
STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000PARALLEL VERIFICATION AND ENUMERATION OFTOURNAMENTSG�ABOR P�ECSY AND L�ASZL�O SZ}UCSAbstrat. The area of tournaments is extensively disussed in literature.In this artile the authors introdue asymptotially optimal sequential algo-rithms for the veri�ation of sore vetors and sore sequenes and a sequen-tial polynomial algorithm for enumeration of omplete tournaments. Theextensions of these algorithms to di�erent parallel arhitetures inludingCREW PRAM, linear array, mesh and hyperube are also presented. It isshown that most of the parallel algorithms disussed here are work-optimalextensions of the sequential ones.1. IntrodutionRound-robin tournaments are popular in the world of sport, games or eletionsand they are very muh disussed in omputer siene as well. A tournament isan n�n real matrix. The elements of the main diagonal tii equal to zero and thepairs of symmetri elements tij : tji give the result of the math between Pi (thei-th player) and Pj . The sum of the elements of the i-th row (si) is alled the soreof the i-th player. A non-dereasingly ordered sequene of the sores is the soresequene of the tournament.The most usually disussed problems regarding tournaments inlude:� Veri�ation of a sore sequene/sore vetor means the deision if thereexists a tournament for a given sore sequene/sore vetor.� Enumeration of sore sequenes means the ounting of the possible dif-ferent sore sequenes for a given number of players (n).The outline of the paper is as follows. The following setion desribes theproblems and the used omputational models more formally. Setion 3 deals withveri�ation problems and their sequential and parallel solutions.Then Setion 42000 Mathematis Subjet Classi�ation. 05C20, 68Q25, 65Y05.1998 CR Categories and Desriptors. G.2.1 [Disrete mathematis℄: Combinatoris {Counting problems; F.2.2 [Analysis of algorithms and problem omplexity℄: Nonnumer-ial algorithms and problems { Computations on disrete strutures C.1.4 [Proessor arhi-tetures℄: Parallel arhitetures { Distributed arhitetures .11

12 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSpresents our results about enumeration. Finally, a table summarizes the resultswith possible future works. 2. Basi notions2.1. Tournaments.Tournament: A round-robin tournament is an n�n real matrix Tn = [tij ℄(n � 2). The elements of the main diagonal tii equal to zero and thepairs of symmetri elements tij : tji give the result of the math betweenPi (the i-th player) and Pj . tij = tji means a draw, while tij > tji meansthe win of Pi against Pj .Sore vetor: The sum of the elements of the i-th row (si) is alled thesore of the i-th player and the vetor (s1; : : : ; sn) is alled the sorevetor of the tournament.Sore sequene: A non-dereasingly ordered sequene of the sores is de-noted by q =< q1; : : : ; qn > and is alled the sore sequene of thetournament.Complete tournament: We all a tournament omplete if in it the per-mitted elements are 0 and 1 and the sum of the symmetri elements(tij+tji;where i 6= j) is always 1. A set of tournaments is alled ompletefor a given n if it ontains all possible n player omplete tournaments.2.2. Computational models.Sequential model: A RAM running pseudo-ode similar to struturedprogramming languages.PRAM: Parallel RAM, onsists of a shared memory and possibly in�-nite number of RAMs whih operate with the same pseudo ode as inthe sequential ase. Depending on the methods of aessing the sharedmemory there are di�erent types of PRAM.EREW: Exlusive Read Exlusive WriteERCW: Exlusive Read Conurrent WriteCREW: Conurrent Read Exlusive WriteCRCW: Conurrent Read Conurrent WriteAs onurrent read of shared memory is usually allowed while the resultof onurrent write is ambigous we deided to use CREW PRAM in ourstudy.Linear array: A linear array onsists of p proessors (named 1; 2; : : : ; p).Proessor i has two diret bidiretional interonnetion links to its neigh-bouring proessors (i� 1 and i+1) exept proessor 1 and p whih hasonly one neighbour.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 13Mesh: A mesh is an a � b grid in whih there is a proessor at eah gridpoint. The edges orrespond to ommuniation links and are bidire-tional. In this paper we onsider only square meshes, where a = b.Hyperube: A hyperube of dimension d has p = 2d proessors. Eahproessor an be labeled with a d-bit binary number. A proessor isonneted only to those proessors whih label di�ers in only one bit.Work-optimal: We all a parallel algorithm work-optimal ompared to agiven sequential algorithm if Pn�pSn = O(1), where Sn is the run time ofthe sequential algorithm, Pn is the run time of the parallel algorithmand p is the number of proessors.Notie that if a parallel algorithm is work-optimal ompared to a given asymp-totially optimal sequential algorithm then the parallel algorithm itself is asymp-totially optimal as well. 3. VerifiationVeri�ation of a sore sequene/sore vetor means the deision if there existsa tournament for a given sore sequene/sore vetor. Landau [5℄ proved thefollowing theorem whih gives neessary and suÆient ondition for the existeneof a omplete tournament for a partiular sore sequene.Theorem 1. A non-dereasing sequene of n integers < q1; : : : ; qn > is a soresequene if and only if kXi=1 qi � �k2�for eah k = 1; 2; : : : ; n with equality for k = n.3.1. Sequential algorithm. Theorem 1 an be diretly applied to verify soresequenes as they are ordered non-dereasingly. The following algorithm solvesthis problem in �(n) time and with O(1) auxiliary memory.1 s:=0; i:=1; ok:=(qn<n);2 while i<n and ok loop3 s:=s+qi;4 ok:=s�(i*(i-1)/2);5 i:=i+1;6 end loop7 ok:=ok and (s+qn)=(n*(n-1)/2);8 return ok;Algorithm 1: Sequential algorithm for sore sequene veri�ation

14 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSAs the trivial lower bound for the veri�ation problem is
(n) | the algorithmhas to read the input | Algorithm 1 is asymptotially optimal for sore sequeneveri�ation.In ase of sore vetors the input is not ordered properly so Theorem 1 (andAlgorithm 1) an not be applied diretly. One possible solution is to sort the inputand then apply Algorithm 1 to the result. It is known that sorting of general keystakes
(n logn) time but if keys are integer numbers from the range [0..k℄ thenthey an be sorted in O(max(n; k)) time. Suh algorithm an be found in hapter 9of [1℄. In ase of a sore vetor all elements must belong to range [0..n-1℄ so thevetor an be sorted in O(n) time. This ondition an also be veri�ed in O(n)time, so we get the following algorithm.Step 1: Verify whether all elements in the vetor fall in the range [0..n-1℄.If not then the input an not be a sore vetor.Step 2: Sort the input.Step 3: Use Algorithm 1.Algorithm 2: Sequential veri�ation of sore vetorsNote that Algorithm 2 is asymptotially optimal for the same reason as Algo-rithm 1.3.2. Parallel algorithms. In this setion we provide an eÆient way to imple-ment Algorithm 1 and Algorithm 2 on di�erent parallel arhitetures. 13.2.1. PRAM. On a CREW PRAM Algorithm 1 an be implemented in a verystraightforward way.Step 1: For all proessors ompute the pre�x-sums (ri) of the input se-quene.Step 2: Proessor pi (i := 1; 2; : : : ; n � 1) alulates li := (ri � (i � (i �1)=2)) while pn alulates ln := (rn = (n � (n� 1)=2)).Step 3: Calulate OK := l1 ^ : : : ^ ln using the pre�x omputation algo-rithm with all proessors.Algorithm 3: Simple parallel algorithm for sore sequene veri�ationStep 1 an be done in O(log n) time, Step 2 takes O(1) time and Step 3 isO(log n) again. Note that in ase of CRCW PRAM Step 3 takes only O(1) time.This algorithm uses O(n) proessors and operates in O(log n) time thereforeit is not work-optimal, but it an be improved to run on O(nlogn) proessorsin O(log n) time whih is work-optimal. To ahieve this we divide the input1It is assumed that the reader is familiar with the pre�x-sum omputation and otherwell-known parallel algorithms summarized in [2℄ as they are building bloks of the followingalgorithms.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 15into logn long piees. Proessor pi will sequentially alulate pre�x-sums ofs(i�1) logn+1; : : : ; si logn. Then the proessors will apply the original pre�x ompu-tation algorithm on the sums of the piees. In the third step eah proessor willupdate the pre�x-sums of the orresponding piee by adding the sum of all theprevious piees. After this the proessors will alulate li values sequentially for allelements belonging to them and �nally they perform a pre�x omputation using thesame algorithm as for the pre�x-sum alulation to determine OK := l1 ^ : : :^ ln.Step 1: For all proessors ompute sequentially the pre�x-sums(ti;j ; where i := 1; 2; : : : ; nlogn ; j := 1; 2; : : : ; logn) of the orrespondingpiee of input sequene.Step 2: For all proessors ompute the pre�x-sums (ri logn) of ti;logn.Step 3: For all proessors ompute sequentially r(i�1) logn+j :=r(i�1) logn + ti;j (i := 1; 2; : : : ; nlog n ; j := 1; 2; : : : ; logn).Step 4: Proessor pi (i := 1; 2; : : : ; logn) alulates l(i�1) logn+j :=(r(i�1) logn+j � (((i � 1) logn + j) � ((i � 1) � logn + j � 1)=2)) usingequality at the last position.Step 5: Calulate OK := l1 ^ : : : ^ ln using the pre�x omputation algo-rithm desribed in Step 1{3, with all proessors.Algorithm 4: Work-optimal veri�ation of sore sequenes on CREW PRAMIn this algorithm all steps take O(log n) time so the whole algorithm worksin O(logn) time as well. It uses O(nlogn) proessors so this is a work-optimalparallelization of Algorithm 1. As Algorithm 1 is asymptotially optimal algorithmfor the sore sequene veri�ation problem the same holds for Algorithm 4 as well.Notie that in this algorithm only the parallel steps (Step 2 and 5) requireinterproessor ommuniation and these steps are all parts of pre�x omputations.3.2.2. Linear array. A lower bound on every interonnetion networks for a prob-lem is the diameter of the network if all proessors of the network ontributes tothe omputation of the result. As the diameter of a linear array of n proessors isn � 1,
(n) is a lower bound for the sore sequene and sore vetor veri�ationproblems. These problems an be solved in O(n) time on a single proessor aswell, the trivial (and optimal) solution is to send all data to the �rst proessor ofthe array { this an be done in O(n) time { and do the veri�ation there, using thesequential algorithms. These solution are work-optimal if and only if the numberof proessors in the array is O(1).3.2.3. Mesh. The diameter of a p proessor mesh is pp, so
(pp) is a lower boundto an algorithm. The mesh adaptation of Algorithm 3 solves the problem in O(pn)if p = n. But we an apply the same tehnique as in Algorithm 4. If we assign n 13element for eah proessor of a n 13 � n 13 mesh then both the sequential and the

16 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSparallel steps work in O(n 13) time. The number of proessors in this ase is n 23 sothe algorithm is work-optimal.3.2.4. Hyperube. In a p proessor hyperube, pre�x omputation an be per-formed in O(log p) time, whih means that adoptations of Algorithm 3 and Algo-rithm 4 an work in the same time bounds as in ase of CREW PRAM.3.2.5. Parallel sore vetor veri�ation. Unfortunately there is no known work-optimal parallel sorting algorithm for integer key from a given domain. Thismeans that the most diÆult step in the parallel adoptation of Algorithm 2 is thesorting. The omplexity of sorting usually exeeds the omplexity of the othersteps so the overall omplexity of the algorithm equals the omplexity of sortingthe input. For PRAM and hyperube there are algorithms whih an sort generalkeys in O(log2 n) time. 4. EnumerationEnumeration of sore sequenes means the ounting of the possible di�erentsore sequenes for a given number of players (n).For n > 1 let fn(T;E) be the number of non-dereasing sequenes of integerssatisfying nXi=1 qi = T; qn = E and kXi=1 qi � �k2�; k = 1; 2; : : : ; n� 1:Narayana and Bent in [7℄ presented a reursive formula for determining fn(T;E):f1(T;E) = � 1; if T = E � 00; otherwise.for n � 2fn(T;E) = 8><>: EXk=0 fn�1(T �E; k); if T �E � �k2�0; otherwise.(1)Let tn be the number of possible sore sequenes in ase of n players. For n > 1we have the following formula for tn:tn = n�1XE=r fn(�n2�; E);where r = jn2k :

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 17
i

T[n] = F[n,(n*(n-1)/2),r] +...+ F[n,(n*(n-1)/2),n-1]

Level i-1

Level i

F[i-1,T-E,0], ..., F[i-1,T-E,E]

F[i,T,E]

T

EFigure 1. Array element dependenies in the non-optimized formula4.1. Units of measure. The experimental results indiate that the value of tn isinreasing exponentially with n (tn =
(2n)) whih implies that we need log tn =�(n) memory to store a single number. This also implies that addition of suhnumbers takes �(n). In the next parts of the artile we will ount the numberof operations (addition, send, reeive and assignment) on the elements of thearray during the analysis of the algorithms. In a real implementation all of theseoperations an be done in O(n) time.4.2. Sequential algorithms. The most straightforward reursive alulation oftn using the reursive formula (1) has exponential run time so it is not appliablefor bigger n values. Using dynami programming the run time an be reduedsigni�antly into polynomial domain.4.2.1. Algorithm using dynami programming. The following algorithm uses arrayof size n� n� (n(n� 1)=2 + 1) elements and works in �(n5) time.The operation of the algorithms an be divided into two phases. First phaseis �lling in the array F whih ontains the values of fi(T;E) for i = 1::n; T =0::n(n�1)2 and E = 0::n�1, thus the dimensions of the array are n� n(n�1)2 +1�n =�(n4). Calulating a partiular F [i; T; E℄ element takes �(1) time for i = 1 |

18 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS1 for i:=1 to n loop2 for T:=0 to (n*(n-1)/2) loop3 for E:=0 to n-1 loop4 if i=1 then5 if T=E then6 F[i,T,E℄:=1;7 else8 F[i,T,E℄:=0;9 end if ;10 else11 F[i,T,E℄:=0;12 if (T-E)� ((i-1)*(i-2)/2) then13 for k:=0 to E loop14 F[i,T,E℄:=F[i,T,E℄+F[i-1,T-E,k℄;15 end loop;16 end if ;17 end if ;18 end loop;19 end loop;20 end loop;21 TN:=0;22 for E:=(n div 2) to n-1 loop23 TN:=TN+F[n,(n*(n-1)/2,E℄;24 end loop;25 return TN;Algorithm 5: Calulating the number of sore sequenes using dynamiprogramminglines 5{9 | and O(n) otherwise | lines 11{16 (see Figure 1). This means that thewhole algorithm runs in O(n5) time. The seond phase is to alulate the numberof sore sequenes (TN) using the �lled array F (see Figure 1).4.2.2. Improved algorithm. In Algorithm 5 the number of the used array elementsis �(n4) so O(n4) is a lower bound to the run time of any solution using thisapproah, but the run time is O(n5). We show that using a proper reformulationof equation (1) the run time of the algorithms an be redued to �(n4).

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 19
Level i-1

E

i

F[i-1,T-E,E]

F[i,T-1,E-1]

F[i,T,E]

T Level i

Figure 2. Dependenies of elements in the array in ase of theoptimized formulafi(T;E) = EXk=0 fi�1(T �E; k)= E�1Xk=0 fi�1((T � 1)� (E � 1); k) + fi�1(T �E;E)= fi(T � 1; E � 1) + fi�1(T �E;E)(2)Notie that when we ompute fi(T;E) we already know fi(T � 1; E � 1) so wean replae the loop in lines 13{15 of Algorithm 5 with a simple assignment (seeFigure 2).4.3. Parallel algorithms.4.3.1. PRAM. A straightforward parallel implementation of the non-optimizedformula is the following. We �ll in one level of the array in one round. Wehave nlogn proessors for eah element in the level (�gure 3). These proessorsperform a pre�x omputation to alulate the value using the original formula (1).This takes O(log n) time. The array has n levels so the whole algorithm runs inO(n logn). On a single level of the array there are n�n2� elements, whih means thatwe need n�n2� nlog n = n3(n�1)2 logn = O(n4logn) proessors to ahieve this. Unfortunatelythis solution is not work-optimal as the amount of work done is O(n4 logn) �O(n logn) = O(n5).This algorithm used the property of (1) that the value of a partiular element ina ertain level depends on other elements from a lower level only. This way we ouldavoid the synhronization overhead between the proessors working on di�erentelements. Using the optimized formula we have to use results from the same level

20 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS
= n/log n processors

E

i

T
Level i

Figure 3. Using brute-fore approah on PRAM arhitetureas well. More aurately the value of fi(T;E) depends on fi(T � 1; E � 1) whihin turn depends on fi(T � 2; E � 2) et. This dependeny limits the maximumnumber of proessors that a work-optimal algorithm an utilize.Here we present three possible work-optimal algorithms, using n, n2 and n3�n2blog nproessors.Eah algorithm alulates the values level by level. The �rst version assigns aproessor to eah possible values of T and these proessors alulate fi(T;E) forthe di�erent E values one by one. As the value of T belongs to the domain [0..�n2�℄so we need �n2� + 1 proessors and eah alulates fi(T;E) for E = 0; : : : ; n � 1whih requires �(n) time. There are n levels in the array so the whole run timeof the algorithm is �(n2).
= 1 processor

E

i

Level i
T

Figure 4. PRAM algorithm using n2 proessorsThe seond algorithm assigns proessors to eah possible values of E and theseproessors alulate fi(T;E) for the di�erent T values one by one. This means

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 21that we need n proessors and due to symmetry the run time of this algorithm is�(n3).
= 1 processor

E

i

T
Level i

Figure 5. PRAM algorithm using n proessorsThe third algorithm uses a bit di�erent approah. For this algorithm, ompu-tation of one level takes two steps. During the �rst step the proessors set theelements of the level to 0. There are n3�n2 elements in a level, we have n3�n2blog n pro-essors so it takes O(log n) time to aomplish. In the seond step the algorithmalulates fi(T +j; E+j); (j = 1::n) using pre�x omputation algorithm with nlog nproessors on fi�1(T � E; j). This also takes logn time, so a single level an bealulated in logn time, the array has n levels so the whole algorithm works inO(n logn).
E

= n/log n processors

i

T
Level i

Figure 6. PRAM algorithm using n3logn proessors

22 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS4.3.2. Linear array. The seond work-optimal algorithm given for PRAM an beadapted to n proessor linear array as well. Eah proessor is assigned a possiblevalue of E. The proessor stores the two-dimensional subarray belonging to thatpartiular value . The proessors use Algorithm 6.Step 1: For i:=1 eah proessor alulates F [i; T; E℄ := (T = E)?1 : 0.Step 2: For i:=2::n eah proessor performs Algorithm 7.Step 3: The proessors perform a pre�x omputation to determine tn.Algorithm 6: Enumeration of sore sequenes on n proessor linear arrayEah proessor (E:=0..n-1) on level i (i:=2..n) does the following:1 for T:=1 to n*(n-1)/2 loop2 if E > 0 and T > 0) then3 reeive Z:=F[i,T-1,E-1℄ from proessor E-1;4 else5 Z:=(i=2 and T=0 and E=0)?1:0;6 end if ;7 if T-E � ((i-1)*(i-2)/2) then8 F[i,T,E℄:=Z+F[i-1,T-E,E℄;9 else10 F[i,T,E℄:=0;11 end if ;12 if E < n-1 and T < n*(n-1)/2 then13 send F[i,T,E℄ to proessor E+1;14 end if ;15 end loop;Algorithm 7: Calulating fi(T;E) values on an n proessor linear array4.3.3. Mesh. As linear array an be embedded to a mesh the algorithm given inthe previous setion an be applied for meshes as well.However there exists another work-optimal algorithm using n2 proessors. Letthe proessors be indexed from 1 to n (i) and from 0 to n � 1 (E). Proessor(i; E) has a one-dimensional subarray ontaining fi(T;E) for the possible di�erentT values. This way to alulate fi(T;E) for a partiular value of T it has toommuniate with two of its neighbours.The enumeration problem an be solved using the following algorithms:4.3.4. Hyperube. As mesh an be embedded to a hyperube the same algorithmsgiven for meshes an be applied.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 23
= 1 processor

E

T

i

Figure 7. Mesh algorithm using n2 proessorsStep 1: For i:=1 and E:=0..n-1 eah proessor performs Algorithm 9. Fori:=2..n and E:=0..n-1 eah proessor performs Algorithm 10.Step 2: The proessors (n; 0); : : : ; (n; n� 1) perform a pre�x omputationto determine tn.Algorithm 8: Enumeration of sore sequenes on n2 proessor mesh5. Further optimizationsThe algorithms given in the previous setion use �(n4) array elements. It'seasy to see that eah algorithm (exept the last one) at a given time uses onlytwo levels of the array. Calulating the ith level we need the (i-1)th one forthat. This means that we don't have to store all levels only the urrent and theprevious one. This optimization will redue the number of neessary elements to2 � n � n � (n� 1)=2 = n3 � n2 = �(n3).6. Conlusions6.1. Summary. The table below summarizes our results for p proessors andn-player tournaments:Problem Sequential Linear Mesh Hyperube PRAMarraySore �(n) 8p 2 N p = n 23 p = nlog n p = nlognsequene �(n) �(n 13) �(log n) �(log n)work-opt. work-opt. work-opt.

24 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSSore �(n) 8p 2 N p = n p = n p = nvetor �(n) O(n 12) O(log2 n) O(log2 n)p = n2 p = n2O(log n) O(log n)Enume- Reursive p = n p = O(n) p = O(n) p = nration of formula with �(n3) �(n3) �(n3) �(n3)sore dynami work-opt. work-opt. work-opt. work-opt.sequenes programming: p = n2 p = O(n2) p = n2�(n4) �(n2) �(n2) �(n2)work-opt. work-opt. work-opt.p = n3�n2blogn�(n log n)work-opt.The notion of ompleteness of tournaments an be extended to k-ompleteness.k-omplete: We all a tournament k-omplete if its elements are non-negative integers and the sum of the symmetri elements is always k(tij + tji = k;where i 6= j) . A set of tournaments is alled k-ompletefor a given n if it ontains all possible n player k-omplete tournaments.From the de�nition it follows that a omplete tournament is 1-omplete. Thetheorems and algorithms presented above an be easily extended to k-ompletetournaments.6.2. Future Works. In this setion we try to identify some possible diretions todo further researh.� Fine-tuning the presented non work-optimal algorithms if possible ordesign new ones.� As we saw the value of tn inreases exponentially this also implies thatfi(T;E) values are inreasing in similar order. Storing suh values re-quires O(n) bits. However it is possible that the average size of theelements in the array is smaller.� The task of reonstrution means that for a given sore sequene we on-strut a tournament. The asimptotially optimal sequential algorithmssolve this problem in �(n2) time. Parallel reonstruting algorithms forthe problem are to be onsidered.� Parallel algorithm for alulating the lexiographial suessor of a givensore sequene.� Parallel listing of sore sequenes for a given n.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 25Eah proessor (i,E) (i:=2..n; E:=0..n-1) does the following:1 for T:=0 to n*(n-1)/2 loop2 if E>0 and T>0 then3 reeive Z:=F[i,T-1,E-1℄ from proessor (i,E-1);4 else5 Z:=(i=2 and T=0 and E=0)?1:0;6 end if ;7 if T-E�((i-1)*(i-2)/2) then8 if T=0 then9 Y:=(i=2 and E=0)?1:0;10 else11 reeive Y:=F[i-1,T-E,E℄ from proessor (i-1,E);12 end if ;13 F[i,T,E℄:=Z+Y;14 else15 F[i,T,E℄:=0;16 end if ;17 if T<n*(n-1)/2 then18 if E<n-1 then19 send F[i,T,E℄ to proessor (i,E+1);20 end if ;21 send F[i,T-E,E℄ to proessor (i+1,E);22 end if ;23 end loop;Algorithm 9: Calulating fi(T;E) values for i > 2Eah proessor (1,E) (E:=0..n-1) does the following:1 for T:=0 to n*(n-1)/2 loop2 F[1,T,E℄:=(E=T)?1:0;3 if T<n*(n-1)/2 and T�E then4 send F[1,T-E,E℄ to proessor (2,E);5 end if ;6 end loop;Algorithm 10: Calulating f1(T;E) valuesThe tehniques that were used in the presented algorithms aimed the paralleladoption of a sequential dynami programming solution. These tehniques shouldbe extended to other algorithms using dynami programming.

26 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSAknowledgement. The authors would like to thank Antal Iv�anyi for sharinghis knowledge about tournaments and being open to disuss our ideas.Referenes[1℄ T. H. Cormen, C. E. Leiserson, R. L. Rivest (1990), Introdution to Algorithms, MGraw-Hill,MIT Press, New York.[2℄ E. Horowitz, S. Sahni, S. Rajasekaran (1998), Computer Algorithms, Computer Siene Press,New York.[3℄ A. Iv�anyi, Good tournaments, submitted to Annales Univ. Si. Budapest., Setio Math.[4℄ A. Iv�anyi, Maximal tournaments, In: Fourth Join Conf. on Math. and Comp. Si. Felix, June5{10, 2001, submitted to Pure Math. and Appl.[5℄ H. G. Landau (1953), The ondition for a sore struture III, Bull. Math. Biophysis, pp.153{158.[6℄ J. W. Moon (1968), Topis on Tournaments, Holt, Rinehart & Winston, New York.[7℄ T. V. Narayana, D. H. Bent (1964), Computation of the number of sore sequenes in round-robin tournaments, Canad. Math. Bull. 7 (1), pp. 133{136.[8℄ K. B. Reid (1996), Tournaments: sores, kings, generalizations and speial topis, CongressusNumerantium 115, pp. 171{211.Department of General Computer Siene, E�otv�os Lor�and University, 1117 Bu-dapest, P�azm�any P�eter s�et�any 1/B., HungaryE-mail address: pii�elte.hu and slie�elte.hu

