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REZUMAT. - Diferente divizate ¢i functii cenvexe de ordin superior In retele. fn acest

articol vom introduce diferentole divizate pe n puncis, pentru orice functie reald, definitd ps

o submultime conexA a unei refele. Este expusii o teoremi de reprezentars 2 acestor diferento

divizate genoralizate. Ultima sectiune este dedicati functiilor convexe de ordin n, definite pe

refele gi studinlui unor proprietifi ale acestui tip de funcyil.

Abstract. For any real function f defined on a connected subset of an oriented
network, we are interested to find a way to introduce divided differences on n points. We give
a reprezentation theorem for the generalized divided differences and some properties resulting
from this theorem.

Next we introduce the concept of convex real function of order n, defined on network.

Some properties of these functions will be studied in the last part of this paper.

1. Notations and definitions
First we introduce the concept of network (see [1}, [2], [3]). We consider a directed
connected graph G = (W,A) without loops. To each vertex i € W = {1,...,n} we associate a

point vER’. Thus yields a finite subset V={v,,...,v,} of R’ called the vertex set of the
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network. We also associate to each arc (i,j))EA a rectifiable arc [v,,v,JCR’, called arc of the
network, which has the orientation from v; to v;. Let assume that [v,v;] has the positive length
e, and denote by U the set of all arcs. We define the network N=(V,U) by the union
N= U(vv]
Ghea
It is obvious that N is a geometric image of G, which follows naturally from an embedding
of Gin R
Suppose that for each {v,,v] in U there exists a continuous one-one mapping T,;:[0,1]-[v,v]
with Ty(0) = v, T(1) = v, and T([0,1]) = [v,v] C R’.
Lot Q; bo the inverse of T;. To each point x from {v,,v;] corresponds a unique point Q)
in [0,1].
Any connected and closed subset of an arc [v,v;], bounded
by two points x and y of [v,,v;] and having the same orientation as [v,,v)], is called a closed
subarc and is denoted by [x,y]. if one or both of x, y miss we say that the subarc is openin
x {or in y) or is open and we denote this by [x.,y) or (n,y] or (x,y), respectively.
Using Q,; it is possible to compute the length of [x,y] as
e(bey]) = [Qyx) - Qo
Particulary we have e([v,,v)]) = ¢, e([v,x]) = Qyx)ey and e([x,v;)) = (1 - Q,(0))e;.
Definition 1.1 A chain L(x,y) linking two points x and y in N is a sequence of arcs
and at most two subarcs at extremities. The length of a chain is the lengths sum of all is
component arcs and subarcs. If the chain L(x,y) contains only distinct vertices then we call
it elementary.
Definition 1.2. A route D(x,y) starting from x and ending in y (x,y € N) is a chain,

which has the same orientation for all the component arcs and subarcs. This also is the route
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orientation.

Let L’(x,y) be one of the shortest chains and D"(x,y) one of the shortest routes
between the points x,y in N. We define in N a distance as follows:

d(x,y) = e(L’(x,y)) for any x,y in N.

It is obvious that d is a metric on the oriented network N.

2. Divided differences

Qur purpose in this section is to extend in a natural way the divided differences on
n points of real functions (see [7], [8], [4]) for the functions defined on networks.

In order to define the divided differences of a function f on n points we will consider
the notion of metric segment.

Definition 2.1 The metric segment between two different points x,yEN is the
followihg set:

<x,y> = {2EN | d(x,2) + d(z,y) = d(x,y)}.

Remark. Another way of stating definition 2.1, in geometric language, is to say that
the metric segment <x,y> coincides with the union of all the shortest chains between x and
y.

So, it is easy to see why the above remark leds us to the following notion.

Definition 2.2 The metric oriented segment between x,yEN is the set:

<xy>, = (zEN | 2ED"(x,y) and d(x,2)+d(z,y)=d(x,y)},
where D’(x,y) denote a shortest route linking the points x,y&N.

Remarks. 1. Following the definition 2.2 the oriented metric segment is the union of

all shortest routes from x to y which have the length d(x,y). Thus we can see that <x,y>,
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The same reasoning applies to the case of any permutation of points x,,x,,x,. M

Definition 2.3 Let ACN and consider the real function f:A—~R. We choose the points
X;,...X,EA pairwise distinct and such that there exist x,yEA and a shortest route
D'(x,y)C<x,y>, for which is fullfiled the condition x,,..X,ED'(Ly). We call divided
differecence of function f on points x,,...,x, the number:

[Kl,...,x‘;fj - [x,,....)(.,‘,fj - {xnt-"'x.-,;ﬂ

Jw(x.,x,)

where for any zt€D"(x,y)NA,zmt, we set

£ o KO-fz)
{z..f] W

The following divided differences reprezentation formula holds:
Theorem 2.1 Given f:A—R (ACN) and the points x,,...,x, under the conditions stated

in definion 2.3, then

" 5 fix)

1 oK f] =

M e, ?.:, P 0% X))
Pu(Xp- %) = d, (x4, (%, )0 (XK, ). 4 00,x).

, where

Proof. We shall prove (1) by induction. For n=3 we have:

fx)-f0)  f)-fx,)
Doxfl-Ioxf] d, 06x) 4 ()

[x,%,x,,f]=

d, (x,.x,) d, (x,.x,)
- flx,) B AP N A
d, (x d, (k%) d(x,x) d, () d,(x,x,)
()

+*
d,‘y(xgixl)dxy(xgtxg)
Using lemma 2.1 it follows

Xy, %,%5,f] = i )

kel Pk(x,;xpxg)A
Assume (1) is true and prove the property holds for n+1 points, that is:
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8+l f(xk)

T B Kp Ky
According to definition 2.3 and using the induction hypothesis we have:

Mo} - o) o fx) |
[xl,m’x"vﬂ duy(xmloon plﬂ(xl""'xl'l) g‘ pk(xl’m’x')

v 1 [_ fix) .
000.x)| 400 d 0x,x)

+ f{; ! -
d,,06,x,)...d, (x,x,,)

- 1 + .+
dv(x,,x,)dv(x,.x,), . .dv(x,,x .)]

Xy Xpeisf] =

+ ] -
f("')( AN NN N

- 1 .
d"(x.,x,)...dv(x.,x._l))

flx,.,) l

) A
Taking in account lemma 2.1 under the transcription
d,, 00, x )+ 00,8, )=d, (x,,X,.,),. k=2, .0 and

d, (%) = - d,, () k=1, n+1j=1,. ntl,

we conclude:
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I O N
(%1% d_0x). 4, (x,X)

[x,,...,xm;fj

fix M, (xx,,)
NN X
i £, )0, (%,.%,,.) £(x,.,)
dx (X.,Xl) a (X.,Xn_Da (xn'va) d &.ovxz) d (xuﬂ'x)
SRy

| U Pg("p -r nol)
Theorem 2.1 is an analogue for networks of a similar result conceming the usual

divided differences ([7), [8], [4]). A immediate consequence of this characterisation theorem
is: '
Theorem 2.2 If f, g are real function defined on ACN, oER and x,,... X EN satisfy
the conditions stated in definition 2.3, then:
Xy X £HE) =[xy, Xuf] + [Xy,...%,8]
x,,..x;af] = afx,,...x.f].

Proof. The above relations follow directly from (1).8

3. Functions of order n on networks.

The last part of this paper is devoted to define and study the functions of higher order.

Definition ;3.1 If x,,....X,EN are n points (n>1) pairwise disctinct, we call this points
a metric sequence if the following conditions are fullfiled:

a. There exist x,y&EN and D’(x,y)C<x,y> »& such that x,,....x,ED(x,y).

b. dy(x,,x,) <0.

c. E d(x,.x,,,) = dix,x ).

k=]



M.E. IACOB

d. d(x,.,, % )Hdx, X, =d(x,4.X.0), k=2,..,0-1.

Remark. One can easily seen that any subsequence of {x,,..x,} is also a metric
sequence.

Theorem 3.1 If { is a real valued function defined ACN and x,,...,x,EA is a metric

sequence, then

(-1 (x)
d(x, x,)...d0cx, )d(x,.x, . ,)...d(x,.x)

3} [x,,-.-,x.;ﬂ-g

Proof. Since x,...x, i3 a metric sequence it follows
-d(x,.x),dack j>k
3) d (%) = e, x).dack j<k
Using (3) in (1) we obtain (2).

Definition 3.2 A real valued function f defined on ACN is called convex, notconcave,
polynomial, notconvex, concave of order n on A if for any metric sequence x;,... X,,,€A the
following inequalities holds respectively:

(X Xuisf] >, 2, =, 5, <0,
All these functions are of order n.
Remark. If we take a=1 for notconcavity in definition 3.2 we recover the usual ¢-

convex functions in metric spaces ([10]).-

Definition 3.3 A real vaiued function f’A-R is d-convex on A ACN if

d(zy) oy , 40(02)
@ f@»s &(x’y)f(X) d(x,y)ﬂ(”’

for any points x,y,z in A such that zE<x,y>, (which is the same with saying that x,zy is

metric sequence).
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Using definition 2.3 and (5) we obtain;

) O S § L WO A
6) X Xgesf] = kel 0,
et d(thl'xi)
for each i€(1,...,m} and under the assumption that

X if i+n+1sm

ien+l?

Kt ™

Kiper- if 1+0+1>m

It is obvious that (6) implies:

Ko Xirmersf] ® [X;,. %], VIE(L,..,m}.
Thus we can write the following sequence of inoqua\slities:
[y X iif] % [X5. X f] = .. 8 [KXy,. X f]
% [X,,....X,.1.f]. This clearly forces the equality:
(D X Xpersf] = g X f] = = [X,,. X 6]

Using (7) in (6) yields [x,,...X,.,;f]=0. Since the metric sequence was arbitrarily
choosen we can conclude that f is polinomial of order n on C.H

It is ovious that

Corollary 3.1 A n order real function is polinomial on any union of elementay
adjacent circuits.

Corollary 3.2 Any real valued function f, defined on a set ACN which containsa
elementary circuit C cannot be convex or concave of order n, whatever the natural number
n is.

For usual d-convex functions we sate now a stronger result. The proof is adapted from
9], p. 127.

Theorem 3.3 Any real valued and d-convex function, defined on a elenientary circuit
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C is constant.

Proof. We consider the d-convex function f.C—R, where CCN is a elementary circuit.
We want to prove that f(x)=f(y) holds for any pair x,yEC. It is easy to see that there exist the
points z,, ... , 2EC (na$5) satifying the conditions:

1. €<z,,,%,,,>,, 1=2,....n, where z,,,=z,,

2. z;=x and 3kE(2,...,n} such that z,=y.

Assume f reach the maximum value on the set {z,,...,2,} in z,. Since f is d-convex we

have:

d(z,.,.z,) d(z, ,.z)
A d(zp-vzm)f(z’_l) dz .. m;f( o) = '

. 0t
d(z o rl) d(z

9y 12 o) = tiz,),

p—l’zp*l)

which leds us to f{z,)=f{(z,,)=z,.,). Repeated application of this reasoning enable us
to write f(z,)=.. =f(z,), and thus f{x)=fly).

Since x and y was arbitrarily chosen we conclude that f is constant on C.

Definition 3.5 We call the elementary circuits C,,C,CN adjacent if C,NC,wJ.

Corollary 3.3 Any d-convex function defined on the connected set ACN is constant
on the union of all adjacent circuits in A.

Proof. This corollary is the direct consequence of theorem 3.3 and definition 3.5.0

We mention now some elementary properties of functions of order n.

Theorem 3.4

1. Given the real number >0 and two real functions convex (notconcave, polynomial,
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notconvex, concave) of order n f,g defined on ACN, then f+g and af are also convex
(notconcave, polynomial, notconvex ,concave) of order n.
2. The limit of a punctualy convergent sequence of canvex (or notconcave) functions of order
n is notconcave of order n.
3. The limit of a punctualy convergent sequence of concave (or notconvex) functions of order
n is notconvex of order n.
4. The limit of a punctualy convergent sequence of polynomial functions of order n is also
polynomial of order n.

Proof.

1. This follows from theorem 2.2.

2. Let us consider a metric sequence x,,....X,,,&N and f;N—R, convex (or notconcave)
of order n, for each i€EN. If fFN_R, f(z) = {‘:‘: f(2) then

X, X, s f]=
5 (174 _
o d0o X)) d(xx, d(x,x, ). dGxx )

w2 (-1 4im f(x,)
j—o

?-} AN O M

a+2 - +2-k
lm 5 (-1 £(x,) _
e bt d0x,X)). 0 X, )d0XX, ). d(X X))

= lim [x,,..x

i~sm

n~2;fl] = 0
For 3. and 4. one can use a proof similar with that made for 2. @

The technique we use here to introduce divided differences and function of higher

order allows us to make other natural extensions to networks of some types of generalized
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convex function, for example cvasiconvex function of order n ([5], [6]).

REFERENCES

[1] Dearing P.M., Francis R.L., Lowe T.J., Convex location problems on tree networks, Oper. Res., 24(1976),
628-634.

[2] Hooker J., Nonlinear Network Location Models, Ph.D. Thesis, Univ. of Microfilms Int., Apn Arbor, 1984.

{3] Labbé, M., Essay in network location theory, Cahiers du Centre d'étude et de Recherche Opérationelles, vol.
27, nr 1-2, 1985, pp 7-130.

[4] Popoviciu, E., Teoreme de medie din analiza matematich ¢i legiitura lor cu teoria interpoldrii, Dacia,
Cluj, 1972. .

[51 Popoviciu E., Sur une allure de quasiconvexite d'ordse superieur, Rev. d’Anal. Num. Theor.l' Approx., 1982,
11(1-2), 129-137.

[6] Popoviciu, E., Sur quelques proprictés des fonctions quasi-convéxes, Preprint nr. 2, 1983, Itinerant seminar
on functional equations approximation and convexity, Cluj-Napoca.

[7] Popoviciu, T., Introduction 4 la théorie des différences divisées, Bull. Math. de la 80oc. Roumaine de

: Science, 43, nr. 1-2, 1941,

[8] Popoviciu,T., Los fonctions convéxes, Actualités scientifiques et industrielles, 992, XVII, Paris, 1945.

[9] Soltan, V.P., Introducere in teoria axiomatici a convexitigii, Stiin{a, Chiginku, 1984,

[10] Soltan, V.P., Some properties of d-convex Functions, I ¢i H, Amer. Math. Soc. Transl., (2), vot 137, 1987,

55



