STUDIA UNIV. BABE§-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

LOGICAL GRAMMARS AND UNFOLD TRANSFORMATION
OF LOGIC PROGRAMS

Doina TATAR’

Dedicated to Professor Sever Groze on his 65* anniversary

Receivad: June 28, 1994
AMS subject classification: 6850, 68033, 68127

REZUMAT. - Gramatiel logics ol transformiri “unfold” ale programelor logice. In
articol este utilizatd nofiunca anterior definith tn [12] do "gramatich logicll” peotru a
demonstra faptul ck transformiirile "unfold" ale programelor logice conduc la programe cae
sunt echivalente cu cele originale.

Abstract. The previously defined notion of "logical grammar” [12] is utilized to
demonstrate that unfold transformations of logic programs produce programs which are
equivalent to the original one.

1. Introduction. The two principal papers which we are based in this note are."
Logical grammars as a tool for studying logic progremming” {12] (where we propose a
new semantic for operational behavior of logic programs, which is based on the
framework of formal languages), and "Unfold /fold transformations of logic programs” by
J.C.Shepherdson [10]. In a way, this paper is the first certificate (besides those from [12])
that this new approach for semantic of logic programs is better matching for some
connected discussions.

We start by looking at the unfold transformations : the origin of those goes back to
Burstall and Darlington,who introduced them in the context of recursive programs. In [10]
the definition of unfolding for a logic program is:

* “Babeg-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

D. TATAR

Definition 1.1 Let P be a logic program and
C:Asp@1),8

be a clause of program P (where t stands for a tuple of terms) and
D, : p(t,) « §,

D, : p(t) + §,
bo all the clauses of P whose heads p(t,),....p(t,) unify with p(t) with mgu
8,,...,8,. Then the result of unfolding C w.r.t. p(t) is the program P’ obtained by replacing
C by the r clauses

C,: A9, « 50,586,

C,: A8, « 58,50,
Here A is an atom, p is a symbol of predicate and 8 is the rest of a clause.
In [8] is obtained the resuls:
Theorem If P’ is the logic program obtained from P by unfolding, then a goal G success
with the answer substitution 6 from P’ iff the goal G success with the answer substitution
0 from P.
In the noxt section we will present the logical grammars [12] and will
prove that the unfold transformation preserve the meaning introduced by those.

2. Legical grammars The language considered here is essentially that of first-order
predicate logic without function symbols. Let:

» P be a set of predicates.

* C be a set of constants.

¢ V be a set of variables.
An atom over C U V is of the form

p(u,,...u), n=0

where p € P with arity n, and each u;is an element of SC U V.

If the arguments u, are not interesting in a particular context, then we will denote

an atom simply by p. Let A be the set of atoms over C U V, and, if

76

LOGICAL GRAMMARS AND UNFOLD TRANSFORMATIONS

P’C P, let A, be the set of atoms with predicate symbols from P’. In some recent papers
[13], the set of predicates is considered as divided into two disjoint sets:the set EDB of
extensional predicates (or extensional databases predicate) which represent basic "facts,”
and the set IDB(of intensional! databases predicates) representing facts deduced from the
basic facts via the logic program. Particularly ,the set EDB can be the empty set (as,for
simplicity,in most of the following demonstrations).

Deflinition 2.1 A logic program P is & sequence of Horn clauses, that is,
clauses of the form:
P GG
where p'and q,,...,q, are atomic formulas in first-order logic, the comma is the logic

operation "and”, and the sign « is "if" or reverse of the logical implication.

We refer to the left (p) and right-hand side (q,,...,q,) of a clause as its head and body. A
clause is logically interpreted as the universal closure of the implication qa..Aq, —= p. If a
clause has no right-hand side we will call it a fact or a unit clause. Lot us observe that this
definition considers only the class of positive logic programs (all stoms in afl clauses are
positive).

From the properties of IDB and EDB predicates it follows that a predicate from the set
EDB cannot occur in the head of clauses, but a predicate from the set IDB can ocour in
the set of facts.

Definition 2.2 A goal G consists of a conjunction of atoms, such that a successfully
terminating computation corresponds to a demonstration of this goal by refutation (SLD-
refutation), and is denoted by:

-« fpnly
Over the course of time, we may want to "apply” the same IDB for many quite different
EDB’s. In this context, and because IDB is the "core” of logic program, the properties of
the IDB merit careful study. Recent papers have addressed the problems of studying and
optimizing logic programs from various points of view. ([2], {3], [4]). In {12] our tool is

D. TATAR

the logical grammars:

Definition 3.3 The logical grammar GL associated with a logic program P and the goal G
is the system:
GL = ([N'IT»XG’F)

where:

o Iy = Agg U {X,) is the set of nonterminals.
» I = Ajpp U (A} U {False,True} is the set of terminals.
* X, = is the goal G.
» F is a finite set of production rule, of the form:
)p—q.q.mal
where p € IDB and p +- q,,....q,, is 8 clause in the program P.
or
byp— A
where p is a unit clause in the program P
We assume in the following that substitutions, composition of substitutions, and
the most general unifier o = mgu(g,h) of atoms g and h are defined as in logic
programming. ({1}, (2], 3).
For a logic grammar GL we define the rewriting relation " => " as follows:

Deflnition 24 fFRE€ A" and Q € A”, then:
a
R-GLQ

if exist an stom h € I, and a production rule in F:
g— h.h,
such that:
R = R,hR,,0 = mgu(h,g)
and

Q = oR,)o(h))...o(h,)oR,)

78

LOGICAL GRAMMARS AND UNFOLD TRANSFORMATIONS

(here the variables of the production rule are renamed to new variables, so that all the
variables in the rule do not appear in R).

Let => * denote the reflexive and transitive closure of the relation =». If 0 is the
composition of all substitutions in every direct derivation, let denote it by ® *

Definition 2.5 For a logical grammar GL = (L,,1;,X,.F), the generated language is L(GL),
where:

L(GL) = {(R,8)| X, =° *RR € A"}, 6 = 0,..6,, k is the length of derivation for R,
and 6, is the substitution in the step i} U {Q}.

We have some possibilities for the pair (R, 8):

< if X, (or the goal G) is a ground formula, (not containing the variables) then the
substitution 6 is the empty substitution, and R is True or False, depending on the fact that
G is a formula deducible or not from the set of clauses P (by refutation).

- if X, contains variables, and the computation is succesfully terminating, in the
pairs (R,0) we have R € I';, and the number of pairs represents the number of solutions. If
EDB = ¢ ,then R = A. Let denote the last situation
by R= [] ,the empty clause, like usually in logic, and let 8 be the answer substitution.

- if the program P is not terminating for the goal G, then L(GL) = {2}, where Q ¢
IDB U EDB.

For the purpose of simpler manipulation, let us denote the logical grammar GL with
the symbal initial X, by GL,, and the pairs in the logical language
L(GLy,) by the triplets (P,8,X,). Let us, furthermore suppose EDB = ¢. Then the definition
(2.5) becomes:

L(GLxo) = {([1L8.Xo)|X, =° * [} U {Q)
In [5] the "succes set " for a logic program P is defined as:

succ(P) = {G(t,,...t,]t,,....t, are terms in a standard Herbrand interpretation, then
they are grounded terms, and the goal G(t,/cdots,t) is deductible from P} or,
equivalentely,

succ(P) = {G(t,,...,t,|t,.....t, are terms in a standard Herbrand interpretation and
there exists a SLD-refutation of G(t,,....t,) from P}

79

D. TATAR

The set succ(P) is not completely adequate as operational semantics since it hides
one of the fundamental aspects of logic programming: the ability to compute substitutions
A more adequate definition is [12] the following:

succ’(P) = ((G(1,,....4).0)1,,....1,} are non-ground terms, and Gq(t,,....t,) has a SLD-
refutation with computed answer 8).

In {12} we proved the connection between the set succ’(P) and the logical
grammars.

Definition 2.6 Let U, be a nonstandard Herbrand interpretation (which admits non-ground
terms). We denote by 1., and we will call them the total la. uage of a logical program P,
the following language:

L, =U,. LGL,)

Conformally with the previously definitions,

L, = {(([1.8,3)|G is an arbitrary gosl, G =** [}} U {(Q,G)| P is cycling for the goal G}
U {(False,G)|G has not a SLD-rofutation from P}. In {12] -ve demonstrated that this
language L, represents a sound and complete semantic for P

Lema If G =° G’ and (G’,0) € succ’(P) then (G,08) € succ’(P).

Theorem (of soundness) Let P be a logic program and G a goal. If ({},6,G) € L, then
(G,8) € succ’(P).

Theorem (of completeness) Let P be a logic program and G a goal. If (G,8) € succ’(P),
then ((J0.) E L, .

For a logic program P let denote by GL, the associated logic grammar like in definition
2.5).

We can define two kinds of equivaience of the logic programs:

Definition Two logic programs P, and P, are strong equivalent if VX, we have L(GL,)=
L(GL},) (or, in the formal languages terminology, if GL,, and GL,, are equivalent for
every goal X,).

80

LOGICAL GRAMMARS AND UNFOLD TRANSFORMATIONS

The equivalence of two programs in the following is the strong equivalence,
therefore the equivalence for same goal.
Definition. Two logic programs P, and P, are equivalent if Ly, = Ly, where L,
is defined like in definition 2.6.

The consequence of the introduced notion is the possibility of the definition for
some transformations about loglc programs, such that the obtained programs are equivalent
with the initial programs,

The main result of this section is the following theorem;

Theorem If P’ is a logic program obtained from P by unfolding, then P and P’ are strong
equivalent.
Proof It is enough to prove that, if’

QRE A", , Q =g *R

(4

then
Q -, * R
where GL, and GL,, are the logic grammars associated with the programs P and P’. Let
observe that ,in accordance with the definition 1.1 and 2.3, in GL, there exist the
production rules:
1. A~ p(1)S
2. p(y) — 8,

p(t) — S,
and in GL, these became

3. A8, — $,8,86,

A8, - §.0,50,
Also, conformaly with definition 2.4, if Q =»4,, * R where a rule 1 followed by 2
is utilized, then Q =», . R by a single rule 3. The grammar GL, has the same generative

power like GL ., thus P and P’ are strong equivalent.

D. TATAR

REFERENCES

1. KR Apt, M.H.van Emden: "Contribution to the theory of logic programming”, J. of ACM, vol.29,
1982, pg.841-862.

2. KR Apt, D. Pedreschi: Studies in pure Prolog:termination, CWI Report CS-R9048, September,
1990,

3. XR. Apt, D. Pedreschi: Proving termination of gencral Prolog programs, CW1 Report CS-RY9111,
February, 1991.

4. 8.Debmy, P Mishra:"Denotational and operational semantics for PROLOG", The Journal of Logic
Programming, vol.3, ar.1, 1988, pp.33-6].

S. M Falaschi, G.Levi, M.Martclli, G Palamidessi:"Declamtive modelling of the operational behaviour of
logic languages”, Raport Univ.di Pisa, TR-10/1980.1.Guessarian: Some fixpoint techniques in
algebraic structures

6. P.A Qardner, J.C.Shepherdson:"Unfold/fold transformation of LP", Festschrift in Honour of Alan
Robinsen, Oxford University Press,London, 1990.

7. C.J. Hogger: “Derivation of Logic Programs”, Journal of ACM, April, 1981, pp. 372-393.

8. T.Przymusingki:"On tho declamtive and procedural semantics of logic programs” J.of Automated
Reasoning, vol$, 1989, pp.167-205.

9. 1. Shioya: "Logic hypergraph grammars and context-free hypergraph granunars”. Systems and
Computers, vol.21, nr.7, 1991.

10. J.C.Shepherdson:"Unfoldfold transformations of LP ", Mathem. Struct.in Computer Science(1992),
vol.2, pp.143-157.

11. D.Tatar:" Utilizarca gramaticii sintactice asociata unei scheme de recursive in studiul programelor”,
Studii ¢i cercotari matematice, nr.4, 1988, pp.337-347.

12. D.Taar:"Logical grammars as a tool for studying logic progmmming”, Studia Univ."Babes-Bolyai",
Mathematica, 1993(to appear).

13. A. van Gelder, K. A Ross, J.S.8chlipf:"The Well-Founded Semantics for General Logic Programs”,
Journal of ACM, July, 1991, pp. 620-651.

14. M.H.van Emden, R A Kowalski:"The semantics of predicate logic”, J.of ACM, oct.1976, pp.733-742,

