STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

DISTRIBUTED PROCESSING IN EXTENDED B-TREE
Florian Mirees BOIAN" and Alesasdru VAMCEA'
Dedicated to Professor Bevar Groge on his 65° anniversary

Recgived: February 10, 1995
AMS subject classification: 68Q22, 65Y03, 63Y10

REZUMAT. - Procesarea distribulth tn B-arborl extingl. in accasth lucrare sc aratit ci

structura de B-arbore este o structurll de date foarte indicatll peatru procesasea sa atr-un modiu

distribuit tn care comunicarea se face prin transmitere de mesajo. {n acest context se propun

uncle tehnici de procesare distribuith in B-arbori, tohnici inspirate de algoritmii clasicl de

mapare a taskurilos Intr-un sistem distribuit. Nu poats fi stabilith o tohnich optimil in cazul

general, problema in acest caz fiind o problemd NP-hard.

1. Preliminaries

A B-tree was formally defined in [Knuth76]. We denote by m the order of the B-tree,
and we denote by e the number of keys from the current B-tree node. By p, with possible
subsoripts we denote pointers to B-tree nodes. Finally, by K, with possible subscripts, we
denote value(s) of key(s) from B-tree. If p is a pointer to a B-tree node, we denote by S(p)
the B-subtree having the root in the node pointed by p.

Definition 1. The possession of S(p) is defined as the total number of keys from S(p).
We denote this number by Z(p).

Let 8 =K, ,K,.,.. K,,, be the word of the r succesive keys from a particular node of B-
tree. Let p,, Pis1» Piezs --» Piir D@ the neighbour pointers for the keys from a. By S(a) we denote

the B-subtree which has in its root only the keys from a and the descendents S(p,), S(p..,),

S(phl)n ey S(pioy)‘

* "Babeg-Bolyai” University. Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

FM. BOIAN, A. VANCEA

Definition 2. An Extended B-tree [Boian89] is a B-tree having in its nodes the

following information:
1) T i i ¥ ¥]

z0p0 l K1 ! zlpl {1 K2 Il z2p2 ll ll ze-lpe-1 ! Ke | zaepe
L
T T ’)

where z{' =Z(p), i = 0,1,.*..,n.

An example. In figure 1, an extended B-tree is presented. In each node, only the
values of keys are presented. For leafless nodos there are two arrows near each key: one on
the left and the other on the right. On the left of each row, in brackets, the value of

possession appears, and on the right, the value of the pointer (here is the number of the node)

appears.
(39)|8
* 097 *
—t
l'——J 1
(11)]3 (27) |7
1 4
| * 041 » * 1857 % 233 % 549 *
| i }
: T 1
I (5)|s (5)16 (6)]9 by oy
(5)}1 b — b (7) |4
¢ l { 1 (6)]2
000 011 017 023 031 }| 103 109 127 137 149 || L
I | |
f l‘W l 1 l
! 047 059 067 073 083 | | 167 179 191 197 211 227 | |
i 4 I
{—
283 353 401 449 461 467 487 |
I
|

S

599 677 773 829 883 999

Figure 1. An extended B-tree

26

DISTRIBUTED PROCESSING

For example, 8(7) has the nodes 7, 6, 9, 4, 2, and Z(7) = 27. If a = "157 233", then
S(a) is S(7) without the key "549" and without the node 2, and Z(a) = 20.

Extended B-tree transformation. The operations with B-tree are presented in
[Knuth76}. In [Boian89] and [Boian8%a} we have described some ideas to implement an
extended B-tree. In figures 2, 3 and 4 three pairs of transformations are presented: rotate
left/right, transform a node into two or viceversa and the transformation of two nodes into
three or viceversa. In these figures, we denote by lewer case (a, b, ..., h, i) the sequences,
possibly empty, froin consecutive keys (from the same node), and by an uppercase (C, E, G)
a key from a node.

When a transformation is applied, the possessions for new nodes must be computed
only from the old ones, without considering the other nodes from the B-tres. In the following,

for the four usual transformations, the new possessions are:

a| B g a| C g

pl p2 —— p2
] Ip1
l T 1 1 """‘l) T
| bl c| al £ | | b |a| B} ¢
L U | } [{ i

(I) (II)
Figure 2. Rotate left / right

a -] a C e
pl ' p2
— | |p1
{ tm —
| bl c|d b | a
L [| —
(1) (II)

Figure 3. Transformation between one node - two nodes

27

DISTRIBUTED PROCESSING

computing system the work to be done must be partitioned among the available processors
and for this to be an efficient action this work needs to be balanced.

Therefore, having at our disposal a distributed computing system, we consider that an
adequate B-tree nodes distribution onto the available network configuration is of an extremely
importance.

There are many wayé for assigning the B-tree nodes to the available processing
elements. We present below some of them, called sowrce initiated schemes, which we
consider well suited solutions for our problom of obtaining good distributed execution
efficiency. In the following, we will identify the necessary activity at each B-tree node with
a process, having then the correspondence “s node" - "one process” for simplifying our
discussion.

The nature of the transformations that are taking place in a B-tree suggests a message
passing distributed modetling. For example, the necessary messages for the cases described
in figure 2, 3 and 4 are given below. Except create and remove, ail the other romaining
actions can be executed in parallel:

i). rotate left to right (fig.2, I to HI);
p, to p, sends "E";
p; to p, sends "d";
P, to p, sends "C";

it). rotate right to left (fig.2, Il to I):
Pa to p, sends "E";
P, to p, sends "d";
po to p, sends "C";

iii). divide a node from two (fig.3, I to IT):
Create a new node p,;
p; to p, sends "C";
p, to p, sends "d";

29

F.M. BOIAN, A. VANCEA

iv). join the nodes p, and p, into p, (fig.3, I to I):
Po to p, sends “C";
p; to p, sends "d";
Remove the node p,;

v). divide the nodes p, and p, from three (fig.4, I to II):
Create a new node p,;
Po 10 p, sends "E,
Pi to p, sends "C",
Py to p,; sends "d”;
P, to p, sends “G";
Pa to p; sonds “h";

vi). join the nodes p,, p, and p, into p, and p, (fig4 10 I):
p; to p, sends "h";
Po to p; sends "G";
p; to p, sends "d";
P, to p, sends "C";
Ps 10 Py sends "E”;

Source initiated achemes are charscterized by the fact that the work splitting is
porformed only when an idle processor (called the sowrce in this context) requests some work
to do. Hence, the schemes presented hore are sll demand driven achemes. In all such schemes
when a processor runs out of work it generates & request for work. What differentiates all the
following different load balancing schemes is the way in which is mads the selection of the
target for this work request. This selection should be such as to minimize the total number
of work requests and to balance the load among processors with fowest possible work
transfers. The basic load balancing algorithm is the following [Gra91]:

30

DISTRIBUTED PROCESSING

while (not terminated)
while (work not available)
determine target;
send request for work to target,
receive message if any,
if (message is work request) send s reject;
if (moasage is a reject) reset flag to indicate
that a fresh target has to be detormined and
another request for work bo generated,
service work requests and temniination messagos,
end-while
do werk until exhausted and at the same time service
work requests,
end-while;

In the Asynchronous Round Robin (ARR) schemes each processor maintains an
independent variable cownt. Whenever & processor runs out of work it reads the value of cownt
and sends & work request to that particular processor. The value of cownt is incremented
(modulo P) each time its value is read and a work request sent. Initially, the value of count
is set to ((p+1) modulo P) where p is the processor identification number. Since each
processor has a counter of its own, work requests can be generated by each processor
independent of the other processors.

Giobal Round Robin (GRR) considers the variable cownt stored in the processor 0 of
a hypercube. When & processor needs work it roquests and geta the value of this variable and
the processor O inorements the valus by 1 modulo P befors responding to another request. The
processor nesding work is sending now a request to the processor whose number was supplied
by pracessor 0. This algorithm ensures that the work requests are uniformly distributed over
sll processors. A potontial drawback of this scheme is the possible competition for reading
cownt.

In the Nearest Neighbowr scheme, a processor running out of work sends a work
request to its nearest neighbours in & round robin fashion (for example, on a hypercube a
processor will request ita logN neighbours). Thus we have locality of communication for both
work requests and actual work transfers. For networks in which the distance between any two

processors is the same this scheme is the same as the Global Round Robin. In a way, this

k)

FM. BOJAN, A. VANCEA

scheme can be considered an adaptation of ARR for networks that are not completely
connected. A potential drawback of this scheme is that lacalized concentration of work takes
a longer time to globally balance the load among gl| processors.

To avoid competition for reading cownt in GRR, in GRR with message combining all
the requests to read the value of cowns at processor 0 are combined at some intermediate
pracessors. Thus, the total number of requests that have to be solved by processor 0 and its
neighbours is greatly reduced. This technique is basically a software implementation of the
Jetch&add operation [8ki91]).

In the scheduler based load balancing scheme a processor is designated as a scheduler.
This processor maintains a list of all possible processors which can danate work. Initially this
list contains just one processor which has all the work. Whenever a processor goes idle it
sends a request to the scheduler. The scheduler thon enquires the processors in the list of
active processors in a round robin fashion till it gets work from one of the processors. This
processor is then placed at the tail of the list and the work received by the scheduler is
forwarded to the requesting processor.

Let’s notice that the performence of this last scheme can be degraded significantly by
the fact that all messages (including messages containing the actual work) are routed to the
scheduler. This poses an additional bottleneck for the work transfer. We can improve this
scheme so that the poll be still generated by the scheduler but the work be transferred directly
to the requesting processor instesd of being routed through the scheduler.

3. Conclusions and further reasearch

We presented in this paper some proposals on efficiently distribute the nodes of a B-
tree on the processing clements of a distributed computing system. It's difficult to say in the
general case which is the best strategy to use, taking into account the fact that the distribution
of processes among processors in the general case in known to be NP-hard [Tao92].

As further research we hope to have access at some pasallel architectures and make
experimental evaluations of these load balancing techniques for a large number of B-tres
applications and compare the performances with those theoretically estimated. Also, we want

to determine more exactly the most efficient contents of the notion of process in this context,

32

DISTRIBUTED PROCESSING

this paper making the simplifying assumption "one node" - “one process", not necessarily the
best choice.

REFERENCESR
[AKI®0] 8§.G.AKl - The Design and Anabusis of Parallel Algorithms, Prentice Hall, 1989

{Boian89] Boian F. M. - Sistom de figiors bazat pe B-arbori, In Lucrarile celui de-al Vil-lea colocviu nafional
de informatiod, INFO-1ASI, 1989, pp. 33-40.

{Boian89a] Boian F. M. - Chutare rapidll in B-sbori, In Lucrdrile simposionwlui "Informatica §i aplicatiile
sak", Zilkle academice Clujone, Cinj-Napoca, 1989.

[Graf®1] A.Y.Grama, V.Kumar, V.N.Rao - Experimental Evaluation of Load Balancing Techniques for the
Hypercube, in Parallel Computing '91 (D.J.Evans ot al.editors), Elsevier Science Publishers, pp.497-512.

{Knuth?6] Knuth D.E. - Tratat de programarea calculatoarelor, vol 11, Sonare gl citutare. Ed. Tehnicl,
Bucuresti, 1976.

[Kri89] Krishnamurthy B.V. - Paralle! Processing. Principles and Practice, Addison-Wesley, 1989,

ISki91} D.B.Skillicorn - Models for Pmctical Paraliel Computation, Mernational Journal of Puralle!
Programming, vol.20, no.2, pp.133-158, 1991,

[Tan93] A.8.Tancnbaum - Modern Operating Systems, Prentics Hall, 1992,

(Tae92} Tao L., Zhae Y.C., Narehari B. - Efficient Heuristios for Task Assignment in Distributed Systems, in
Procesdings of 1991 Intervational Corderence on Parellel and Distributed Systoms, December 16-18, 1992,
Hsinchy, Taiwan, pp.134-141.

{Tou93} Tout W.R., Pramanik 8. - 4 Distributed Load Balancing Scheme for Data Parallel Applications,
Prooeodings of the 1993 Int. Conforonce on Parallel Processing, pp.11-213 - 11-216.

33

