STUDIA UNIV. BABE$-BOLYAL MATHEMATICA, XXXIX, 3, 1994

DETECTING DEADLOCKS IN MULTITHREADED APPLICATIONS

Simona Daniela TURIAN®

Received: February 8, 1995
AMS subjact classification: 68003, 68010, 68060, 68090

Dodicated to Professor Sever Groze on his 65* anniversary

REZUMAT. - Detectarea impasulni in aplicaiil cu mai multe fire de execujie. Este
prezentatii o modalitate de descriere a aplicatiilor cu fire de executic multiple, bazata pe retele
Petri. Folosind acest model gi rezultate din teoria retelelos Petri se di un algoritm de detoctare

a impasului intr-o astfol de aplicajie.

A threads package

We introduce a specification of a threads package, which will be referred further in

this paper for describing and analysing a multithreaded application. This package is an

extension of the 'C’ lanﬁuage and is suggested by the threads library from Windows NT (see

[3]). So, for developing multithreaded application we will use "C’ enriched with few data

types and functions, which are listed beilow.

The new data types and constants are:

typedef BYTE *PThreadID;

A handie for the thread

typedef FARPROC *PThreadFunction;

The function which cortaing the code of a thread

typedef int TCriticalRegion

Data type for a condition variable

typedef void far * TEvent

Data type for an event

The functions which are interesting for our purpose are presented bellow:

* PThreadld ThreadCreate(TThreadFunction ThreadFn)

* "Babeg-Bolyai* University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

S$.D. IURIAN

The call of this function try to create a new thread. The returned value is a handle for
the new thread and could be used in the future to refer it. The parameter ThreadFn
indicates the code which will be executed by the new thread.

- void EnterCriticalRegion(TCriticalRegion RC)
A thread bas to call this function if it needs to enter the critical region RC (see (2))
If the critical region RC is not available, the thread will wait for the other thread

. which executes RC to release it.

- void ReleaseCriticaiRegign(TCriticalRegion RC)

A thread call this function if it finished the execution of the critical region RC. The

critical section RC become available to another thread.

Also, it can be defined other function which permits to stop the execution of a thread,
to resume the execution of a stopped thread and for synchronize multiple threads by waiting
for the ocurrence of an event.

Writing a multithreaded application as a Petri Net

In this section we will discuss the synchronisation mechanisms and the creation and
termination primitives which were introduced until now in terms of Petri nets. The analogies
will be used to write a multithreaded application as a Petri net. The resulting Petri nets can
be used to analyse the properties of a multithreaded application.

An application with a single thread can be written as a Petri net by associating to any
instruction a transition and introducing a place between any two consecutive transitions, an
initial place before the first transition and, (if any) & final place after the last(s) transition(s)
A place define the state of the application (in fact, of the thread) and a transition represenl

an action to be taken. At the beginning is marked just the initial place of the Petni net, with

58

DETECTING DEADLOCKS

a single token. At any moment, the marked place indicate the point where the execution of
the thread is arrived.

The Petri nets can be used as an abstracting mechanism. Most of the instructions are
irrelevant for our purpose. The only interesting operations are the threads synchronisation
primitives and the control structures, if the different branches contains such synchronisation
primitive or are creating new threads. So, we will ignore the uninteresting operations: the
assignments and the calls of "C’ library functions. Varshavsky, in {5] presents a possibility
to descn"be a sequential program as a Petri Net.

We will associate to a multithreaded application a Petri net in which the places may
contain zero or a single token (this is a condition/event system, see [2] for details). Reisig,
in [2], defines the notion of invariant in a Petri net. This i8 a vector I for which M*I=0, where
M is the incidence matrix associate to the Petri net. It i1s shown that, for each case C of the
Petri net and for each invariant I, the scalar product C*I is constant.

In order to write a multithreaded application as a Petri Net we need to define the
configurations of transitions/places which corresponds to thread control primitives and have
to be added to those described in [5].

ThreadCreate

In terms of Petri Nets, a thread can be viewed as a linear sequence of places and
transitions. Each thread has a start place. The start place of the main thread will be marked.
The start place of the others threads will be initially not marked.

If a thread creates a new thread, it will be created a new execution sequence
corresponding to the newly created thread. This situation is depicted in figure 1a. If a thread
executes the function ThreadCreate, the first place of the new iLicad nnd the next place of the

39

DETECTING DEADLOCKS

TCriticalRegion rcl, rc2;

main()
{
int Thread2ID=ThreadCreate{Thread2);
while (1)
{
EnterCriticalRegion(rcl);
EnterCriticalRegion(rc2);

ReleaseCriticalRegion(rc2);
ReleaseCriticalRegion(rcl);
// do something;

}
}
int Thread2()
while (1)
{
EnterCriticalRegion(rc2);
EnterCriticalRegion(rc1);
ReleaseCriticalRegion(rcl),
ReleaseCriticalRegion(rc2);
// do something;
}
}

It is obvious that there is a situation which represents a deadlock: when the main
thread enter the critical region rcl, and the second thread enter the critical region rc2 at the
same time. Then, the main thread wants to enter the critical region rc2, which 18 owned by
the second thread. Also, the second thread waits for the releasing of the critical region rcl
which is blocked because of the main thread, and so on.

Generally, the deadlock is not as easy to detect. For detecting deadlocks there are two
strategies: the posthumous way and the use of the invariants. The posthumous way consist of
describing the application and executing it until it seems to be appeared a deadlock. After
this, the problem is solved and the method is reitered.

In order to present the invariants method we will rewrite the previous example.

61

S.D. IURIAN

int Thread2()
while (1)
{
EnterCritical Region(rcl);
EnterCriticalRegion(rc2);
ReleaseCriticalRegion(rc2),
ReleaseCriticalRegion(rcl);
/f do something;
}
}

Now, it is "obvious” that there could not appear a deadlock. For showing that we will

enuncigte a few evident propositions related to the flow control in the new application:

I

The catical region rcl is either free or is accesed by Threadl, or is accesed by
Thread2 (it follows from the definition of a critical region).

If the critical region rcl is free, then Threadl and Thread2 are executing the code
from the beginning of the corresponding loop.

If the critical region rcl is accesed by Threadl (respectively Thread2), then Thread2
(respectively Threadl) is executing the code from the beginning of his while
instruction, or is waiting for releasing the critical region rcl.

The critical region rc2 can be requested only after the critical region rcl is accesed.
If the critical region rc2 is accesed by a thread, then this thread execute something
between EnterCriticalRegion(rc2) and ReleaseCriticalRegion(rc2), and the other thread
execute the code from the beginning of his while instruction or is waiting for the
releasing of the critical region rcl.

These propositions are named invariants, because they are true at any moment of the

application’s execution. In a deadlock situation (from the definition), a thread A is suspended

waiting the releasing of a critical region RC which is accessed by the thread B (A=B). The

62

DETECTING DEADLOCKS

thread B must be waiting for the releasing of the critical region RC’ (RC’=RC) by the thread

A. But the two threads cannot be simultaneously in a critical region (it follows from the

above propositions), so a deadlock cannot appear.

To show formally that a multithreaded application is deadlock-froc we may use the

next algorithm;

1.

2

Writing the multithreaded application as a Petri net.
Computing the Petri net invariants.
Qenoming all possible cases for the Petri net.
For each generated case:
Verifying if the case can be obtained from the initial case
If so, verifying if it represents a deadiock situation
If so, trying if that case verify the invariants. If all invariants are verified, then
it is possible to appesr a deadlock situation. If there is at least an invariant
which is not verified by the case, then the multithreaded application cannot
lead to the localised deadiock.
If there is at least a case, representing a deadiock, which can be obtained from the
initinl case and is verifying the application invariants, then there is possible to appear
a deadlock in the execution of the application. If there is not such a case, then the
application cannot lead to & deadlock situation.
For our example, the above steps are detailed further.

The Petri net for our initial application is depicted in figure 2.

63

DETECTING DEADLOCKS

No. | p pll p12 pI3 pl4 rel w2 p21 p22 p23 p23
1 1 1t 1 1 1t o0 o0 o0 o 0 o0
2 1 0o o0 -1 o0 - o 1 0 o0
3 (-1 1 0o o o 06 1 0 o0 1 0
4 i1 1 0 1 e 1 4 0o 1 @ 1

The 11 columns represents the 11 places. The meaning of an invariant is that the
sum of the tokens from the corresponding places, multiplied by the number, is constant. In
other words:

ptpll+pl2+pl3+pl4 = constant

p+p21-p13-rcl = constant

-ptrc2+p23-pl1 = constant

p+pll+pli+rol-rc2+p22+p24 = constant

By taking into account the initial case for the Petri net (that shown in figure 3) we
can compute the real value of the constants from the above relations. So, because in the
initial case, p=1, rcl=1, ro2=1 and the others places have no tokens (for those, the value is
0) we obtain the following relations:

ptpll+pl2+pl13+pld = |

ptp2i-pl3-rcl = 0

-ptre2+p23-pll = 0

prpl1+pl3+rel-re2+p22+p24 = |

A case which represent a deadlock is <p12, p22>. For showing this we can
construct the resource allocation graph (ses [4]) and finding a cycle in this. For that case,
it is very easy to see that the invariants are satisfied. Unfortunately, the verification of the
invariants is 8 condition necessary but not sufficient for a case to be attained by starting
from the initial case.

We can conclude that in our application it may occurs this deadlock.

65

bollt S ol o

$.D. IURIAN

REFERENCES

Krishnasmurty, E.V., "Parallel Processing. Principles and Practice”, Addison-Wesley Publishing
Company, 1989

Reisig, W., "Petri Nets. An Introduction”, Springer-Verlag, Berlin, 1985.

Richier, 1., "Advanced Windows NT*, Microsoft Press, 1994,

Tanncshaum, A., "Modern Operating Systems”, Prontice-Hall, 1992

Varchaveky, V., “Seif-Timed Control of Concurrent Processes”, Kluwer Academic Publishers, 1990.

