STUDIA UNIV. “BABES-BOLYAI", INFORMATICA. Volume XLIII, Number 1, 1998
USING tMSC FOR CONFORMANCE TESTING.
THE TESTPLAYER APPROACH

IULIAN OBER®

Abstragt. ﬂ}e validation phase for a concurrent system is complex and time
consuming, I'he !SO 9646 norm defines a standard framework and language
(TT QN) for describing abstract test suites for communication protocols and other
reactive systems. TTCN is often viewed as too cryptic, hard to read and poorly
adapted for systems other than OS] protocols. This paper presents an alternative
approach for executing conformance tests, based on the MSC graphical language
qgmplemented by a proprietary imperative language for describing test cases
(TDL). Our technique is implemented in a lightweight and open toolbox usable for
testing a large class of reactive systems.

1. Introduction

The current state of the art in conformance testing is developed around the ISO 9646
standard Conformance Testing Methodology and Framework [6]. The meaning of
conformance testing is black-box testing where the system and the environment interact
through messages. Besides the framework, this standard defines also a language, TTCN
(Tree and Tabular Combined Notation) for completely describing abstract test suites [5].

One critic, often raised with respect to the current testing methodology and
framework, is that it is too complex. Indeed, the TTCN language defines tens of table
formats for expressing the test suite structure, the variables and constants, the data
types, the Protocol Data Units, the Abstract Service Primitives, the constraints and
finally the behavior. The tools for executing tests starting from TTCN descriptions are
not always easy to deploy.

To meet the nced for a simpler yet not less powertul method for describing and
exceuting conformance tests, we propose an alternative approach: the use of MSC' for
describing test cases, complemented with a second-level formalism - Fhe [est
Description Language (TDL), all within a lightweight and open frame\fvork designed for
executing tests on a wide class of possible systems. aThe MSC [3! is a language 'for
expressing execution traces that has been used for a long time 'for capturing
requirements in telecommunication systems design but also as a basis for system
simulation and validation, interface specification, etc. ProFocol norms ofteq come with
requirements, examples or even test cases described with MSC. MSC.IS §tanii.afd,
mature and graphical, usable for expressing test cases at a first level, and its simplicity
appeals. . .

This paper advocates our testing frame\fvork, by showing the strong and weak points
of MSC when expressing tests, by proving that they can be overcome by using a
second-level formalism for expressing test cases (the Test Description Language) and

[ULIAN OBER

by describing the architceture of a tool implcmcnling our te_q.tjrjg paradigm gpg
emphasizing on the open parts which make the t(_)ol usable in r31:3ny d-lftcrcnt contexts.

Related work: Afier its standardization in 1992, MSC gained popularity and
rescarch work was put into using it for specifying test purposes and test cases (8,910,
This work was based on the parallel efforts for standardizing the formal semantics f,
the language [4.11]. Other solutions for testing are based on other proprietary
formalisms (it is the case of the ATTOL toolbox [1]) or on TTCN.

This paper is structured as follows: section 2 presents the fashion in which we yse
MSC for expressing test cases, Section 3 introduces the TDL language, the complement
of MSC for describing test cases in TESTPLAYER. Section 4 describes the generic
architecture of our testing toolbox. Finally, section 5 shows the concrete architecture of
our tool in a specific context and gives an usage example.

2. Using MSCs for expressing test cases in TestPlayer

MSC is a widely recognized and used language for representing execution traces for
systems where the exchange of messages is the main observable behavior. It is being
standardized by the International Telecommunication Union as Recommendation Z.120
[3]. The standardization work began in 1990 and successive versions made the language
more and more stable, rich in constructs, formal and mature.

Being a visual formalism, MSCs are more compact and readable, which makes them
more attractive to the users. As a consequence, there were early attempts to use MSC for
expressing test cases or test purposes [8,9,10]. At a first look, MSCs are suitable for this
purpose, considering that the behavioral part of a TTCN test case describes also a set of
possible traces of messages exchanged between the system and its environment, each
such trace having associated a verdict at the end. Anyway, several weaknesses of MSCs
when expressing test cases were outlined by these early attempts: there is no notion of
test verdict in MSC, no possibility to specify types and TTCN-like constraints, no
possibility to use variables and no notion of test architecture [7]. We will see in what
follows how we overcame these problems in our approach with TESTPLAYER.

2.1 Interpreting test MSCs

'l'he_ first step in our approach is to give an intuitive meaning to MSCs in the context of
testing. This means giving a set of constraints that must be satisfied by the test MSCS
(denoted tIMSC in what follows) as well as an interpretation to each construct that may
appear on such an MSC. There are three flavors of MSCs that may be used with
IL.’S’I‘PI,@YER, differentiated by the instances that they represent (see Figure 1).

he ms.l onc, which may be called pure tMSC taking the point of view of the tester:
(may contain instances representing the PCQOs (Points of Control and Observation — 150
2646 Lerminology [6]) and instances representing the testers (one or more). We will U
L.hw f.l'avor‘ of I..MS(; when detailing the meaning that we give to MSC constructs in the
L.Om,ql-‘)] l',CF’llT'g' The sccond variety of IMSCs take the point of view of the system
contaming an instance that represents the system and one instance for each pCU-

76

USING tMSC FOR CONFORMANCE TESTING THE TESTPLAYER APPROACH

Finally, normal MSCs are accepted as test MSCs by our tool, in order to be able to take
as input MSCs resulted from the simulation of an SDL model, for example. In such an
MSC, the system is modeled by the instance(s) represented in the MSC, and the tester is
rcpresentcd by the outer border (cnvironment) of the MSC.

A test MSC should be in exactly one of the forms described above. Messages
towards the system (from a tester to a PCO in the pvTester, from a PCO to the system in
a pvSystem, or from the ENV to the system in a normal MSC) are interpreted as TTCN
sending events. Messages coming from the system are interpreted as TTCN receiving
events. Therefore the exchange of messages represented in all the three MSCs in Figure
1 corresponds to the TTCN sequence:

pl!ml

p2?7m2
Note that one of the limits of normal MSCs is that they do not allow for the description
of PCOs.

msc pvTester msc pvSystem
l t:Tester J [pl:PCO l LpZ:PCO] [S:Syst@ [pl:PCO] (pZ:PCg
mi(l) , 1)

{_ m2(7) m2(7)

E) 17 s e o BT CRETE

msc normal

@slcm

ml(l) >

m2(7) >

Figure 1. The three varieties of test MSCs

A message that should but cannot be sent produces a failure of the test. Similarly, a
message that should be received but is not, or is received but with non-matching
parameters produces a failure of the test.

As mentioned in |7], one inconvenient when using MSCs for describing test cases is
that they lack constructs for expressing constraints on data (parameters of the
Mmessages). To alleviate this ligjtation, we used the fact that the MSC language gives no
'nterpretation to the values of parameters of messages. We defined a set of generic
Specifiers that may be used in MSCs: AnyValue, ValueList, and Range. Still, the amount
of constraints we are able to express using these specifiers in MSC is limited, due to the
lack of variables. This is cne reason for which TESTPLAYER uses a second language for

dt‘scribing tests, TDL (see Section 3).

77

IULIAN OBER

Besides messages, three additional categories of constructs have a Meaning
Basic test MSC, but only when they appear on a fester InStance: stop, test tipmey., ang

coregions.

A stop construct on a fester bar means that the test stops immediately with , p

AS§

verdict. _ . . ,
A timer set describes the action of the tester setting a timer. If the set is followe by »

reset and the tester does not reset the timer before it is triggered.(but after Xecuting 4,
the other constructs that appear before the reset) — test failure is assumed, Otherwise
the timer is reset (deactivated) and the test continues. '

If the ser is followed by a timeout and if the timeout occurs before the tester eXecutes
all the constructs that appear between set and timeout on the MSC, then test failyre ;s
assumed. Otherwise, after exccuting the constructs appearing before the timeous, i,
tester waits until the timer is triggered.

MSC timers can express a variety of timing constraints needed in a test case. The
timing constraints employed in test cases usually take the following form: the time span
between the event a and the event b must be between x and y time units. The way of
expressing this with timers in shown in Figure 2.

msc pvSystem

s:System | | pl:PCO p2:PCO

Figure 2. Delay intervals expressed with timers

A coregion on a lester bar means that the messages that come from the system
(PCOs) within the boundaries of the coregion may come in any order. As a difference
from Z.120, only response messages coming from the system and timer timeouts may be
represented within a coregion. This is because the tester must be controllable, so W¢

cannot allow message outputs and other actions for which we do not specify the precise
order.

2.2 Hierarchical tMSC

MSC96 introduces a set of structural constructs for organizing Basic MSCs into High"
Level MSCS using sequential, alternative and repetitive composition, pars ¢
composition and exception handling composition. For describing test cases one ma u
sequcnlla_l, alternative and repetitive composition. Two MSCs which are to be compo*”

must d’cfmc‘ the behavior of the same tester(s) on th’ lswmc system (PCOS)' e
semantics of these composition operators is natural., ‘)

78

.7‘_)3?4?'

USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH

o The sequential composition of two tMSCs describes the tester that first exccutes the

constructs specified by the first MSC and then, if it did not fail in the meantime,
executes the constructs specified by the second MSC,
o The repetition of a tMSC describes the tester that repetitively executes the

constructs specitied by the MSC until the boundary of the repetition is rcached or
until the test fails at some point.

o The alternative composition of two tMSCs describes the tester that exccutes cither

the constructs specified by the first MSC or the constructs specified by the second
MSC. The choice is made depending on the first construct from the two tMSCs,
which must be a message from the system to the tester or a timer timeout (note that
the timer timeout is possible only when the alternative is the follows by sequential
composition another tMSC in which the timer is set). Depending on what event gets

first to the tester, the tester chooses one alternative or fails (if neither one is
cligible).

2.3 tMSCyvs. TTCN

Let us recapitulate what we have said about the semantics of tMSCs, analyze their
power of expression and see what are the strong and weak points with respect to TTCN.
It is worth noting that not all the three flavors of test MSCs have the same power of
expression. There are useful constructs mentioned above that are given an interpretation
when they are on a tester bar and have no meaning on another bar: timers, coregions,
actions. But only tMSCs that take the point of view of the tester (like pvTester in Figure
1) represent explicitly the testers as MSC instances. On tMSCs that take the point of
view of the system or on normal tMSCs, we cannot put timers and that may be too
strong a restriction for real-world test cases.

msc normal msc pvSystem
s:System s:System | | pl:PCO | | p2:PCO
m] ml
m2Z m2
DERMRERTN SR

Figure 3. Visual order not specifying completely the tester

MOrcovcr, considering the formal semantics of MSCs [4,11] the tMSCs that take the
Point of view of the system and normal tMSCs seem inappropriate to express the
OPerational behavior of a tester. The normative semantics of MSC enforces a partial
O.rde’ between events (the sending and the receiving of a message are considered
differeny events) called visual order. The visual order of the events in pvSystem and in
hormal iy, Figure 3 is:

sending(m1) < receiving(m1)
receiving(m1) < receiving(mz2)

79

IULIAN OBER

sending(m2)< receiving(m2) .
The visual order does not say anything about the order between sending(m1) an(
he 'VlSUf; Orh?cl'h are preciscly the two events that interest the tester: the tesger Must
iir:)(ilvngiﬁmw)'i\i\cvh ofdér to send the two cv.cnts.fl“hc cop?usn)gn is lPll}at among the lhrcc
flavors of tMSC, the one that takes the point of view {)/ ‘t e .t)c.sler |§ 1€ ;.nosf appm.pr-,;‘nC
for describing test cases. The other m;o kinds of tMSCs are necessary for compatibilig,

i > s (ex. an SDL simulator).
w“,ll]‘h(lth:;::;:?:C(t;\ for which we have an int.crprctution in the context of tesFing,
mentioned above, give MSC a power of expression comp:drable tg that. of the bChaYlOra]
part of TTCN. MSC timers may express cverything that is described in t.erms of tl.mcrs
n TTCN. MSC composition operators make it possible to express branching behavior iy
the same way as in complex TTCN trecs. '

When comparing tMSCs with TTCN, we must keep in mind that the goal of
TESTPLAYER is to provide a lightweight solution for testing reactive systems. The one
important advantage of using MSCs to express test cases is that MSC is a visual,
intuitive and mature enough formalism. From this point of view TTCN is known as
being cryptic and unreadable. This argument becomes important when coming to
industrial test suites described on hundreds of TTCN tables.

Another argument in the favor of MSC is reusabilit
normal MSCs as test MSCs, (TESTPLAYER is one suc
when designing a system may be used directly when te
MSCs automatically generated from

The disadvantages of tMSCs with respect to TTCN were alrcady mentioned and we
reiterate them. There is no notion of test verdict in tMSCs. If the events occur as
prescribed by the MSC, the test passes. If anything goes wrong, the test fails. There is
no possibility to explicitly state a verdict in MSC except for the STOP statement. The
STOP statement, not being parameterized, gives always the same verdict which in
TESTPLAYER is PASS. INCONCLUSIVE verdicts cannot be expressed either implicitly
or explicitly.

y. If a tool is able to interpret
h tool) then MSCs constructed

sting it. The same happens with
a simulation, for example.

. efined before they are used,
using ASN.1 or some other formalism,

MSF: is a declarative language, while TTCN is rather imperative, Things that can b¢
fione in TTCN with variables, like remembering the value of a parameter ol an
‘:coml]n £ T)CSsaﬁe and using this valye later, cannot be done at all in MSC. This point
V;}_;asl:o ¢ affected by the adoption of MSC2000, which defines some notion of

We conclude that,
real test cases. Howe
connection with 4
the missing bits, Tk
approach towards

although very 4ppealing, MSC alone cannot be used to expres®

points of MSC can pe exploited if it is used I
. ssing tests, layer that will pl'm'ldC
tecture seems jdeq| for a lightweight and ope!
LAYER.

80

A 18‘7
y
iy

-

USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH

3. The TDL

The second layer on which tests may be represented in TESTPLAYER is the Test
Description Language (TDL). There is no test execution engine in TESTPLAYER that
takes tMSCs and executes them directly. Instead a tMSC is translated in a TDL script.
At this level the programmer may intervene and provide the parts of her test case that
she could not express in MSC (explicit verdicts, use of variables. etc.). The execution
engine in TESTPLAYER exccutes TDL scripts.

The Test Description Language is in fact a set of primitives, with a precise semantics
and an implementation that may be embedded in any language that allows for
extensions (C, TCL, Python, etc.). The primitives correspond to TTCN executable
instructions and to certain MSC constructs. They differ from MSC in that they are
imperative rather then declarative. They provide the missing bits, notably variables and
verdicts, and are also an implementation model for tMSCs.

3.1 The execution model

The execution model is designed such that the execution engine may execute a single
threaded test at a time. The execution engine sees the test as a sequence of calls to the
test primitives. These calls must be sequenced and may not be launched in parallel.

Time is a discrete numeric vaiue in TDL, specific to a tester, which gives the number
of milliseconds clapsed since the tester has begun to execute. The Now primitive gives
access to the current time.

TDL has primitives for sending signals to the system, expecting signals to come from
the system and manipulating timers. A tester may exchange signals with the system
under test on a per-PCO basis: it sends signals through PCOs or it expects signals to
arrive on PCOs. PCOs are named and must be open before they are used and closed
after they are no longer necessary. This is because for each newly open PCO, the engine
establishes a communication connection with the system under test and allocates a
queue for keeping the incoming signals.

The outgoing signals are sent immediately to the system through the communication
fionnection corresponding to the specified PCO. A background task receives the
tncoming signals, stamps them with the precise moment when they arrived and then put
them in the queue of the corresponding PCO. Thus the primitives for expecting signals
access the signals from the queue and have also the possibility to know the exact
moment at which the signal arrived. This is useful for expressing different timing
constraints. A signaling convention is put in place so that the task executing the
pr{m!lives and the background task retrieving messages may synchronize; thus a
Primitive for expecting signals may wait until a certain signal enters the queue.

!n our model, timers may be set to a certain period of time and reset. The tester may
Wall for a timer or simply check if it has expired. A timer that expires is not put into a
dueue (like in SDL): if there is a primitive waiting for it then the primitive is signaled
S0 1t may continue its execution.

81

IULIAN OBER

The only additional testing primitive that docs not refer to PCOs, signals or timers s
the one called Verdict. This primitive causes the end of a test and the de-allocation of aJ|
resources used for the ongoing test (queucs, semaphores, OS timers, etc.).

3.2 The TDL primitives

Open/Close are used to open and close connections between the tester and a PCO of the
system.

Syntax': Open [host] [pco]

Close [pco]

Description: ~ Before sending or receiving a message through a PCO, a tester must open
the connection to that PCO. This allocates the resources necessary to handle
the new PCO.

When the PCO is no longer used, the tester should close it. This de-allocates
the resources used to handle the PCO.

Verdicts: Open fails if a connection with the system under test cannot be established or
if the specifies PCO name is not supported. Close fails when the specified
PCO name is not the name of an open PCO.

Example: Open rtos1 ChannelA
Close ChannelA
Expect is used to specify that the tester expects the system to send a certain signal.
Syntax: Expect <signal> [[with] <param list>] [via <pco>] [from <src-pid>] [time "[{store var]]

[{after time}] [{before time}]"]

Description: Expect is used to specify that the tester expects the system to send a
response signal on a certain PCO. As in TTCN, the user must specify the
expected signal and its parameters. Different constructors are available for
specifying generic parameters: lists of possible values, intervals of possible
values, AnyValue.

If the tester communicates with different PCOs, the name of the PCO on
which the signal is expected must be specified. An optional source PId must
be specified, its interpretation depending on the system (for SDL systems
the PId may represent the PId of an SDL process).

To allow a more fine grained representation of timing constraints, in TDL
one may express timing constraints not only through timers. In the case of
Expect, one may request that the time of arrival of the matched message (the
moment when it was put in the queue) be after a certain moment, before
another moment, or simply stored in a variable for future reference.

The semantics of the Expect primitive is such that if the specified message ¢
name and parameters match the message that is in the head of the queue of |
the specified PCO, the timing constraints are met and the source PId 15 ’_
matched, then the primitive completes successfully and pops out 'lh‘f B
message from the queue. If one of these conditions are not met, Expect gIves i
a FAIL verdict. If at the moment Expect is executed there is no signal in the
PCO queue, the primitive waits until a signal arrives or until the moment
specified in the before clause passes.

e T ——

| The syntax presented here is the syntax used for calling the TDL primitives from the TCL

language [12].
82

-

USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH

Verdicts: ﬁ;ggCto?al:lfclf(]ﬂ]eil CCX(I));:C:E(CJ :gg:callﬁ::ljcsp goot match the signal that is in the
St € § ‘ (because of the signal name
parameters, source PId or timing constraints). Expect fails also if th B
empty and no signal arrives in due time. o ¢ duetie s
Example: Expect CACK with {interval 0..7) via ChannelA time {before [Now +1000] }
Output is used to send signals from the tester to the system.
Syntax: Output <signal> [[with] <param list>] [via <pco>] [to <dest-pid>] [time "
{afer time)] [belors imey’] [via <pco>] [to <dest-pid>] [time "[{store var}]
Description: Output sends the specified signal to the system on the specified PCO. The
parameters of the signal must have concrete values i.e. no wildcards are
allowed.'The PCO to which the signal goes must be specified if the tester
communicates with more than one PCO. An optional destination PId may be
specified, its interpretation depending on the system (for SDL systems it
may be the PId of an SDL process). Time constraints may also be specified
. and refer to the moment when the message is sent.
Verdict: Output fails if the message cannot be sent to the system (message undefined,
bad parameters, network failure, timing constraints not met, etc.).
Example: Output CC with 0x01001 via ChannelA time {before $t1 + 10}
TimerSet, TimerReset, TimerWait, TimerQuerySignaled are the TDL primitives for
manipulating TTCN-like timers.
Syntax: TimerSet <name> <duration>
TimerReset <name>
TimerWait <name>
TimerQuerySignaled <name>
Description: ~ TimerSet sets a named timer to trigger after a specified period of time.
TimerReset resets a timer to the inactive state. TimerWait causes the calling
task to wait util the timer is triggered. TimerQuerySignaled makes it possible
to query the timer in order to see if it has triggered or not.
Additionally timers may be used wherever an "expected” message may be
used. For example, in the Expect primitive, we can write «Expect timer t »
which is cquivalent with «TimerWait t ». Such a use of timers becomes useful
in primitives like Coregion or Alternative, described below.
Verdict: Timer primitives never provoke the failure of a test.
Example: TimerSet t 1000
TimerQuerySignaled t # returns FALSE

TimerWait t # waits for 1 sec. minus the delay since the TimerSet
TimerQuerySignaled t # returns TRUE
TimerReset t # resets the timer

TimerQuerySignaled t # returns FALSE
Alternative is the TDL primitive allowing to describe branching behavior based on what
message between a given set is received. ' -
Syntax: Alternative ({ <signal> [[with] <param list>] [via <pco>] [from <src-pid>] [time {[store
<var_name>] [after <time>] [before <time>]}])+ _ ‘
Description: Alternative resembles Expect, except that multiple messages (and timers) may

be specified. .)
If one of the specified messages is in the head of the corresponding PCO

queue or one of the specified timers is triggerc?d, then .thc prin}itlve behaves
as Expect, terminating successfully and retuming Fhe m(_iex of the matched
alternative. If none of them occurs, the engine waits until no one can oceur
any longer (i.e. all the PCOs involv::q l"fwe some messag%' in the queue, but
is not an expected one) and after that it raises a FAIL verdict.

83

Verdicts:

Example:

Coregion is the TDL primitive for describing

[ULIAN OBER

Alternative fails when none of the specified signals and timers has occurreq

and no one can occur any longer. . _ o
Alternative "CACK with 1 via ChannelA" "DC with 1 via ChannelB" "timer t"

a set of messages and timer timeouts thy

come in an unspecified order,

Syntax:

Description:

Verdicts:

Example:

Coregion ({ <signal> [[with] <param list>] [via <pco>] [from <src-pid>] [time {[stora
<var_name>] [after <time>] [before <time>]}] })+

Coregion resembles Alternative, except that it waits for all the events t,
happen, and not just for one of them. It has the same meaning as a coregion
in tMSC.

Coregion fails when an unexpected signal arrives on a PCO (or is already in
the head of the PCO queue) and this unexpected signal impedes another

expected signal to get in front,of the queue. '
Coregion "CACK with 1 via ChannelA" "CC with 1 via ChannelB" "timer t”

Verdict is the TDL primitive for explicitly specifying a verdict for the ongoing test case.

Syntax:
Description:

Verdicts:
Example:

Verdict PASS | FAIL | INCONCLUSIVE

Verdict terminates the ongoing test, recording the test verdict in the test log
and de-allocating all the used resources.

Whatever verdict is specified in the parameter

Verdict INCONCLUSIVE

3.3 Translating tMSCs into TDL scripts

In what follows, we will use the name TDL both for denoting the "abstract”" primitives
presented above and the TCL [12] language extended with the TDL primitives. TDL
script always stands for extended TCL script.

The translation of tMSC into TDL scripts is almost straightforward: for each tester
described in a tMSC, a script is generated. Usually a tMSC describes only one tester,
but in the case of tester point of view tMSCs (sce Figure 1) there may be more. Tester
outputs are translated into Output statements, tester inputs into Expect statements, timers
into timer statements, coregions into Coregion statements and so on. An example of
translation for a Basic MSC is given in Figure 4.

st gl g2 0 .]

, pen g1; Open g2 ,

| Tester | [Pco |[Pco | Output CC with 1 via g1 |
il Expect CC with star via g2

— P e TimerSet t 2 /

< Expect CACK with star via g1 |

if { TimerQuerySignaled t } { |

CACK(*) Verdict FAIL |

: ¢ Jelse { f

A TimerRest t |

& BRSNS SRy ! ff*“

Figure 4. tMSC translated in TDL

[I'l“r lllgh'lcv‘ﬂ MS“’" the sequential composition of MSCs causes the concatenation
ob the scripts described by the operand MSCs. The alternative composition of MSCS 12

84

R AR oD O

USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH

translated using the Alternative statement and repetitive composition is translated using
the repetitive construct f.ron? TC.L (or from any other language that may host the TDL.
rimitives). An example is given in Figure 5.

The TDL primitives combined with an imperative programming language providing
alternative and repetitive constructs, variables and all that it usually available in such a
Janguage. provide a power of expression that covers all that can be expressed in the
behavior description of a TTCN test case. TDL primitives are implemented as an
extension to the TCL language [12] but they might as well be integrated in another
language like C, C++, Python or Java.

Using a visual formalism like MSC and a small set of primitives integrated in a
scripting language (TDL) ensures a small learning curve. TDL scripts being directly
interpreted by the TESTPLAYER cxecution engine, usual programming techniques like
step-by-step execution and the use of breakpoints may be applied to the execution of a
test.

4. TESTPLAYER Open Architecture

The goal in designing TESTPLAYER was to provide an open architecture for testing,
based on the lightweight formalisms of tMSC and TDL, and which would provide
customizability and power of expression sufficient to be applicable to a large number of
real systems and test cases.

Y Openg
Qutputaviag
st 2 set r1 [Alternative "b via g" "c via g"]
| Tester | | PCO | if { $r1 == 0 }{
Outputd via g
a Yelif {$r1==1}{
Outpute via g
TG }

|
— v v

; st g st g
; [pco | [Tester | [PCO |
i . C

€
e n—
— N

A

Figure 5. High-level MSC translated in TDL

b
d

i In our architecture (see Figure 6) we distinguish between two phases of applying a
L the preparation phase and the execution phase. For preparing a test, the user may
Cither Provide the tMSC description of the test case which will be translated

85

e

[ULIAN OBER

automatically in TDL, or she may provide the TDL script directly. The MSC-to-Tp
e translation from the tMSC to TDL followinL
g

compiler (TDL Gen on Figure 6) does th

the rules depicted in the previous section. .
e, the user must provide the description of the signals ang

Also in the preparation phas
data types exchanged between the tester and the system. This information is needed
ponent (1), described below). The user m;yt

execution time (when it is captured by com
supply the signal and type information cither by providing directly the body of the

component (1) Of = more likely — by providing the information in a formalism like SDL
or ASN.1 from which the component (1) is generated automatically by a sort of

compiler (Stub Gen on Figure 6).
A{ execution time, the core of the TESTPLAYER environment is the TDL execution

engine — the implementation of the TDL primitives. Qur paradigm of executing tests
peing based on it, this is a fixed part of the architecture i.€. it cannot be customized. Th
1mplem§ntation of the test primitives in the TDL engine is a static library of func'tionlc
written in C. However, it may be used from a variety of host languages such as C TCLS
Pascal or any other language that allows for the use of static libraries. For eac’h hos;
language (except C which is the native language in which the TDL engine is written)
there must be a wrapper that makes the primitives accessible from the language.

Results
Visualization

R ———

System
Under
Test

Figure 6. TESTPLAYER Architecture

The most co
mmon o
purpose, a TCL wrappzisﬁb(;g usage en\{lsloned in TESTPLAYER is from TCL. For that
as TCL commands. We used l;{li:v:stw?uen’ which makes available the test 1;rimitives
section ¢ s o et of com . . :
Thz ;ESLWL called TDL the enriched TCL lr::gn:;gior exemplification in the prevnouS
engine uses utili :
user. At implementation lei es]et ‘of‘ t:mluy components, which may be customized by the
ztlhcerlain interface. The user ’i:l:':e atCOmp()nem would be a static library implem@ming
e only restricti i ¢ to provide ac - i
ly restriction that it implements lhc-f) sarrltgcinatnyf replacement for @ componet W
erface.

86

USING tMSC FOR CONFORMANCE TESTING. THE TESTPIAYER APPROACH

The first customizable component is Signal Encoding/[)ecoding, denoted by (1) on
Figure 6. Th_is component contains callback functions for signal and data
encoding’deCOdmg/matChlng-- Ihe tester communicates with the system under test using
a specific protocol, as we will see later, and the functions contained in component (/)
are called to pack/unpack the signals and data 1o be transmitted/received. Component
(1) also contains the functions that match an incoming message towards a generic
message specification given in an Expect, Altemative or Coregion command.,

As mentioned above, the Signal Encoding/Decoding component may either be
provided as such by the designer of a system, or it may be generated from the SDI, or
ASN.1 description of the system signals and data types,

The Protocol component denoted by (2) on Figure 6 implements the protocol used by
the tester to communicate with the system under test. TESTPLAYER may be used to
apply tests in different configurations, in which the tester and the SUT may be on the
same machine or on two different machines connected by a network, a serial line, etc.
To achieve such a generic architecture, the communication functionality must be kept in
a separate component in order to allow for changes in the underlying communication
primitives. The Profocol component (2) must implement a simple interface that
basically knows to open and close connections, raw send binary data to a connection
and do blocking reads on a connection. Beyond this, the user is free to use whatever
suitable means to implement the communication between the tester task and the SUT
(TCP/IP, some proprietary protocol, OS IPC, etc.)

The Test Reports component (3) formats and stores the partial or final results of a test
in a log. We kept this functionality in a separate component because a user may require
that the results of her tests be stored in a specific format: a database, a log file with a
proprietary format, etc. Any replacement for this component must implement a simple
interface containing the following functionality: opening/closing a log, writing a test
event to a log, writing a test verdict to a log.

After the execution of a test case or suite, the results may be visualized and one may
find the initial MSC construct corresponding to a test event that appears in the log, using
the Results Visualization tool. This tool accesses the information contained by the test
log, using a component for reading the log similar to (3).

Thus we have obtained a testing architecture based on the interpretation of test MSCs
and on the Test Description Language, but in which the parts describing system signals
and data types, the communication protocol between the tester and the system, and the
formatting of test results are left open and customizable.

5. TESTPLAYER for ObjectGEODE

TESTPLAYER for ObjectGEODE is the complete TESTPLAYER solution for systems
Modeled in SDL [2) with ObjectGEODE [13] and for which code is automatically
generated with the ObjectGEODE SDL-C Code Generator. It is an instantiation of all
the generic components and tools described in the previous section. The concrete
architecture after the instantiation is outlined in Figure 7 (the instantiated tools and
“Omponents are drawm on gray background).

87

[ULIAN OBER

Stub Gen (see Figure 6 and Figure 7) is provided, a compiler
he code for the component (1) from the SDL description Ofthat
system. This compiler is written using the SDL API which is part of the ObjectGEQ the
toolbox. The generated component (1) contains the encoding/decoding functions f; DE
signals and data types defined in the SDL system. Or the
(2) is the component in charge with the communication between the tester and
system. The instantia g an underlying protocol, which in our cas e
TCP/IP. The two parties involved in communication, the tester and the system © a3
understand each other, so an adapter had to be added on the system side. To d, must
this adapter task, we have to depict shortly what the SDL-C Code Generator generesmbc
A system generated by the ObjectGEODE SDL-C Code Generator is a -
communicating tasks. A task may physically be a process or a thread, dependin set of
farget operating system. A task may correspond to an SDL process instance, to ag ;)3 .the
instance set. to a block or to the entire system, depending on the éOnﬁinxra(tfss

parameters given to the generator.

tMSC Test' —_— @

First of all, a real
automatically generates t

tion means choosin

I
tester : system

Figure 7. ’
gure 7. TESTPLAYER Concrete Architecture for ObjectGEODE

We are interested in the com icati
or s g e mmunication between the s i
o envimnmems):rfr;;:hien etr;]wronment i8 a task as any oth)ésrtf;rslkanhiets};e eﬂVer.nminz
oo the ottt St: queue of tl?at task, which in turr; ma i o es
oseribed by e designery fm. The environment task may (and ol me-Ssagb:
veplagament of e oo of the system. In case it is not d geflerally e lc
bl e generated, but this replac escrlbc?d, a default
Por sosing purpozlf,ses that arrive in its queue ement does nothing else 14"
it ‘ €S, we replace the iron)
the tester (using our protocol ir:lr)ll\;ll:loennrtn?dm task with a task that communicates
ed by component (2)). The externdl

communication t. i
on task is repre -
. ; sente ot
task exposes an interface lP . ted on Figure 7 under th y
0 the system organized as a set f‘ name festing wrapper: This
set of PCOs 2.

-1 - ——
PCOs do 1 i 7 '
: 1ot exist in the S
consider that g pe- the SDI, system, so we
a PCO may we have to map th /
p them to something that exists. Wwe

" correspond either to
a channel between the system and

USING tMSC FOR CONFORMANCE TESTING. T TESTPLAYER APPROACH

Concretely, this mcans that the external task behaves as a TCP server and accepts at
most one TCP connection for cach exposed PCO. A tester that wants to communicate
with the system on a specific PCO must cal the Open primitive, which will open a TCP
connection to the server and will announce the name of (he p :

' B J . CO on which it acts. After
the TCP connection corresponding to a PCQ) is established, every signal coming to the
server on that TCP connection will be decoded and routed to the corresponding

destination task without any modification and every signal coming from the system on
the PCO will be encoded and forwarded through the corresponding TCP connection,

The testing wrapper mntains tWo sub-components: (4) which implements the
communication protocol (very similar o (2) on the tester side) and (5) which
implements signal and data types encoding/decoding (similar to (/) on the tester side).
An automatic generation tool that generates the task {rom the SDI. specification of the
system is provided.

The results formatting and storage component (3) is also instantiated for
ObjectGEODE. It stores the test events and verdicts in an ASCII format in the test
results repository. A visualization tool can read the repository and make the link back
to the MSC source of a test case.

The conclusion drawn from applying TESTPLAYER to ObjectGEODE systems is that
the instantiation of the open parts of the TESTPLAYER architecture is not difficult to
achieve, and that the resulted toolbox may be successfully used on large SDL systems.
5.1 An example
We prototyped the architecture described in the previous section in order to validate it
on real examples. Our prototype provides all the necessary tools and components for
testing a class of systems, namely systems designed and generated with ObjectGEODE
on WindowsNT. This section shows how we can test a system with the prototype
TESTPLAYER.

We consider an SDL system describing a Cards Game Server. The high-level

architecture of the system is shown in Figure 8 (for brevity, not all the signals are
shown).

system CardsServer

signal CR(charstring), (%

CC, BeginGe . , ;
Ew.’fﬁ‘,:‘,f,‘"‘“' player] (CR] BeginGame(charstring),
Deal(integer),
main Trump(integer);

player2

[CC, BeginGame,

Deal, Trump)

(CR)

Figure 8. SDL system for a card game server

—_—

cnvironment, or to a set of such channels, or to all the channels when the system has only one
PCO, and place is left for other mappings. One such mapping says what means that a signal is
coming from the system through a certain PCO and, also, what is the destination task
corresponding to a signal sent to the system on a PCO.

89

[ULIAN OBER

. he game. The connection j
. -onnection phase of t . fvoly
We would like to test the ¢ the tester will have to take the place ofbof}i

: nnect to a game, SO ‘ :
both players that fay 7L - > n and the environment will be th
of them. Each channel linking the systel erefy,

e ion phase we will re-use an MSC ,
i ‘). For testing the connection p ' o
red as a PCO. For tes S
c?-n Z‘; C have from the requirements spccnﬁcatlon of the syst%m (}f 1g(g{)e. 9)
' l;ﬂgr providing all the configuration parameters needed by the ObjectGEODE gy
C Code Generator in the Ca rdsServer.cfg file, we generate the executable Syster
and the testing wrapper task in one pass, by invoking:

st gen sys CardsServer
;;s—cmconnection
CardsServer playerl player2
r System PCO PCO
CR('Bob’)
L » CR('Sam’)
- cC _
BeginGame('Sgm')
— | BeginGame('Bob’)
ol R TR] ’—

Figure 9. Connection phase of the Cards Game

CEide Edit Yiew Mevigate | Tools -Help |

2elels —H@E‘M Bl

TMSEFie o

} Idenkifigr .7 < | Tine me) | Souscs Fis - ‘
g : p (OpenlLog succeeded 80 CardsServer1 tl |
ﬂ [CardsServer playeri player2 ——’ @Upen succeeded 90 CardsServerl i \\
]:_l v 2 ik ’e Open succeeded 30 CardsServer t ‘
= CardsServer playart player2 ZI E)0upat succeeded 100 CavdsServerl i connectionmse 23 .
=il oen | [0 | [reo 7 | ©Bwect succeeded 128 CardsServert connectonmse X
_:_I . “ERCBOT . AU W eceeded O CadsSevart il canhachonmes’ Se e l :
o - 4 %Emd succeeded 158 CadsServerl connectionmse 40 - ‘ i
i:ﬂ —b 1 | ©bxpect succeeded 180 CadsServerl.l connectionmse 49| ¢
| ;’J e 7__“7[_‘553"1') . B ;@Expect succeeded 184 CaidsServer1.ti connection.ms¢ 5‘? { g
o] |[Mveder - pass a4 cagsseert comectonme % |
i FeginGamarsam')] 1 g
| i N
o BeginGamelBol) s | Fe— - - : jj
i-_xJ e il } ;‘;l RS R R x’,“.J ’J‘
i — S— |
» - b (
——yruzege CR('San’) 1 g 3 |
Lpreee ¢ | Ready i -
Figure 10. The Results Visualization Tool
By default this wil)

generate the executable system (CardsServer: e?fed
Wrapper, generated in such a way that each channel hnl\lne:
ment becomes a PCO. This configuration suits our pufPOS

containing also the testing
the system and the environ

90

USING tMSC FOR CONFORMANCE TESTING. THE TESTPLAYER APPROACH

Other configurations are possible for other purposes, like: one PCO for the entire system
(grouping all the channels) or n PCOs — each one for a specified group of channels.

"We now generate the extepc_led TCL interpreter customized for use with our
CardsServer system (i.e. containing the s.ignal and type information specific to our
system). The starting point is the SDL specification again:
st gen_interp CardsServer

The executable interpreter (called tdlsh) that is generated corresponds to the 7DL
engine plus the components (1), (2) and (3) in Figure 7. The type information contained
inkthe SDL system is used for generating component (/). The other components are not
rebuilt, they are taken from a library and linked together.

We have two possibilities for using the executable system and the TDL interpreter:
either we generate the TDL script from the MSC(s) and execute it in batch mode, or we
try an interactive session in which we feed whatever TDL commands we want to the
command prompt of the TDL interpreter.

The first alternative involves first of all generating the TDL script from the MSC
description of the test case. We can do this with:

o

st _gen tests connection.msc

and we obtain the TDL script called CardsServerl.tdl containing the following
code:

OpenLog CardsServer Expect CC via player2 .
Open player1 Expect BeginGame with Sam via player1

Open player2 Expect BeginGame with Bob via player2
Output CR with Bob via player1 Close player?
Expect CC via player1 Close player2
Output CR with Sam via player2 Verdict:PASS

To run this test, we must first start the system (CardsServer.exe) in a console,
and then invoke:

ST_exec tests CardsServerl.tdl
in another console. This command will run the test in batch mode and will write the test
events and verdict in CardsServer. log.

This log may be visualized with st view log and the MSC construct
corresponding to each event appearing in the log may be highlighted automatically in
the ObjectGEODE MSC editor (see Figure 10). For FAIL verdicts, the failure reason is
also stored in the log.

For using the TDL interpreter in interactive mode, one must start the system in a
console and the td1sh in another console. Then, at the tdlsh prompt he may type

€ommands like the ones generated from the MSC. The outputs and verdicts of the
“ommands will appear on the console.

A .
6. Conclusions
We ha . : .
lc: have Presented an original framework for expressing and executing conformance
*SU caseg

- Our architecture is based on two formalisms: MSC, which is a standard

91

[ULIAN OBER

<ing execution traces in terms of message e)fchanges, and Tpy

language for expressing and set of primitives for eXpressing actions of a tester. W,
which s our languarﬁfained use of the two formalisms provides a high power ¢
have shpwn that the Cr(i'ino the original simplicity and ease of the graphical MSCs.
. o Presel:eme:ted i1 a toolbox which can be used for executing tests o

Our 1d§as. aredlfggd generated using ObjectGEODE [13]. The architecture of the
SyStlim% '585;52}? that it can be rapidly customized to work on different platformg
t(z(;er(;;nlg systems, network protocols, etc.) and different target systems. Ap
- dqustrialization of this tool suite by Verilog is planned.

References

ATTOL Testware, ATTOL UniTest V3.3 Technical White Paper, 1999

]

2. ITU-T Recommendation Z.100. Specification and Description Language (SDL), 1996
3. ITU-T Recommendation Z.120. Message Sequence Charts, 1996
4.

ITU-T Recommendation Z.120. Annex B. Formal Semantics of Message Sequence Charts,
1996

5. ISO/IEC International Standard 9646-3. OSI-Open Systems Interconnection, Information
Technology — Open Systems Interconnection Conformance Testing Methodology and
Framework. Part 3: The Tree and Tabular Combined Notation (TTCN), 1992. ~ ‘

6. ISO/IEC International Standard 9646-1/2/3. OSI-Open Systems Interconnection, Informaliot
Technology — Open Systems [Interconnection Conformance Testing Methodology
Framework, 1992. ,

7.). Grabowski, T. Walter. Visualization of TTCN test cases by MSCs. In Proceedings of I"¢
I* Workshop of the SDL Forum Society on SDL and MSC. Informatik Bericht Nr. | 04.
Humboldt Universitit Berlin, 1998. '

8. J. Grabowski. Test Case Generation and Test Case Specification with Message Sequence
Charts. Ph.D. Thesis, Universitdt Bern, 1994. -

9. J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Speciﬁcatloﬂ
by MSCs. In: SDL'93 — Using Objects. North-Holland, 1993.

10.

J. Grabowski, D. Hogrefe, I. Nussbaumer, A. Spichiger. Test Case Specification Based 0F
MSCs and ASN.1. In: SDL'95 - Proceedings of the 7" SDL Forum, Sept. 1995, QOslo.
Norway. North-Holland, 1995

S. Mauw, M.A. Renicrs, An Algebraic Semantics of Basic Message Sequence Charts. In: The
Computer Journal, 36(5), 1993

12. J.K. Ousterhout, 7¢c! and the Tk Toolkit, Addison-Wesley, 1994
13. VERILOG. ObjectGEODE Reference Manuals, 1996

11

lNll’ Toulouse, ENSEEIHT, 2 rue Camichel, 31000 Toulouse
lulian. Obertoenseeiht v

92

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

