss,M [u; u℄ = 0)M [u; v℄ = 0;8v 6= u:Proof: Consider two 
ases: M [v; v℄ = 0 and M [v; v℄ 6= 0.In the �rst 
ase, 
onsider the ex
hange statement for rows u; v. At any �x point,given that M [u; u℄ = 0 ^M [v; v℄ = 0:(M [u; u℄ = 0 ^M [v; v℄ = 0) _ (^j ::M [u; j℄ =M [v; j℄):Consider the parti
ular 
ase, j = v. Then,(M [u; u℄ = 0 ^M [v; v℄ = 0) _ (M [u; v℄ =M [v; v℄):Using the fa
t that M [v; v℄ = 0 we 
on
lude that M [u; v℄ = 0.In the se
ond 
ase, if M [v; v℄ 6= 0 from Lemma 1, M [u; v℄ = 0.3.3. Mappings. Program Gauss 
an be implemented in a variety of ways ondi�erent ar
hite
tures. For a sequential ma
hine, it may be more eÆ
ient to 
hoosethe pivot rows in a parti
ular order. The 
orre
tness of this s
heme is obviousfrom the proof be
ause it is obtained from the given program by restri
ting thenondeterministi
 
hoi
es in statement exe
utions. For an asyn
hronous shared-memory or distributed ar
hite
ture, the given program admits several possibleimplementations; the simplest one is to assign a pro
ess to a row. To fa
ilitatethe ex
hange operation, it is possible to allow the row number at a pro
ess tobe 
hanged. Two rows 
an be then ex
hanged simply by ex
hanging their rownumbers. A parallel syn
hronous ar
hite
ture with O(n) pro
essors 
an 
omplete
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h ex
hange operation in a 
onstant time and ea
h pivot operation in O(n) steps;with O(n2) pro
essors, a pivot operation takes 
onstant time.4. The Inverse of a MatrixThe method we use for the 
omputation of the inverse matrix use Gauss-Jordansteps. A Gauss-Jordan step with the pivot element a[u; v℄ 6= 0 transforms thematrix A elements, in the following way:a[i; j℄ = 8>>>><>>>>: 1a[u;v℄ ; i = u ^ j = v�a[i;j℄a[u;v℄ ; i = u ^ j 6= va[i;j℄a[u;v℄ ; i 6= u ^ j = va[i;j℄�a[u;v℄�a[i;v℄�a[u;j℄a[u;v℄ ; i 6= u ^ j 6= v :If we apply a Gauss-Jordan step n times on matrix A[0::n� 1; 0::n� 1℄ we obtainthe inverse matrix A�1 [2℄. We assume that the rank of matrix A is n.4.1. A Solution. The 
hoi
e of the pivot element it is done in nondeterministi
way, provided that it is nonzero. Sin
e, a pivot operation have to be done onlyone time for a parti
ular row u and a parti
ular 
olumn v, after the exe
ution of apivot operation with the pivot element a[u; v℄ we set ind1[u℄ = 1 and ind2[v℄ = 1.The ind1 and ind2 are two arrays whi
h indi
ate the possible pivot steps. Anelimination step with the pivot a[u; v℄ 
an be exe
uted only if ind1[u℄ = 0 ^ind2[v℄ = 0.Be
ause we not 
hoose every time pivot elements from the diagonal, a permu-tations of the rows of the inverse matrix results. The permutation p depends ofthe 
hoi
es of the pivot elements.Program inversede
larea : array[0::n� 1; 0::n� 1℄ of realind1; ind2 : array[0::n� 1℄ of integerp : array[0::n� 1℄ of integerinitially< u : 0 � u < n :: ind1[u℄; ind2[u℄ = 0; 0 >assignfpivot operation with the element u; v if a[u; v℄ 6= 0g< zu; v : 0 � u < n ^ 0 � v < n ::< ki; j : 0 � i < n ^ 0 � j < n ::



58 VIRGINIA NICULESCUa[i; j℄ := 1=a[u; v℄ if i = u ^ j = v �:= �a[u; j℄=a[u; v℄ if i = u ^ j 6= v �:= a[i; v℄=a[u; v℄ if i 6= u ^ j = v �:= (a[i; j℄ � a[u; v℄� a[u; j℄ � a[i; v℄)=a[u; v℄ if i 6= u ^ j 6= v>kind1[u℄; ind2[v℄; p[u℄ := 1; 1; vif a[u; v℄ 6= 0 ^ ind1[u℄ = 0 ^ ind2[v℄ = 0>endfinverseg4.2. Corre
tness. If we denote by p the following sum p = (Pu : 0 � u < n :ind1[u℄), and by q the sum q = (Pu : 0 � u < n : ind2[u℄), it 
an be easy provedthat the for the pair (p; q) the equality p = q holds at any moment of the exe
ution.So, we 
an write: invariant p = q:The number p(p = q) in
rease after the exe
ution of any statement. The valuesfor p and q are bounded from above by n, hen
e the program inverse rea
hes ata �x point, where p = q = n.The equality p = q = n whi
h holds at any �x point shows that there areexe
uted exa
t n Gauss-Jordan steps with pivot elements from di�erent rows and
olumns. Therefore the matrix A at any �x point is the inverse matrix of theinitial matrix, possible with the rows permuted.To transform the result to the true inverse matrix the following program 
anbe used. Program transformde
larea : array[0::n� 1; 0::n� 1℄ of realp : array[0::n� 1℄ of iutegerassign< zu; v : 0 � u < n ^ 0 � v < n ::frows ex
hange g< kj : 0 � j < n :: a[u; j℄; a[v; j℄ := a[v; j℄; a[u; j℄ >k p[u℄; p[v℄ := p[v℄; p[u℄if p[u℄ = v _ p[v℄ = u>endftransformg4.3. Mappings. On a sequential ar
hite
ture the program inverse 
an be mappedby 
hoosing the �rst pivot element founded; the sear
h of the element is made de-pending in ind1 and ind2.
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an be implemented on an asyn
hronous shared-memory system,by assigning a pro
essor to a row, or by assigning a pro
essor to ea
h matrixelement (and so the operations asso
iated with it), provided that there are enoughpro
essors.On a parallel syn
hronous ar
hite
ture with n2 pro
essors the exe
ution of theprogram takes O(n) time.4.4. Other Appli
ations. The program inverse 
an be used to �nd the rank ofa matrix. The rank it will be equal to p = q, whi
h represents the number of theGauss-Jordan steps, whi
h were exe
uted.With slight modi�
ations, this program 
an be used to resolve a system oflinear equations. The matrix A is repla
ed with the matrix M de�ned for theGauss program M = [AjB℄ and �nally the result (the solution ve
tor)is the last
olumn of the matrix at the �x point. A permutation of the elements it is done inthis 
ase also.The appli
ation of n Gauss-Jordan steps represents also the se
ond stage of thealgorithm SIMPLEX. 5. Con
lusionsThere are presented some nondeterministi
 algorithms from numeri
al analysis.Their 
orre
tness was proved, and di�erent mappings are dis
ussed.Nondeterministi
 programs 
an be mapped more easier on parallel ma
hine,be
ause the parallelism brings some nondeterminism by itself.Interesting algorithms 
an be developed using the 
on
ept of nondeterminism.Nondeterministi
 programs 
an be implemented on di�erent ar
hite
tures, in eÆ-
ient ways. Referen
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