STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

MODELLING DISTRIBUTED EXECUTION
IN THE PRESENCE OF FAILURES

Alexandru VANCEA®

Dedicated 10 Professor Sever Groze on his 65* anniversary

Received: February 10, 1995
AMS subject classification: 68010, 65Y05

REZUMAT. - Modelarea exccutiel distribuite in prezenta cliderilor. Pe misura

rispandirii tot mai accentuate a sistemelor distribuite si a utilizAri lor de ciitre nespecialigti,

atributul tolerantei la erori (fawlt tolerance) in prezenia unor cideri ale unor servere devine

o cerint3 absolut esenfiald pentru un sistem de calcul distribuit viabil. Lucrarea prezinté o

clasificare §i 0 modelare matematich a celor mai fispandite tipuri de céderi ale serverelor. O

astfel de modelare constituie un prim pas pentru ¢ abordase sistematich a posibilitifilor soft

de transformare automatd a unor cideri grave in cAderi mult mai pufin grave la nivelul

cfectelor executiilor, activitate care ar asigura practic tolerania la crori ale acelor sisteme de

calcul distribuite.

1. Introduction. One of the onginal goals of building distributed systems was to
make them more reliable than single processors sysiems, That is, if some machine goes
down, some other machine takes over the job. There are various aspects regarding this
concept.

Availability refers to the fraction of time in which the system is usable. Availability
oan be enhanced by a design that does not require the simultaneous functioning of a
substantial number of critical components. Another way for improving availability is
redundancy: key pieces of hardware and software should be replicated, so that if one of

them fails the others will be able to take up the task.

A main aspect related 10 reliability is fawlt tolerance [Tan92). That is, what happens

* "Babeg-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

A. VANCEA

when a server crashes and then quickly reboots ? In general, distributed systems can be
designed to mask failures. If a system service is actually constructed from a group of
closely coopersting servers, then it should be possible to construct it in such a way that
users do not notice the loss of one or two servers, other than some performance
degradation. The challengs is to arrange this cooperation such as not to add substantial

overhead to the system in the normal case, when everything is functioning correctly.

3. Types of fallures. Distributed computing systems give algorithm designers the
ability to write fauit-tolerant applications in which correctly functioning processors can
complete a computation despite the failure of others. It is well established that th
complexity of writing such applications depends upon the type of faulty behaviour that
processors may exhibit. For exampie, while simple stopping failures are relatively easy to
tolorate, tolerating completely arbitrary behaviour can be much more difficult. To assist the
designers of such applications, fransiations were developed that automatically convert
algorithms tolerant of relatively benign types of failure into ones that tolerate more severe
faulty behaviour [Bazzi93]. We give below a hierarchy of the most commonly considered
failures, from the most easy ones to the most severe:

1). crash fadlures - in which the incriminated processors fail by stopping
prematurely. Before they stop they behave comectly and after they stop they take no
further actions.

il). send-omission failures - the processor fails by intermitently omitting to send
some of the messages that it should send, but the sent messages are always correct.
Because these processors can fail and yet continue to send messages, their failure is more

96

MODELLING DISTRIBUTED EXECUTION

difficult to detect and deal with than crash failures.

ili). general omission failures - the processor may stop or it may intermittently fail
to send or receive messages {Pervy86) and the sent messages a-e always correct. The
identity of faulty processors is uncertain: did the sender or the receiver of an omitted
messags fail 7

iv). arbitrary failures - processors subject to arbitrary failures can take any action
[Lamport82]. They can siop, omit to send messages, send spurious messages and falsely

claim t0 have received messages they did not actually receive.

3, Protocole, histories and preblem specifications.

Definition. A distributed system is a set D of n processors joined by bidirectional
communication links. Processors do not share any memory, the communications being
made through message passing. Each processc has a local s7ate and we denote by () the
set of local states.

Processors communicate with each other in synchronous rounds. In each rournd, a
processor first sends megssages, then receives messages and then change its siate. Let M be
the set of messages thai may be sent in the system and let O & M be the value that
indicates "no message” and let M'=MU{Q}. Thus, if p sends no nessage to q in a round,
we can say that p sends O to q, elthough no m=ssage 15 civall: sent

Befnitien. Proceasors run a prfocol P, which specifies the messages to b sent
and the stata transitions. A protocol consists of two functions, 2 messuge function and a
state-transition fanction. The message function is defined ne mf NxDx{) ~ 34, where N is
the set of positive integers. If processor p begins round i in state s, then P specifies that it

97

A. VANCEA

send mfy(i,p,8) to all processors in that round. The state-transition function is st NxDx(M'f
—~> (). If in round i processor p receives the messages m,,...,m, from processors p,,...,p,
respectively, then P specifies that it change its state to sty(i,p,m,,...,m,) at the end of round
i.

The code below illustrates the execution of a protocol P:

siwe = initial state;

fori=1 to o do

message = mby(i.p.siato),
i message » O then send message to all pr essors,
fereach oD
#f received some m from q then get[q]=m
else get[q].=03;
state = st{i,p.get),;

This definition of protocols appears restrictive in a sense. For example, every
processor 18 required to brosdcast a message in every round. A protocol’s state transition
function depends only on the messages that it just receivr 1 and not on its previous state.
Furthermore, processors are required to run forever and never halt. These restrictions were
made for simplifying the presentation and they do not restrict the applicability of the
results.

Histortes describe the executions of a distributed system. Each history is a 4-tuple
including the following elements: the protocol being run by the processors, the sequence of
states through which the processors pass, the messages that the processors send and the
messages that the processors receive. Formally, a history consists of a protocol and three
functions. The functions define the states through which the processors pass and the

messages sent and received by the processors in each round. A state-sequence function

sseq:Nx/)-->() identifies the states of processors at the beginning of each rc.und. sseqfip) is

MODELLING DISTRIBUTED EXECUTION

the state in which processor p begins round i. A message-sending function msf NxDxD--
>M" identifies the messages sent in each round. msfli,p,q) is the message that p sends to ¢
in round i or O if p sends no message to ¢ in round i. A mess.ige-receiving function
mrf:NxDxD-->M’ identifies the messages received in oach round. mrfli,p.q) is the message
that p receives from ¢ in round i or O if p does not receive a message from ¢ in round i.
Let mrf{i,p) be an abbreviation for the sequence mrf(i,p,1),..., mrf{i,p,n).
H=(P,sseq,msf,mrf) is then a history of protocal P.-

A system is identified with the set of all histories (of all protocols) in that system.
A system can also be defined by giving the properties- that its histories must satisfy. If § is
a system and H=(P, sseq,msf,mrf)ES, then H is a2 history of P running in S.

Protocols are run to soive particular problems. Formally, such problems can be
specified by predicates on histories. Such a predicate, called & specification, distinguishes
histories that solve the problem from those that do not.

Protocol P solves problem with specification X {or solves Z) in system § if all
histories of P running in § satisfy X That is VHES {H is of the form (P,sseq,msf,mrf) =
H satisfies I].

4. Correctness and fatlures. A processor executes correctly if its actions are
always those specified by its protocol. Considering a history H = (P,sseq.msf,mrf),
processor p sends correctly in round i of H if

Yq€D [msfli,p,q) = mfy(i,p.sseq(i,p))].
Processor p receives correctly in round i of H if
Yq€D [mrfli,p,q) = msfli,p,q)}.

Processor p makes a correct state transition in round i of H if

A. VANCEA

sseq(i+1,p) = stp(i,p,mrf(i,p).
Processor p is correct through round i of H if it sends and receives comrectly, and makes
correct state transitions up 1 and including round 7/ of H. Let

Correct(H,i) = {(pE€D | p is correct through round i of H}.
We assume that all processors are initially correct, so Carrect(H,0)=D. Then let
Correct(H), the set of all processors correct throughout history H, be Ny Correct(H). If
A Procesaos is not correct, it is fwity. Formally,
Foudiy(H,i) = D - Correct(H,i) and

Faulty(H) = D - Correc(H).
The following examples of formal specifications illustrate these definitions: X, sp-cifies
that "in round 7 processor p does not send correctly to ¢"

X, = X,(P,sseq,msf,mrf) = msf(7,p,q) = mi(7,p.sseq(7.p)).

I, specifies that through round 10 at ieast 6 processors are correct

X, (H) = |Correc{H,10)| 2 6.
Informally, a specification X is a state specification if it depends only on the state-sequence
function and, 1n a certain way, on the set of correct processors. Formally, Z is a state
specification if

VH,H, [(E(H,) A sseq,~sseq, A Correct(H,)Correci(H,))=>2(H,)}.
Informally, a state specification X is failure-insensitive 1f it does not depend on ihe states
of the faulty processors. Formally,
this means that
YH,.H, [(E(H,) » YIEN VYpECorrect(H,)[sseq,(i,p)=3seq,(i,p)])=+Z(H,)].
Individuai processors may exhibit failures, that is to deviate from correct behaviour.

100

A. VANCEA

nothing at all:

ViEN VYq€ED [msf{i,p,q) = mf.(i,p,sseq(i,p)) v msf(i,p,q) = O},
The system S(n,t) corresponds to the set of histories in which up to t processors are subjest
to send-omission failures and all other processors are correct.

While crash failures are relatively easy to tolerate, intermittent send-omission
failures are more difficult to identify and compensate. If processors may omit to send
mossages and later function correctly, then the correct processors may have more difficulty
agrecing on the identity and timing of failures than they would if only crash failures
occured.

4.3. General Omission Failures. A more complex type of failure, called a general
omission filure [Peny§6], occurs if a processor intermittently fails tc send and receive
messages. Processor p may commit such failures in history H=(P,sseq,msf,mrf) if it always
makes correct state transitions, always sends to each processor what 1is protocol specifies
or nothing at all, and always receives what was sent to it or nothing at ali:

ViEN VqED [maf(i,p,q) = mffi,p,sseqi,p)) v inst(i,p,q) = QJ;
VIiEN VqED [mrf(i,p,q) = msf{i,q.p) v mrf(i,p,q) = Q).
The system G(n,t) corresponds to the set of histories in which up to t processors are
subject to general omission failures and all other processors are correct.

General omission failures are more difficul: to tolerate than send-omission failures.
In addition to the uncertainty regarding the timing of failures, there may also be
uncertainty as to the identify of the faulty processors: if an omitted message is detected, it
may be difficult io tell vhietiier it is the sender. or the receiver that is at fault. Furthermore,

102

MODELLING DISTRIBUTED EXECUTION

faulty processors may be sending incomplete information, as they may have omitted to

receive message from correct processors in previous rounds.

4.4. Arbitrary Failures. Crash failures considerably restrict the behaviour of faulty
processors. Omission failures place fewer restrictions on this behaviour. In the worst case,
faulty behaviour may be completely arbitrary. Processors may fail by sending incorrect
messages and by making arbitrary state transitions [Lamport82]. Processor p is subject to
arbitrary failures in history H=(P,sseq,msf,mrf) if it may deviate from P in any way. It
may do one or more of the following:

- fail to send correctly: IEN IqED [msf(i,p,q) = mfy(i,p,s8eq(i,p)),

- fail to receive comrectly: HEN IqED [mrf(i,p,q) = ms(i,q,p)], or

- make an incorrect state transition: Ji€N [sseq(i+1,p) » st(i,p,mrf(i,p))].

The system A(n,t) corresponds to the set of histories in which up to t processors commit
arbitrary failures and ali other processors are correct. It is clear that arbitrary failures are
more difficult to toierate than the other kinds. Faulty processorns may actively try to
confuse the correct ones, they being able even to "cooperate” to make fauit-tolerance even

more difficuit to achieve.

8. Conclusions. As distributed systems become more and more widespread, the
demand for fault tolerance is one of the main request from a distributed computing system.
Such systems will need considerable redundancy in hardware and the communication
infrastructure, but they will aiso need it in software and data.

To achieve the goal of a fault tolerant distributed system we have first to

103

A. VANCEA

distinguish between the types of failures a system may exhibit and try to model these
failures and the behaviour of the system in the presence of these failures. The ultimate
goal, based on the ideas from [Bazzi93], will be to develop translations from one type of
failure to another, translations destinated to ease the system tolerance to failures. The

model presented here may be a basis for developing such a scheme of translations.

REFERENCES
[Bazad93] R Bazzi, G Neiger - Simplifying Fault-Tolerance: Providing the Abstraction of Crash Failures,
Technical Report GIT-CC-93/12, Georgia lnstitute of Technology, 1993.
[Hadzllacos83] V Hadzilacos - RByzantine agreement under restricted types of failures (not telling the truth is
differens from telling lics), Techwion! Report 18-83, Aiken Compusation Laboratory, Harvard University,
1983, Ph.D. disertation.

[Hadailacosti4] V. Hadzilacos - Issues of Fault Tolerance in Concurrent Compulations , Technical Report 11-
84, Aiken Compwiation Laboratory, Harvard University, 1984, Ph.D. disertation.

{Lampor$2] L Lampost, R Shostak, M.Posse - The Byzantine generals problem, ACM Transactions on
Programming Languages and Syatoms, 4(3), pp.381-401, July 1982.

[Perry®6] K.) Poity, 5. Toueg - Distributed agrecment in the presence of processor and communication faults,
IEEE Transactions on Software Engineering, 12(3), pp.477-482, March 1986

104

