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ANALYSING THE NOISE SENSITIVITY OF SKELETONIZATION
ALGORITHMS

ATTILA FAZEKAS AND ANDRAS HAJDU

Abstract. Many skeletonization algorithms have been analysed from several

points of view in the past ten years to compare the results they produce.
Our attempt here is to add a new comparative analysis to this research area
which investigates the noise sensitivity of these algorithms. We examined the
performances of five algorithms (they are based on different thinning models)
on a huge picture set, and sorted the algorithms according to the results they
produced. This analysis can be useful for those who would like to apply the
most efficient algorithm for a special kind of noisy image.

1. INTRODUCTION

The necessity of designing skeletonization algorithms dates back to the
early years of computer technology, to the 1950s. It was realised that in some
applications (the first problem was the character recognition), it is enough to take
only a reduced amount of information into account instead of the whole image,
which is usually a line-drawing. The basic idea was to "peel” the original picture
by iteratively removing certain contour points. 'This procedure is the so-called
Skeletonization, which creates a line-like shape (the skeleton), so the further anal-
ysis becomes easier to execute. The skeleton has the following advantages: there
1s less information to process, and the shape ancalysis can be made more easily.
Since then many new challenges have occurrcd from several! parts of life, and now
skeletonization is applied in a very wide range, ¢.g., n the analysis of blood cells
or chromosome shapes in medical science, or in identifying signatures and .ﬁng_er—
Prints. Many papers have been published to take a survey .Of the skeletonization
Processes without going into details, see [1,4,7]. Thcgc a-rtlcles make the reader
familia-r with the most important concepts of skeletonization. '

A lot of algorithms have been developed and implememt.ed~ during the past
ten Years to find the skeletons of different images. It is very difficult tg measure
the » goodness” of such a method quantitatively. The analytical comparison of the
Methods iy very sophisticated, since they are based on different models, cf. [§,
Te——
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p. 263]. That is the reason why the skeletonizations are compared according
the results they produce in the practice. There are papers about the technic
parameters of these algorithms (like computation speed, memory requiremer;
etc.), and there are observations based on thf rPilllF skeletonsvthe‘ _3lgorilbms
produced. A possible way to classify the a!gornhms 15 to examine if the regy),
skeletons meet the following (natural) conditions:

o
al

e The skeleton should accurately reflect the shape of the original image
e The topological properties (homotopy) of the object and the backgroung
should be preserved

The thickness of the skeleton should be one pixel

L ]
e The skeletomization should preserve symmetry
e The skeletonization process should be iinmine to noise

A more detailed description about the requested properties of skeletons
can be found in [&, p. 239].

Usually a reference skeletou is composed. and then the distance of the re.
sult and the reference skeleton is calculated by using a suitable distance function.
The reference skeleton can be obtained for example, by asking humans to select
the skeleton of the object and then averaging the selected skeletons. An interest-
ing way of selecting the reference skeletons can be found in [8, p. 283], where a
lot of humans were involved in the creation of the reference skeletons. The most
frequently used distance functions are introduced in Section 2. Other functions
which are useful to investigate the similarity of the result and the reference skele-
tons can be found in [8, p. 283]. In the case of using several distance functions.
strong correlation can be measured between the distances. Few methods divide
the skeletons into fragments, and use polygons to match the result skeletons to
the reference instead of using these distance functions (see (8, p. 307)).

The aim of this paper is to analyse the goodness” of skeletonizations from
a special point of view. We found that the skeletonizations were not examined
statistically (with a large number of experiments) to te
affects the extraction of the skeleton, and how the skeletonization processes can
cope with noisy lmages. Unfortunately the lput pictures are rarely ideal, but
are corrupted with some kind of noise. For example, the contours in the image of
a printed circuit board are often corrupted by a contour noise, which makes the
contours disconnected, thicker, ete. Our purpose was to decide which is the most
efficient algorithm for noisy images, among the investigated ones.

st how the noise corruption

2. BASIC CONCEPTS AND NOTATIONS

In the following we pee

d some ¢ ~ ' I !
- : OlCepts, so we give the most important
definitions that are used - ) b
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A binary pictyre can be teDresenteq |
S 3y

the value either 0 or 1 (eithep White or 1) k

white points and the object is the sef of 11:12 l) ;
A contour (‘Cdg‘e) point is an ()]);::»t )]a(':k ')Ol'nt&
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and remove the points

that belong to an edge
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To test the similarity (
reference skeletons one can us
form:

ATION ALG ORITHMS
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h at least, one

. ' background
OILour pointg of the object
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but not to the medial axis of thr;
iges are made,

Le., to calculate the distance) of the result and {he
e the Hamming-distance, which has the following

m n
X(T\R) = ZZ(Tiﬂ'XOR Ri,), ()

i=1j=1
where pictures T and R of size m x n, contain the test and the reference skeleton.
1, J are pixel coordinates (7 means the position of the pixel in the ith row and jth
column) and XOR means the logic operator exclusive OR. This function computes
the value of the XOR, operator according to the result and the reference skeleton.

Another useful function is the distance

m n

D) DUCTINTI o SNF )

1=1 7=1 1=1j=1

D\(T,R) =

1
Ny
with

0 if 75 = 0
= o N2y T
WL, ) = { ning,p | R0} {(u = 7+ (v =J)*} i1 #0 |
where 1 < 4 < m, 1 < v < n, and Np and Ng are the number’s of the:ob)e‘ct poll:tl::
in the test and t,},le reference pictures, respectively. Thus this function computes

ence skeletons.
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The level of the noise indicates the percentage of the picture points thay
can be changed during the noise generation. '

For example, producing an additive global.nolsc at the level of 509 eang
that we randomly choose the half of the picture p_omts, av.nd change them t, object
points. If a chosen point is an object point then 1t remains unchanged.

We used bold characters in the tables to highlight the minimum values.

3. DESCRIPTION OF THE EXPERIMENT

3.1. Skeletonizations. To test the noise sensitivity of the skeletonizationg five
algorithms were examined. The analysed algorithms are listed below with 3 brief
description about the way they work:

1.: E.S. Deutch’s algorithm (DE), cf. [2]

: This classical thinning algorithm has two subcycles and uses 3 x 3 templates,

2.: T. Pavlidis’ algorithm (PA), cf. [6]

: This is a Contour Sequential Algorithm. so only the contour points are
processed.

3.: V.K. Govindan’s algorithm (GO), see 3]

: This Pattern Adaptive Thinning Algorithm examines the object points
along the contour, while an adaptive algorithm adjusts the thinning process
to picture shape.

4.: N.J. Naccache and colleague’s algorithm (N A}, see [5]

: This is a Safe Point Thinning Algerithin which uses 3 x 3 templates, but
the input pictures have to be smoothed firsi. because the algorithm is very
sensitive to the "salt and pepper” (global) noise.

5.: R.-Y. Wu’s algorithm (WU), cf. [9]

: This is a One-pass Parallel Thinning which uses 3 x 4 and 4 x 3 templates
mstead of 3 x 3 ones to avoid excessive erosion during the deletion of
edge points. The authors claim that this algorithin produces perfectly
8-connected and noise insensitive results. (They are right as we shall see.)

Some of these algorithms are known from the literature as very efficient
("good”) ones (e.g., Pavlidis algorithm). We tried to select algorithms which
are based on different models, and try to find out whether a relationship exists
between the type of algorithm and the noise sensitivity. In the following we refer
to these algorithms by two capital letters, as a.lgorithrrls DE, PA, GO, NA, wU.

3.2. Oltlgln‘dl plcture.s. To perform the analysis we used 10 binary pictures; ekt
properties are surnmarized in Table 3.2 “

tle};i ;Illfageg can b grou'ped as printed circuit boards (#1 ,#3), pictographs (#6,#7'#8)'

. eclt'on;)?tl\(;)\;l (#4,#5,#9), and sophisticated structured line—drawings(#?,#l@),
pectively. We found that these kinds of images often occur in practice, that 15
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. TONIZATION ALGORITHMS
TABLE 1. Properties of test pictures in

volved in the analysis

[__I__—-""" Bl 'WINun}l;(\_rt: ol ‘ Number of

# | Picture size I object, points | contony [)()'lnts‘,
| |(Area) B (Perimneter)
1100 x 100 4014 769
2 200 x 200 8313 H204
3 (100 x 100 | 4396 06 |
4 1320 x 200 | 14068 1018
5 100 % 100 | 2366 970
6 {320 x 200 | 3468 | 9179
7 1160 x 160 | 15007 3132 ]
8 1200 x 160 | 5016 ““'“*'*'TG?'I N
9 1200 x 160 | 7901 2008
101320 x 200 | 15833 6477
Peaall
rrmﬂ’r:“ — e " F—
~ ~

FIGURE 1. Picture #2 (a), and its skeleton (b) extracted by e
algorithm DE

. s the test picture
the : : sis. Figure |(a) shows the
2 , : s analysis, gure
#e feason why we chose them for this analysis &

i . . , . Ny l\ Y l l])
vand (e result skeleton (('xtrm'ted by DIL) is shown in Figure 1

59



ATTILA FAZEKAS AND ANDRAS HAJDU
TABLE 2. Noise corruptions applied to the original pictypeg

Noise[A  |B ¢ p (B F o —
Level [ +2% | +2%0/—2% | +10% | -10% |+56%/—10% ﬂa%/;m;l
Type gigb}\i global contour | contour | contour contour 1

3.3. Generating noise. We corrupted our test pictures with uniformly (listribm,,.r]
noises. Additive (background points become object points) and subtractiye (0}}
jects points become background points) noises were used at different COTTUptioy,
levels for the whole pictures (global noise) and for only the object contours
tour noise). The levels of corruption are given in percents, a positive perce
values mean additive, negative values mean subtractive noise.

Table 3.3 shows the noise levels and types we generated in the test pictures
The noise corruptions used are denoted by A, B, C, D, E, and F, respectively.

(con-
ntage

Picture #2 is shown in Figure 2(a) after corrupting with a +15%/ — 15%
global noise, and the result of the skeletonization DE is on Figure 2(b). 1t is worth
examining how the noise corruption affected the result of the skeletonization. For
example, little circles can be seen on the sun in Figure 2(b), which are missing
from Figure 1(b). The reason is that the subtractive noise (—15%) eliminated
some points from the main circle of the sun, thus holes appeared there, and the
skeletonization preserved the topological features. Little line segmeuts, and points
in the sky can be seen as the consequence of the additive noise corruption.

3.4. Reference skeleton. There are several ways 1o find a good reference skele-
ton for further analysis; one was mentioned in the Introduction. 'To obtain the
reference skeletons for the test pictures we used another method which was sim-
pler and more suitable for our investigations. Our test pictures are artificial (ideal)
images, which means that they are not corrupted by noise, so we can consider the
result skeleton of a skeletonization in the test picture
of the given skeletonization. This is a simple
and, on the other hand, we investigate onl
this method does not mean a restriction.
reference skeleton of the algorithm DE.

as the reference skeleton
way to obtain a reference skeleton,
v the effects of noise corruption, s
For example, we use Figure 1(b) as the

3.5. Calculating the distance of the r

> ined 50 « e ol _ . . . ‘oinal
We obtained 50 skeletons alter performing the 5 algorithms for the 10 origit
pictures and these skeletons wepe used as references. From the 10 pictures W

) " ] _ ) . . : Tetures
produced 70 pictures for every kind of noise corruption, thus we had 4200 picti!
corrupted by noise,

. , 18-
esult and the reference skeleto!

The 5 skeletonizations w
together we had 21000 resuylt sk

60

. . q i'll‘
cre performed for all the 4200 pictures, thus

letons in the end.
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FIGURE 2. Picture #2 after corrupting with a +15%/ — 15%
global noise (a), and its skeleton (b) extracted by the algorithm
DE

As the next step of our analysis, we compared the result skeletons with the
corresponding reference skeletons. To perform this comparison, first we translated
the result skeleton both horizontally and vertically to find the best matching to
i.e., to make the result skelcton cover the reference one). We chose
f the result and the reference skeleton was
minimal. This technical procedure has to be executed as a preprocession, since
the translation of the object implies the translation of the skeleton. For example,
an additive/subtractive contour noise corruption translates. a solid recFangle by
one pixel if the additive part of the noise corrupts all the points of one 51.de of, t‘he
rectangle and the subtractive part corrupts the points of the opposite side. The

maximal translation allowed was 2 pixels in any of the fOUI“diI‘C(‘.tlonS.. -
After translating the result skeleton, we calculated its Hamming-distance

(1) from the reference skeleton. Thus at the end of the calculation we had a

‘ j i ~ould use for further
databage of 21000 experimental distance values, which we xou] e o
To evaluate this data set we used the statistical progra

the reference (
the position for which the distance o

Statistical investigations.
Package SPSS?.

—
TTr———— -

1+ N
Copyright @ SPSS Inc. ol
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TABLE 3. The mean values of computation times (the values ape
given in seconds)

# DE PA GO NA WU
1 | 0428 [ 1.005 | 0657 | 0.513 | 0.358 |
2 | 0779 | 2570 1.901 1.276 | 0.752 |
3 | 0421 1.174 | 0711 | 0570 | 0.399 |
4 | 3092 | 7267 | 4667 | 5728 | 2.699
5 | 0.178 | 0.554 | 0.392 | 0.265 | 0.168 |
6
7

1 0.311 0.983 0.772 0.604 0.3124

2.338 5.254 3.270 3.108 2.114
8 L.111 2.084 1.419 1.738 0.829
9 0.741 1.973 1.435 1.166 0.623
0 2.757 6.384 5.125 3.866 | 2.238

4. STATISTICAL EVALUATION OF THE RESULT DATA

4.1. Computation time. This paper does not focus on the technical parameters
of the skeletonizations, but sometimes it can be useful to know how much it takes
an algorithm to process a picture corrupted with a special kind of noise. Table
4.1 contains the mean values of the algorithins’ computation times for each of the
pictures. The computation time certainly depends on the size and on the difficulty
level of the picture. From the skeletonizations examined we found the one-pass
algorithm WU to be the fastest, according to this table. A table containing
computation speed for lots of algorithms can be found in (8, p. 239].

4.2. Picture — Distance, and Noise type - Distance relations. We exam-
ined the performance of the algorithms with respect to the pictures and to the
noise types. Figure 4.2 contains the mean distance values of the test and the refer-
ence skeletons for every picture, and the result of the skeletonizations are shown by
polygons. Smaller distance values mean better matching to the reference skeletons,
so that skeletonization produces the best result which has the

smallest distance
values (i.e., the lowest polygon).

Figure 4.2 contains information about a similar analysis, but here the
noise types were examined instead of the pictures. The same conclusions can be
drawn, i.e., that algorithm produces the best result which has the siallest values.

Detailed tables of the distance values can be found in the Appendix. AP-

pendix I contains a table about {he expected values (means) of the distance values,
while Appendix 11 shows their standard deviations.

4.3. Performance indices for skele

. tonizations. We assigned a rank value to
the algorithms according to the

distance values they produced in the given test.
62
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2000 ———
L
1500
1000 |-
s
500 - © Wy
. NA
Qo
I asmema PA
0 . - . |— DE
i 2 3 4 5 6 7 8 9 10
F1GURE 3. Picture — Distance relation
2000 =
1500 |-
r
1000 |-
WU
500 NA
| D
...... PA
i — DE
R = T F

FrGure 4. Noise Lype Distance relation
1 3 ) B -
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TaBLE 4. Performance indices for the pictures

# | DU PA O NA WU
1 2.50 2.17 A7 3.50 2.67

9 1 200 | 307 | 400 | 350 | 233
a1 267 | 200 | 400 | 400 | 233

4 | 2.67 2.00 3.50 3.50 3.7
T | 27 | 283 | 407 | 833 | 250

6 | 233 | 350 | 317 | 307 | 283
70 267 | 233 | 333 | 433 | 233
8 j 300 | 1.83 | 383 | 417 | 217
9 | 250 | 250 | 3.50 | 3.67 | 2.83

0 [ 2ar | 283 [ 417 [ 417 [ 247

TABLE 5. Performance indices for the noise types

| DE | PA | GO | NA [ WU |

1.00 2.10 2.90 | 450 | 4.50
3.80 | 1.00 | 2.00 | 470 3.50 |

- 1.00 | 330 | 4.00 | 340 | 3.30 |
460 230 | 420 | 290 | 1.00
3.20 270 | 470 | 340 | 1.00 |

1.20 | 340 | 490 | 350 | 1.90 |

| ) O| O | »

TABLE 6. Overall performance indices for the algorithms

DE |PA [GO[NA |WU
2.46 |2.46 [3.78[3.73 | 253

The algorithm with the smallest distance value got rank 1. and the largest value
got rank 5. Identical distance values got the same rank, an,d in this case the next
rank value was skipped (cg., 1,1, 3,3,5). By averaging these rank values we
were able to assign a performance index to each of the skeletoniéations. Table 4.3

shows the performance indices fi ;
: c indices for the picty ile T f
. > ‘tures; while T q 3 ne 1or
noise types. , while Table 4.3 shows the sa

By averaging thege performance

e ‘ indices we could calculate an overall per
©andey for every skeletonigad, s

ton. The Table 4.3 contains these indices:

formanc

A('('()r'““ ]
p g to “Jl‘i l'll)]( i
" > S I We ¢ ! W A 1 |
Wl} l;r()(]llljlf ,)(‘“,(.L .‘;k(A](.")“ I '€ can ('““(']“(I(’ t,l]}[‘t, algorlt,hlnﬁ 4 e "

64 natehing than (1) of NA. This result explains why
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TABLE 7. Performance indices

OF SK l')LlO'I‘()NI'I,A'l\I()N AL

GORITIIMS
for pictures (

only for cogtour noise)

# DE | PA T Go N A

| # | Db | PA W
L1225 1250 | 500 | 395 200
2 L 200 1400|7475 | 975 | 1g

3| 250 | 225 | 475 | 3.5

— ————

1.75
4 [ 300 | 225 | 4.00 | 325 | 2.25 |
200 | 350 | 500 | 275 | 175
6 [ 250 | 425 | 375 | 250 | 2.00 |
T 1 300 1 275 17375 | 4.00 | 1.50
8 [ 825 | 200 [ 450 | 375 | 1.50
9 | 250 | 300 | 400 | 325 | 225 |
L 10 | 200 | 275 [75.00 |27 | 1.50

TABLE 8. Overall performance indices for the algorithms (only
for contour noise)

DE |PA [GO[NA [WU |
2.50 | 2.92|4.453.30| 1.80

the authors of algorithm N A warn for smoothing before skeletonizing, as algorithm

NA has the worst results in the case of global noise which has a ”salt and pepper”
effect,

44. Performance indices only for contour noise corruptiol?. During our
inVestigations we found that 1t was a bit unfair t‘f) invo]v.e global noise COfru.men‘
Into the analyses, as mainly contour noise occurs in practice, and these algolrlfll‘u‘n?
are quite sensitive to global noise. That is why we (‘.al(t'l}latt'?d pcrform'anc'e 1.11' 1ces
of the algorithms for only contour noise cqrrupl‘top. The rablc~ 4.4 1s similar to
Table 4.3, but global noises were excluded from this analysis.

According to the above discussed method, we also calculated the Ovcrj“
I)‘5fff)l‘rnir1g' indices of the algorithms for the contour noise corruptions (Table 4.4).

This table indicates larger difference hvl‘we'cu the ”gm")dnlv./\;a' ()Lttl(t;t.l: ;’:l;
Borithrng, Algorithmm WU seems to be the lnoﬂ relm.l.,)lo.‘ ()ll'tfl(“l“_ 'Lh“*r ‘::E)N\ l‘e\t'elA
Mght about, nojse immunity), but DIJ s better 1n coping W}L ; nlg()iio St‘“;mv“v'

£orithm GO produced the worst performance with respect to noi , h

. . . » distance values on the
-5, Variance analysis. In our analysis we grouped the ‘h“l"f"“(( is significant
- e 818. at this factor is si ¢
S of e algorithm name as a factor. It turned out that this factc
4 > 13 v D
' . < e GrOiine re obtaied:
o the model, and the following groups were oblai
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TABLE 9. Pictures grouped according to the skeletonizations

SR =S - e — 7 D
# 1 _l 8 ° O — . _}\
DE, PA, DI, GO, DE. GO —
1 GO NA, WU
— 4 . - - 1 i ' . ‘ — ' — N
DE, PA, DI, GO, DE, GO,
3 GO NA, WU WU
. DE, GO, DE, GO, )
N NA, WU NA, WU PA G
I W——— N 1 I I - ~ — _ o
6 PA
S S—— B R B o
‘ PA PA, GO
s | DE, GO DE\;SO' PA, GO
Wl —
g PA, GO
e« DE
e PA
e GO, NA
e WU

This result shows that algorithms GO and NA produce similar results for any
kind of noise and picture type.

. We gxamined every algorithm if it worked similarly when only contour
noise corruption was generated in the pictures. In this analysis the distance values
were grouped on the basis of the picture number as a factor for all the skeletoniza-
tions. The following table shows the cases when at least two pictures belong t©
the same group. A picture can belong to more than one group (it is known from
fax-.t,o.r arf‘d]ySlS), which means that there ape sirnilarities in soﬁ]e details, but this
relation is not transitive. Two pictures belong to the same group; if the algorithi
produces similar results. For ¢Xample, Pictures #1 and #3 usually belong to the
5):;2?::‘ ﬁr().up (be;(tause t,he-y have the same type, as both of them are pictures ¢
[#21&",”] (;/r;,;;lil v:/(;‘;;dft)),;lll;‘::;:',}:;.x.;,iim.i.lar conclusions can be df:ri.ved, e.g P‘iCt'%::eb

Tate groups, as they have sophisticated structut
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6 Regl.ession analysis. ‘()ur sl.::l,t,ist,ica,l ile(-Ht,ip,:xl.ir)lns discovered strong rela-
f,i.ollship between the level of the |1o1src corruption, and the distance values. They
o correla""‘d at the level of.'r = 0.7584, and the hypothesis that {hese variables

o ancorrelated shm}ld be rc‘|<‘(r'l,v(] u“t, every normally used significance level (95%,
q’g%)- Moreover, a ll'neal" relationship was conjectured and a regression analysis
i»ro\’t’d this hypothesis. From R statistics we obtained that the linesr model s
wcceptable, and the hypothesis that the linear model is not suitable should be

wjected at every normally used significance level (95%, D9%).

. CONCLUSIONS

This paper presents statistical results about the tolerance of five skele
tonization algorithms with respect to noisy images. A large database of 21000
skeletons was used to obtain performance indices for the algorithms. Linear corre-
lation was detected between the level of the noise and the distance of the reference
and the test skeletons. The algorithms could be grouped according to their tol-
erance with respect to different types of noises and imnages. The calculated rank
values of the algorithms may help one to choose an algorithm which produces the
most reliable result for a given type of image which is corrupted with a given type
of noise. It seems to be interesting to go on with analysing other skeletonizations
which are based on other models, or to make investigations in a higher dimension

(3D).
APPENDIX I

The Table b contains the expected value (mean) of the distance values
produced by the algorithms. The column headings represent the generated noise
(hea,ding *x indicates the case when every picture corrupted with every kind of
noise was involved in the analysis). Row numbers represent the test pictures. The
Smallest distance values are highlighted with bold numbers for every picture-noise
Pair,

APPENDIX II

4 The Table 5 contains the standard deviation ot the distance values pro-
“?Ced by the algorithms. The column headings represent the generated noise
n(j::““g ¥ indicates the case whep every picture corrupted Witih. e'\fry _k‘ind' ‘(?f
}le;r:]va's involved into the analysls)‘. Row numbers r:cpresent tn tjcft lf‘:tu{‘_‘“'

*Mallest values are highlighted with bold numbers for every picture noise pair.
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