STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

SOME PARALLEL NONDETERMINISTIC ALGORITHMS

VIRGINIA NICULESCU

ABSTRACT. Nondeterminism is useful in two ways. First, it is employed to
derive simple and general programs, where the simplicity is achieved by avoid-
ing unnecessary determinism; such programs can be optimized by limiting
the nondeterminism. Second, some systems are inherently nondeterministic;
programs that represent such systems have to employ some nondeterministic
construct. Nondeterministic programs can be mapped more easier on parallel
machine, since parallelism brings some nondeterminism by itself.

In this article, there are constructed some nondeterministic programs,
for some numerical methods, using the UNITY notation[3]. The correctness
of the algorithms is proven, and some possible mappings are discussed.

1. INTRODUCTION

Nondeterminism is useful in two ways. First, it is employed to derive simple
and general programs, where the simplicity is achieved by avoiding unnecessary
determinism; such programs can be optimized by limiting the nondeterminism.
Second, some systems are inherently nondeterministic; programs that represent
such systems have to employ some nondeterministic construct.

There is a variety of parallel architectures, though parallel programs have to be
developed such that they can be mapped in different ways, on different architec-
tures. A solution is to specify little in the early stages of design, and specify enough
in the final stages to ensure efficient execution on target architecture. Specifying
little about program execution means that the programs may be nondeterministic.

To express the nondeterministic programs, the model used for the developing
the programs is UNITY [3]: ”"Unbounded Nondeterministic Iterative Transforma-
tions”, which is briefly described in the next section.

2. A PROGRAMMING NOTATION
The UNITY program structure is
2000 Mathematics Subject Classification. 68N19.
1998 CR Categories and Descriptors. G.1.3. [Mathematics of Computing] : Numeri-

cal Analysis — Numerical Linear Algebra; G.4. [Mathematics of Computing] : Mathematical
Software; D.1.3 [Software] : Programming Techniques — Concurrent Programming.

51

52 VIRGINIA NICULESCU

program — Program program — name
declare declare — section
always always — section
initially initially — section
assign assign — section
end

The declare — section, names the variables used in the program and their types.
The syntax is similar to that used in Pascal. The always — section is used to define
certain variables as function of others. This section is not necessary for writing
UNITY programs, but it is convenient. The initially — section is used to define
initial values of some of the variables; uninitialized variables have arbitrary initial
values. The assign — section contains a set of assignment statements.

The program execution starts in a state where the values of variables are as
specified in the initially-section. (A state is characterized by the values of all
variables.) In each step, any one statement is executed. Statements are selected
arbitrarily for execution, though in an infinite execution of the program each state-
ment is executed infinitely often. A state of a program is called a fized point if and
only if execution of any statement of the program, in this state, leaves the state
unchanged. A predicate, called FP, characterize the fixed points of the program.
Once FP holds, continued execution leaves values of all variables unchanged, and
therefore it makes no difference whether the execution continues or terminates.

The termination of a program is regarded as a feature of an implementation. A
program execution is an infinite sequence of statement executions and an imple-
mentation is a finite prefix of the sequence.

2.1. Mapping Programs to Architectures. One way to implement a program
is to halt it after it reaches a fixed point.

A mapping to a von Neumann machine specifies the schedule for executing
assignments and the manner in which a program execution terminates.

In a synchronous shared-memory system, a fixed number of identical processors
share a common memory that can be read and written by any processors. The
synchronism inherent in a multiple-assignment makes it convenient to map such a
statement to this architecture.

A UNITY program can be mapped to asynchronous shared-memory system,
by partitioning the statements of the program among the processors. In addition,
a schedule of execution for each processor should be specified that guarantees a
fair execution for each partition. If the execution for every partition is fair, then
any fair interleaving of these executions determines a fair execution of the entire
program. Two statements are not executed concurrently if one modifies a variable
that the other uses.

Other architectures can be considered for mappings.

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 53

2.2. Assignment Statement. It is allowed that a number of variables to be
assigned simultaneously in a multiple assignment, as in

z,y,z:=0,1,2.

Such an assignment can also be written as a set of assignment-components sepa-
rated by ||, as in
xz,y:=0,1|z:=2
or
xz:= 0|y := 1|z := 2.
The variables to be assigned and the values to be assigned to them may be de-
scribed using quantification, rather than enumeration:

<|li:0<i< N :: Ali] :== BJi] > .
A notation like the following is used for a conditional assignment:

r:=—-1 ify<0 ~
0 ify=1 ~
1 ify>0.

2.3. Assign-section. The symbol I acts as a separator between the statements.
A quantified-statement-list denotes a set of statements obtained by instantiating
the statement-list with the appropriate instances of bounded variables; if there is
no instance, quantified-statement-list denotes an empty set of statements. The
number of the instances must be finite. The boolean expression in the quantifica-
tion should no name program variables whose values may change during program
execution.

2.4. Initially-section. The syntax of this section is the same as that of the assign-
section except that symbol := is replaced with =. The equations defining the initial
values should not be circular.

2.5. Always-section. An always-section is used to define certain program vari-
ables as function of other variables. The syntax used in the always-section is the
same as in the initially-section.

3. NONDETERMINISTIC GAUSS ELIMINATION

We consider the Gaussian elimination scheme for solving a set of linear equa-
tions,
A-X =B,
where A[0..n — 1,0..n — 1] and B[0..n — 1] are given and the solution is to be
stored in X[0..n — 1]. Gaussian elimination is presented typically as a sequence of
n pivot steps. The following UNITY program allows nondeterministic choices in
the selections of the pivot rows.

54 VIRGINIA NICULESCU

3.1. A Solution. Let M (A; B) (or M for short) the matrix with n rows and n+1
columns, where the first n columns are from A and the last column is from B. In
the Gaussian elimination M (A; B) is modified to M (A'; B') by certain operations
such that

A-X =B
and
A-X=B

have the same solutions for X. The goal of the algorithm is to apply a sequence
of these operations to convert M(A; B) to M(I,; Xr), where I, is the identity
matrix; then X is the desired solution vector. This goal can be realized if the
rank of A is n, which we assume to be the case.

The program consists of two kinds of statements:

(1) Pivot with row u, provided that M [u,u] # 0; this has the effect of setting
MTlu,u] to 1 and Mv,u] to 0, for all v,v # u

(2) Exchange two rows u and v, provided that both M[u,u] and M[v,v] are
zero and at least one of M[u,v], M[v, u] is nonzero; this has the effect of
replacing a zero diagonal with a nonzero element.

Due to the fact that there are some possible exchanges between the rows, the
elements of the solution vector will be exchanged also. The permutation of the
elements is stored in an array p.

Program Gauss
declare
M : array[0..n — 1,0..n] of real
p:array[0..n — 1] of integer
initially
<i:0<i<n:pli]=i>
assign
{pivot with row u if M[u,u] # 0}
<iu:0<u<n:
<|lw,7:0<ji<nAO<v<nAvF#u:
Mlv,j] := M[v,j] — M[v,u] - M[u,j]/Mu,u] if Mu,u]#0
>
I<lj:0<j<n-
MTu, j] = M[u,j1/Mlu, u] if Mu,u] # 0
>
>

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 55

1{exchange two rows if both have zero diagonal elements and the
exchange results in at least one of these elements being set to nonzero}
<iu,v:0<u<nAO<v<nAuFv:
< 11§ :0<j <ni: Mu,j], Mo, jl, plul, plo] := M[v, 1, Mu, j1, plo], plu]
if Mu,ul]=0A M[v,v]=0A (M[u,v] #0V Mv,u] #0)
>
>
end{Gauss}

3.2. Correctness. Let M° denote the initial Z matrix. Since each statement in
the program modifies M such that the solutions to the given linear equations are
preserved, we have the following invariant:

invariant M°, M have the same solution.

In the following, A refers to the n X n matrix in the left part of M, and B,
to the last column of M. First, it is proven that the program Gauss reaches a
fixed point and that at any fixed point, A is an identity matrix. Then, from the
invariant, B is the desired solution vector. In the following, a unit column is a
column in which the diagonal element is 1 and all other elements are 0. That is,
column w is a unit column means that

Muv,ul=0ifu#v ~1if u=w.
To show that a fixed point is reached, it is proven that the pair (p, ¢), where

p = number of unit columns in A
g = number of nonzero diagonal elements in A,

increases lexicographically with every state change.

We consider each statement in turn. Pivoting with row u, where column w is a
unit column, cause no state change. A state change results from a pivot, operation
with row u only if column u is not a unit column; the effect of the pivot operation
is to set u to a unit column, thus increasing p.

Two rows u and v are exchanged only when Mu,u] = 0 A M[v,v] = 0A
(Mu,v] # 0V M[v,u] # 0). Hence neither of the columns u or v is a unit column.
The exchange preserves all the unit columns, also preserving p. In addition, at
least one diagonal element, M[u,u] or Mv,v] is set to nonzero. Since both of
these elements were previously zero, ¢ increases. Therefore, every state change
in program Gauss increases (p, q) lexicographically. Since each of p, ¢ is bounded
from above by n, Gauss reaches a fix point.

Now, it must be proved that A is an identity matrix at any fix point. The proof
is as follows. Lemma 1 proves that if any diagonal element M [u, u] is nonzero at a
fixed point, u is a unit column. Lemma 2 proves that if some diagonal element is
zero at a fix point, all elements in the row are zero. This contradicts the assumption

56 VIRGINIA NICULESCU

that the determinant of A is nonzero. (Note that execution of any statement in
Gauss preserves the determinant.) Therefore every diagonal element is nonzero
and, using Lemma 1, A is an identity matrix.

Lemma 1. At any fixed point of program Gauss,

Mu,u] #0 = u is a unit column.
Proof: Consider the statement for a pivot corresponding to row u. At any fix
point, given that M[u,u] # 0, for any j and v,u # v,
Mlv,j] = M[v,j] = M[v,u] - M[u, j]/M[u, u]

and

Mlu, j] = M[u, j]/M[u, u].
In particular, with j = u,

Mv,u] = Mv,u] — M[v,u] - M[u,u]/M[u,u] =0
and
Mlu,u] = M[u,u]/M[u,u] = 1.

Therefore v is a unit column.

Lemma 2. At any fixed point of program Gauss,
Mu,u] =0 = Mu,v] =0,Yv # u.

Proof: Consider two cases: M[v,v] =0 and M[v,v] # 0.
In the first case, consider the exchange statement for rows u, v. At any fix point,
given that Mu,u] = 0A M[v,v] = 0:

(M[u,u] =0A Mv,v] =0) V (Aj :: M[u,j] = M[v,j]).
Consider the particular case, j = v. Then,
(M[u,u] =0A M[v,v] =0) V (M[u,v] = Mv,v]).

Using the fact that M[v,v] = 0 we conclude that M[u,v] = 0.
In the second case, if M[v,v] # 0 from Lemma 1, M[u,v] = 0.

3.3. Mappings. Program Gauss can be implemented in a variety of ways on
different architectures. For a sequential machine, it may be more efficient to choose
the pivot rows in a particular order. The correctness of this scheme is obvious
from the proof because it is obtained from the given program by restricting the
nondeterministic choices in statement executions. For an asynchronous shared-
memory or distributed architecture, the given program admits several possible
implementations; the simplest one is to assign a process to a row. To facilitate
the exchange operation, it is possible to allow the row number at a process to
be changed. Two rows can be then exchanged simply by exchanging their row
numbers. A parallel synchronous architecture with O(n) processors can complete

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 57

each exchange operation in a constant time and each pivot operation in O(n) steps;
with O(n?) processors, a pivot operation takes constant time.

4. THE INVERSE OF A MATRIX

The method we use for the computation of the inverse matrix use Gauss-Jordan
steps. A Gauss-Jordan step with the pivot element a[u,v] # 0 transforms the
matrix A elements, in the following way:

1

aTus] J=uANj=0
—alfi,j] F ;
alinjl = o] T
a{%p] ' - JdFUN] =0
ali,j]-alu,v]—ali,v]-alu,j] i 7é u /\] 7é v

alu,v]

If we apply a Gauss-Jordan step n times on matrix A[0..n — 1,0..n — 1] we obtain
the inverse matrix A~! [2]. We assume that the rank of matrix A is n.

4.1. A Solution. The choice of the pivot element it is done in nondeterministic
way, provided that it is nonzero. Since, a pivot operation have to be done only
one time for a particular row v and a particular column v, after the execution of a
pivot operation with the pivot element afu,v] we set indl[u] = 1 and ind2[v] = 1.
The indl and ind2 are two arrays which indicate the possible pivot steps. An
elimination step with the pivot au,v] can be executed only if indlju] = 0 A
ind2[v] = 0.

Because we not choose every time pivot elements from the diagonal, a permu-
tations of the rows of the inverse matrix results. The permutation p depends of
the choices of the pivot elements.

Program inverse
declare
a:array[0.n —1,0..n — 1] of real
indl,ind2 : array[0..n — 1] of integer
p:array[0..n — 1] of integer
initially
<u:0<wu<n:indlu],ind2[u] =0,0 >
assign
{pivot operation with the element u,v if a[u,v] # 0}
<tuv:0<u<nAO<wv<n:
<||i,j:0<i<nAO<j<n:

58 VIRGINIA NICULESCU

ali,j] :=1/alu,v] ifi=uANj=v ~
= ~alu, 1)/afu,] ifi=unj#o ~
= ali, v]/afu, v] ifiFuNj=v ~

(ali, 7] - alu,v] = alu, j] - ali, v]) falu,v] if iFunj#ov
>
||ind1[u], ind2[v], plu] := 1,1, v
if alu,v] #0Aindl[u] =0Aind2[v] =0
>
end{inverse}

4.2. Correctness. If we denote by p the following sum p = (Y u:0<u < n:
ind1fu]), and by ¢ the sum ¢ = (D" u : 0 < w < n :ind2[u]), it can be easy proved
that the for the pair (p, ¢) the equality p = ¢q holds at any moment of the execution.
So, we can write:

invariant p =q.

The number p(p = ¢) increase after the execution of any statement. The values
for p and ¢ are bounded from above by n, hence the program inverse reaches at
a fix point, where p = q = n.

The equality p = ¢ = n which holds at any fix point shows that there are
executed exact n Gauss-Jordan steps with pivot elements from different rows and
columns. Therefore the matrix A at any fix point is the inverse matrix of the
initial matrix, possible with the rows permuted.

To transform the result to the true inverse matrix the following program can
be used.

Program transform
declare
a: arrayl0.mn —1,0..n — 1] of real
p:array[0..n — 1] of iuteger
assign
<Iu,v:0<u<nAO<v<n:
{rows exchange }
<|l7:0<j<n:alu,jl,alv,j]:=alv,j],alu,j] >
| plul, plv] := plv], plu]
if plul =vVpl] =u
>
end{transform}

4.3. Mappings. On a sequential architecture the program inverse can be mapped
by choosing the first pivot element founded; the search of the element is made de-
pending in indl and ind2.

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 59

The program can be implemented on an asynchronous shared-memory system,
by assigning a processor to a row, or by assigning a processor to each matrix
element (and so the operations associated with it), provided that there are enough
processors.

On a parallel synchronous architecture with n? processors the execution of the
program takes O(n) time.

4.4. Other Applications. The program inverse can be used to find the rank of
a matrix. The rank it will be equal to p = ¢, which represents the number of the
Gauss-Jordan steps, which were executed.

With slight modifications, this program can be used to resolve a system of
linear equations. The matrix A is replaced with the matrix M defined for the
Gauss program M = [A|B] and finally the result (the solution vector)is the last
column of the matrix at the fix point. A permutation of the elements it is done in
this case also.

The application of n Gauss-Jordan steps represents also the second stage of the
algorithm SIMPLEX.

5. CONCLUSIONS

There are presented some nondeterministic algorithms from numerical analysis.
Their correctness was proved, and different mappings are discussed.

Nondeterministic programs can be mapped more easier on parallel machine,
because the parallelism brings some nondeterminism by itself.

Interesting algorithms can be developed using the concept of nondeterminism.
Nondeterministic programs can be implemented on different architectures, in effi-
cient ways.

REFERENCES

[1] G. E. Blelloch, B. M. Maggs , Parallel Algorithms, ACM Computing Surveys, Vol. 28, No.
1, March 1996, pg. 51-54.

[2] W.W. Breckner, Operational Research, ”Babeg-Bolyai* University, Cluj-Napoca, 1981 (in
Romanian).

3] K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.

4] Gh. Coman, Numerical Analysis, Libris, Cluj-Napoca, 1995 (in Romanian).

5] I. Foster, Designing and Building Parallel Programs, 1995.

6] Carrol Morgan, Programming from Specifications, Prentice Hall, 1990.

DEPARTMENT OF COMPUTER SCIENCE, “BABES-BOLYAT” UNIVERSITY, RO-3400 CLUJ-NAPOCA,
1 KOGALNICEANU ST., RO-3400 CLUJ-NAPOCA, ROMANIA
FE-mail address: gina@cs.ubbcluj.ro

