
STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

AN EVOLUTIONARY ALGORITHM FOR THEOREM PROVING

IN PROPOSITIONAL LOGIC

D. DUMITRESCU AND M. OLTEAN

Abstract. Standard theorem proving algorithms normally have exponential
complexity. This drawback could be eliminated within the Evolutionary com-
putation framework. In this paper an evolutionary theorem proving method
is proposed. The method is designed for propositional logic but may be ex-
tended to first order logic.

The proposed evolutionary approach represents a new paradigm of au-
tomated theorem proving. Method complexity is polynomial. Reducing time
complexity with respect to non-evolutionary methods is an important feature
of the proposed approach.

A population of theorems is evoluated using two search operators: re-
combination and mutation. Recombination operator implements Modus Po-
nens inference rule. Mutation corresponds to the substitution operation.

1. Introduction

It is well known (see [3, 4, 5]) that the problem of deciding a given formula in
propositional logic is (or not) a theorem in an NP problem. As we do not know if
there exists a polynomial algorithm for solving NP problems they are considered
as hard problems.

Many algorithms for automated theorem proving have been proposed. Robin-
sons resolution method ([7]) is one of the most powerful methods. However, res-
olution has the great disadvantage of being NP complete. This means that on
a standard (sequential) computer the algorithms run a time that is bound by an
exponential function of the input sequence length.

Evolutionary Algorithms (EAs) (see [1, 2]) are useful tools for solving complex
optimization and search problems. EAs can also be successfully used to solve NP
problems.

In this paper we propose an evolutionary algorithm, called ETP, for automated
theorem proving within the propositional logic.

A model of propositional calculus consisting from three axioms and two infer-
ence rules is considered. The inference rules of the model are Modus Ponens (MP)
and substitution. Our goal is to determine if a given well-formed formula R is (or
it is not) a theorem. To solve this problem the ETP algorithm will be used.

87



88 D. DUMITRESCU AND M. OLTEAN

A substitution operation by which every variable from an axiom is replaced
by a well-formed formula is used to obtain theorems from axioms. The replacing
formulae in a substitution are generally different. In what follows by a substitution

we designate the formulae used for replacement in an axiom or in a theorem.

2. Evolutionary model for theorem proving

Within a generation t a population S(t) of substitutions is used to obtain the-
orems from the system axioms. These substitutions may remain constant during
the search process or may be evoluated by an evolutionary procedure. In the first
case we have:

S(t) = S, t = 1, 2, ...,

where t is the generation index.
Each substitution population S(t) generates a theorem population T (t).
Theorems from T (t) will be modified using variation operators. In our model

considered variation operators are recombination and substitution. Recombination
operator corresponds to the application of Modus Ponens rule and substitution
plays the role of mutation operator.

Using MP from two parent theorems an offspring is obtained. As usual parent
recombination is guided by a fitness function.

For a given theorem T all the possible mating candidates are established. A
candidate partner TP of T has to have the form

TP = T → A,

where A is a well formed formula.
Let us note that the Modus Ponens rule can be applied only for pairs of theorems

having a particular form.
Tournament selection, or other selection procedures may be used to find the

mating partner of T . Let T ′ be the tournament winner. From T and T ′ an
offspring is obtained applying MP inference rule. Parent T ′ is considered to be
dominant.

Within survival dominant parent is compared with its offspring. The winner
will enter the new generation.

3. Evolutionary algorithm

Let R be a formula representing a target (or tentative) theorem. Our aim is to
decide if R is a theorem or it is not.

Evolutionary theorem proving (ETP) algorithm starts with an arbitrary pop-
ulation of substitutions. At the first step we randomly make substitutions in the
axioms. A substitution operator realizes this operation. Performing substitution
operation an initial population of theorems is obtained.



EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 89

In the next phase the theorem population is evolved. New theorems are obtained
using MP inference rule. The obtained theorems are modified via a mutation
operator (i.e. by performing substitutions in theorems).

As MP rule implies two theorems, we can assimilate MP inference rule with
recombination operator. Theorems obtained by recombination are subsequently
modified by the effect of substitution operator.

After a number of generations the algorithm stops with the answer “Yes” or
“No”. Yes means that that the target formula R exists in the last theorem pop-
ulation. Therefore R is a theorem. No means either that the formula is not a
theorem, or our algorithm fails to determine it. The algorithm may fail to prove
either due to a bad chosen population of substitutions, or due to an incomplete
exploration of solution space by search operators.

If the algorithm result is Yes then the deduction chain representing the proof
of theorem R may be established.

When the output of the procedure is No then we may restart the algorithm
trying to prove the theorem T , where

T =∼ R.

If the new output is Yes then definitively R is not a theorem. Otherwise we can
not make a decision about the truth value of the assertion R is a theorem.

4. Individual representation

Each well-formed formula of propositional logic can be represented as a tree.
The non-terminal nodes contain logical connectives and the terminal ones contain
the propositional variables. Each node has maximum two descendants. If the
node contains the connective “→” then the node has two descendents. If the node
contains the negation connective “∼” then it has to have just one descendent. If a
node contains a propositional variable, then it is a leaf and it has no descendents
at all.

In our approach axioms, substitutions and theorems will be represented as trees.
Therefore the search space for our problem is the set of trees describing well-formed
formulae. This representation is similar to that used in Genetic Programming (see
[6]).

To limit the dimension of the search space we have to reduce the tree depth and
the number of propositional variables used in substitutions. However, the number
of the propositional variables in a substitution must be higher than the number of
propositional variables in the target theorem R.

Denote by h(R) the target theorem height.
As by recombination the height of the trees decrease, the height of a substitution

tree must be no less than h(R) − 1. Therefore we have

h(s) + 2 ≥ h(R),



90 D. DUMITRESCU AND M. OLTEAN

Figure 1 Tree for formula (A →∼ (B → A))

Figure 2 Tree for axiom A1 A → (B → A)

for each substitution s. (We added two because the axioms have the height one or
two.)

Example. Let us consider the formula F = (A →∼ (B → A)). The tree corre-
sponding to formula F is depicted in Figure 1.

Let us denote by A the system axioms. We may interpret each axiom as a
potential solution of the problem (an individual in the search space).

The system axioms are:

A1:: A → (B → A).
A2:: (A → (B → C)) → ((A → B) → (A → C)).
A3:: (A → B) → (∼ B →∼ A).

The three system axioms are represented by the trees as depicted in Figures
2-4.

We may assume the set A contains three particular candidate solutions (or
individuals) corresponding to the three axioms from propositional logic. We may
consider A as a static solution population.

Moreover two different evolving populations S and T will be considered where:

• S is a substitution population. It contains some randomly generated
formulae.



EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 91

Figure 3 Tree for axiom A2 (A → (B → C)) → ((A → B) → (A → C)))

Figure 4 Tree for axiom A3 (A → B) → (∼ B →∼ A)

• T is a theorem population. Each individual in this population is a theo-
rem. Each population member will be obtained by a substitution or by
a crossover operation performed on another two theorems.

Remark. By an axiom, substitution or theorem we will generally mean the
corresponding trees representation.

5. Selection and Search Operators

We use two search (variation) genetic operators: MP recombination and sub-
stitution. Let us observe that the substitution operator may be interpreted as a
special, problem-dependent type of mutation.

5.1. Selection. Each member of theorem population is selected for recombina-
tion. Each individual x in the theorem population is considered as a recessive

parent. The corresponding dominant parent is chosen from the possible candi-
dates using a tournament selection procedure.



92 D. DUMITRESCU AND M. OLTEAN

Figure 5 Substitution S1

5.2. MP Recombination Operator. MP recombination operator implements
the Modus Ponens rule. We recall that Modus Ponens may be expressed as

A, A → B ⊢ B

Let us consider two theorems A and A− > B represented as trees. Performing
crossover (which corresponds to Modus Ponens rule) the offspring B is obtained.
Of course B it is also represented as a tree.

From a biological point of view we may consider the first parent (theorem A)
as the recessive parent. This interpretation is justified because no part of the first
parent is present in the offspring. The second parent (namely A → B) is the
dominant one. The offspring is a part of its dominant parent.

5.3. Substitution Operator. Substitution (or mutation) operator implements
the substitution inference rule. Substitution combines an individual from the
substitution population with an individual from the axiom set or from the theorem
population. The obtained offspring is a theorem and it may be added to the
theorem population.

5.4. Survival. Several survival mechanisms may be considered (see [1]). Some
survival strategies are generational and some are steady-state. In this paper we
consider a steady-state survival mechanism. Each offspring is compared with its
dominant parent. The best from the parent and offspring will become a member
of the new population.

6. Example

Let us consider a substitution S1 where propositional variables are replaced as
follows:

• A: is replaced by the formula A.
• B: is replaced by the formula B → A.
• C: is replaced by A.



EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 93

Figure 6 Substitution S2

Figure 7 Tree of theorem T1

The trees describing substitution S1 are represented in Figure 5.
Consider also a substitution S2 specified as follows:

• A: is replaced by the formula A.
• B: is replaced by the formula B
• C: is replaced by A.

The trees describing substitution S2 are depicted in Figure 6.
Let us consider the target theorem R is

R : A → A.

Our aim is to prove the target theorem R using the substitution S1 and S2 only.
In this respect S1 and S2 will be applied to the axioms.

By using substitution S1 in axiom A we obtain the theorem T1. The tree
representing this theorem is depicted in Figure 7.

By using S1 and A2 we obtain a theorem T2. The corresponding tree is depicted
in Figure 8.

By using substitution S2 in axiom A1 we obtain a theorem T3. The correspond-
ing tree is depicted in Figure 9.



94 D. DUMITRESCU AND M. OLTEAN

Figure 8 Tree of theorem T2

Figure 9 Tree of theorem T3

MP recombination of theorems T2 and T1 produces the offspring theorem T4.
The process is depicted in Figure 10.

By MP recombination of theorems T3 and T4 we obtain the target theorem R.
The corresponding recombination process is depicted in Figure 11.

Therefore we have obtained a complete proof of theorem R.

7. Fitness Function

From the previous example we may observe that the target theorem R can be
proved if and only if in the theorem population arises an individual T such that
R may be reached from the root of the tree T by following the right sub-trees of
T only.

Fitness of a theorem T may be defined by using the tree representing this
theorem.

We may define the handle H(T ) of a theorem T by the distance from the root
node (of the tree representing T ) to the right sub-tree representing the target
theorem R. Our aim is to minimize the theorem handle.



EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 95

Figure 10 MP recombination of theorems T1 (recesive) and T2 (dominant)

Figure 11 MP recombination of theorems T3 (recesive) and T4 (dominant)



96 D. DUMITRESCU AND M. OLTEAN

Fitness f(T ) of a theorem T may be defined as

f(T ) =
1

H(T ) + 1
.

The fitness is to be maximized.
The fitness of a theorem that does not contains the target theorem R as a right

(sub)sub-tree is considered to be zero.

Examples. For the theorem T1 represented in Figure 10 has the handle

H(T1) = 2.

The fitness of T1 is
f(T1) = 1/3.

For the theorem T4 (the offspring depicted in Figure 10) has the handle

H(T4) = 1.

The fitness of T4 is
f(T4) = 1/2.

For the target theorem R has the handle

H(R) = 0.

The fitness of Ris
f(R) = 1.

For the theorems T2 (Figure 8) and T3 (Figure 9) has the handle

H(T2) = H(T3) = ∞.

The fitness of T2 and T3 is

f(T2) = f(T3) = 0.

8. ETP procedure

In this section an evolutionary theorem proving method based on previous con-
siderations rule is presented. The method uses a function ETPF that evolves a
population of candidate theorems. If the function output is Yes i.e. R is a theorem
then the ETP algorithm stops. Otherwise we try to prove the formula ∼ R is a
theorem. For this respect function ETPF is used again.

Evolutionary theorem proving (ETP ) algorithm may be outlined as below:



EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 97

ETP ALGORITHM

begin

if ETPF (R) = Y es {R is a theorem}
then print deduction chain;
else if ETPF (∼ R) = Y es {R is not a theorem}

then print R is not a theorem
else {we can not say if R is or is not a theorem}

print we can not make a decision about R

endif

endif

end

Function ETPF is outlined as follows:

function ETP F(R theorem); {returns Yes if R is theorem otherwise return No}
begin

Initialization:

generate randomly a substitution population (S);
generate a theorem population T (t) using substitutions from S;
{apply substitutions from S}
Evolving theorems:

t = 0;
while t <= MaxGen do

for each individual c in T (t)
find b - the best mate for c;
z = crossover(b, c);
if fitness(z) > fitness(c)
then discard c from the theorem population T (t);

add z to the theorem population T (t)
endif

endfor

Mutate chromosomes from the current theorem population T (t);
t = t + 1;

endwhile

end

9. Concluding remarks and further research

A new evolutionary approach of automated theorem proving is proposed. The
method is designed for propositional logic. This algorithm illustrates a new phi-
losophy of theorem proving: According to our knowledge a similar approach does
not exist in the literature.

We consider that using the proposed method some well-known drawbacks of
classical method may be eliminated.



98 D. DUMITRESCU AND M. OLTEAN

Numerical experiments have shown the effectiveness of the proposed algorithm.
The method uses a heuristic fitness function.
The proposed approach will be extended for the first order logic.

References

[1] Bck, T., Fogel, D.B., Michalewicz, Z. (Eds.), (1997), Handbook of Evolutionary Computa-
tion, Institute of Physics Publishing, Bristol, and Oxford University Press, New York.

[2] Dumitrescu, D., Lazzerini, B., Jain, L.C., Dumitrescu, A., (2000) Evolutionary Computa-
tion, CRC Press, Boca Raton, FL.

[3] Fitting, M., (1990), First-Order Logic and Automated Theorem Proving, Springer-Verlag,
New- York.

[4] Gallier, J.H., (1986), Logic for Computer Science, Foundation of Automatic Theorem Prov-
ing, Harper and Row.

[5] Garey, M.R., Johnson, D.S., (1978), Computers and Intractability: A Guide to NP- com-
pleteness, W.H. Freeman and Company, New York.

[6] Koza, J.R., (1992), Genetic Programming, MIT Press, Cambridge, MA.
[7] Robinson, J.A., (1965), A Machine-Oriented Logic Based on the Resolution Principle, Jour-

nal of ACM, vol 12, pp 23-41.

Acknowledgments

The authors thank the anonymous reviewer for pertinent observations.

“Babeş-Bolyai” University of Cluj-Napoca, Department of Computer Science

E-mail address: {ddumitr,moltean}@cs.ubbcluj.ro


