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REZUMAT. - Un studiu ssupra proprictitiior Algoritmului de Relaxare Fuszy. Ung
dintre problemele cele mai dificile ale instruirli supervizate este tratarea datelor neseparabile
liniar, Problema a fost doar partial rezolvatii prin utilizarea algoritmilor de instruire nuantath.
Una din posibilitijile de abordare a problemei cste gencralizarea pentru cazul nescparabil 8
unor tchaici de instruire nuan{atii care functioncazit bine in cazul separabil. In cele ce
urmeazit vom studia prorietitile Algoritmului de Relaxare Nuanata {1,2). Acesta permite o
generalizare favorabild datelor neseparabile liniar.

1. Introduction

In [1,2] it has been proposed a new training method that ailows the use of fuzzy sets in
order to develop the training. Based on this method a series of algorithms representing

generalizations of some well known classical algorithms have been given.

There have also been proposed robust variants of the fuzzy training algorithm. These
robuat algorithms are capable of learning a training set consisting of two fuzzy linearly
non-separable classes.

In this paper we study the fuzzy relaxation algorithm proposed in [2]). We approach here
the convergence of the algorithm for the case when the constant b from this algorithm is a

certain real number.
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By this modification the fuzzy relaxation algonithm becomes capable of separating two
fuzzy linearly non-separable classes.

2. The Fuzsy Relaxation Algorithm

Let X = (x',..,x"}, x) € R’ a data sot and {A,,A,} & fuzzy binary partition on X. We will
consider the vectors y', obtained from x' by adding a (s+1)-th component equal to 1.

We consider the sign normalization {2]

y i A0S,

-y if 4,(»>05.
We will denote by Z the set of normalized vectors and will consider A, and A, as fuzzy
sets on Z.

zZ =™

The Fuzzy Relaxation Algoritm [1,2] produces (in certain jiven conditions) a unitary
separstion vector v satisfying
vizab>0, )

where b is a real positive number.

The correction rule used by the sigorithm is (see [2))

b-vMzh

o viec(A(s "))’—-W—l kif A(z*>0.5 and v¥zteb, 0
vt otherwise.
Instead of using the separation condition (1), as it appears in [2], we will use here a
slightly different separation condition, namely:
vizabbER ()
As we will see in the next section, the separation condition (1°) allows the algorithm to
work in the non-separable case. '
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3. Study of the properties of this algorithm

Firstly, let us introduce some important notations:
EvA)=min{ v 2|2EZ)
E(A) =sup (E(v,A){IMl=1, vER") 3)
V) ={viiV=1,Vz>bVIEZ)
The following theorem shows a link between E(A) and the linear soparability of the fuzzy
sets A and A:

Theorem 1. Let X be a data set and A a fuzxy set on X. The following statements are
oquivalent:

) E(A) >0,

(i) A and A are lincarly separablo fuzzy sets.

Proof. For the first part of the proof, let us see that E(A)>0 implies that thero exists a
certain v so that E(v, A) > 0. Let us denote the quantity E(v, A) by b. From the definitions
(3) we may deduce that vz a b > 0 for all z € Z, and from here, the linear separability
of A and A.

Conversely, if A and A are linear separabls, thon there exists a vector v so that v¥ z > 0
for all z € Z. Let us denots

Vvl
Thus, we have that E(v’, A) > 0, and from here it ocours that E(A) > 0. OJ

The following theorem shows a condition for the existence of the set V'(b) of solution
vectors:

Theorem 2. Let X be a data set, A a fuzzy set on X and b a real number. The following
statements are equivalent:

(i) b = E(A),

(i) V') = 2.
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Proof. For the first part of the proof let us suppose that b=E(A). It implies that for all the
unitary vectors v, E(v,A)sb. Thus, for each unitary vector v, there exists at least a zEZ
such that v'zsb, and from here we deduce that V'(b)=0.

Conversely, let us consider the unitary vector v as fixed. Thus, there exists at leastaz€
Z such that v’ z < b, and from here we have that E(v, A) = b. As the vector v was
previously considered fixed, this propriety is valid for all the unitary vectors v. Thus, we
canclude that E(A) s b. []

The following proposition gives a few properties of the se V'(b):

Propesition. Let X be a data set, A a fuzzy set on X and b a real number. The following
statements are valid (Int V denotes the interior part of the set V, and Fr V denotes the
border of the set V)

OIVE)={viivi=1,Vzvz>b}=V0)

@FVE)={vilvi=1,Vz vizaband 3z vi z=b}.

Preof. (i) Let us consider the family of sets
M={v|ivi=1,viz>b},z€Z
Thus it is clear that
Vi)=N (M, |z€E€Z)
But, M, is an open set, and thus, V'(b), being a finite intersection of open sets, is an open
set.
(ii) Let us denote
M=(viivi=1,Vz vizabandIz:viz=0b}.

Let us consider a v' in M. So, we may split the set Z into Z, and Z, so that

VYz>b VzEZ
and

&Yz=b VzeEZ,
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Let us chose an e so that the sphere S(v", 8) verifies the property
YveES(V,e), ¥VzEZ,vz>b 4)
Due to the first part of this proposition, such an - does certainly exist.

The hyperplanes (v')' z = b for z € Z, split the sphere into a finite number of distinct
regions. Important for us atc‘only two of these regions, let us denote them R, and R,, that
verify

YVvER,YzEZ,viz>b %)
and

VVER, YVzEZ, viz<b (6)
From the relations (4), (5) and (6) it is clear that every v in R, is inside V'(b) and every v
in R, is outside V'(b), and that proves that M = Fr V'{b). This concludes the proof. {1

From this proposition we may deduce the following

(forolary. Let X bs a data set, A a fuzzy set on X and b a real number. The following
equivalences are valid:

() vE Int V'(b) e E(v, A) > b,

(i) vEFr V') e E(v, A) = b.

Proof, Is very easy as is based on the definition of E(v, A) and the Proposition above. O
Let us denote by R(b) the separation vector produced by the Fuzzy Relaxation Algorithm
(as modified in this paper) under the condition v' z > b, when this separation vector does
exist.

The following theorem presents & convergence condition of the sequence (V") prodced by

the Fuzzy Relaxation Algorithm. It represents a generalization of the convergence theorem

given in {4]:
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Theorem 3. Lot X be a data set, A a fuzzy set on X and b and ¢ two real numbers. Let
(v*) be the ssquence of the vectors produced by the Fuzzy Relaxation Algorithm under the
condition v¥ z > b. If 0<c<2 and b<E(A), then the sequence (V") is convergent.

The proof of the convergencs theorem as it has been stated in [3,4] is applicable even for
the supplemsentary conditions imposed 1o b. Moreover, the proof of the theorem from [34]
is based, evon if not clearly apecified, on a condition similar with b < E(A).

Theorem 4, On-the notation from the Theorem 3, if b < E(A) and the sequence (v*) is,
finite, then E(R(b), A) > b. '

Proof. Since (v*) is finite, there exists a certain N » 1 such that for all the i's withi a N,
v=v". S0, V=v*l= =R(b), and that implies (R(b))* 2' > b for every i, and thus
R(b)EV'(b). Finally, we have that ER(b), A) > b, and that concludes the proof. O

Theorem 5. On the notations from the Theorem 3, if b < E(A), 0<c<2 and the sequence
(v*) is infinite, then E(R(b), A) = b.

Proef. Let us remember that
R(®) = lim v".
We must show the following:

() for every i, R(b)" =' a b;
(ii) thore exists at loast an i such that R(b)" £ = b.

For the first part, et us consider the correction rule (2). Since R(b) is the limit of the
sequence (V"), it results that the correction rule do not modifies its value. So, we have the
cases:

(a) There exists a certain i such that R(b)" z' = b. It results that
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R(b) = RY) + c((Afe '))'.".:i"i‘%’_‘_'z
: !

where A(z') > 0.5, and, from here,
c-RO)'2)=0
and, finally,
RBY 2 =b.
(b) For the rest of the i's, we have that R(b)' Z' > b, and the correction rule lets R(b)
urmodified.

So, for all the i's R®) 2 a b.

For the second part, if we had R(b)T ' > b for all thei’s, we would have that R(b)" ¢ €
Int V'(®) = V'(b). Since every vicinity of R(b) contains at least an element v of the
sequence (V*), it results that there exists a v € V'(b). Thus, v is a stop point and (V') is &
finite sequence, and that contradicts the hypothesis.

Finally, we have that R(b) € Fr V'(b) and that E(R(b), A) = b. That concludes the proof. O

3. Concluding remarks

It is certainly interesting to study what happens in the case b » E(A). Even if we haven’t
proved yet, the experience enables us to consider the following

Conjecture. On the notations from the Theorem 3, if b = E(A) the sequence (v*) is
convergent and E(R(b), A) = E(A).

Let us notice that we did not introduce any restriction with respect to b > 0. Consequently,
the theorems presented above are valid for the case b < 0, with the single condition that b
< E(A). So, we may assure the output of a ‘separation’ hyperplane for the case of linear
non-separability, i.e. when b < E(A) < 0. This is a remarkable property of the Fuzzy
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Relaxation Algorithm.

Other interesting problem is whether there exists a modality to compute directly E(A) and
whether there exists a certain v such that E(v,A) = E(A). Thus, the Fuzzy Relaxation
Algorithm would be able to produce the optimal separation hyperplane with respect to
E(A).
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