STUDIA UNIV. “BABES-BOLYAL", MATHEMATICA, XXXIX, 3, 1994

The Formal Class Model;
an Example of an Ohject-Orlented Design

Pasesl ANDRE”, Dan CHIOREAN"", Corina CIRSTEA"® and Jean-Clauds ROVER®*

Reaumat: Lucrares doscrio principalole caracioristici ale modelului ou claso formele. Acest
madel orientat-oblect ou clase ¢ mogtenire nultipls oste strfns logat do tipurile abetmoie
asehﬂca.dacuommm Pentry acest madel osto prosontath coacopyie
eamenaii pakeindex, La sfirgit, cu ajutonil usui exemply sunt prozentate aspacts Is validares
§i implomeontares semi-awtomeatl a prolectiril in esdrul acssiul model.

Abstraet;

This paper deseribes the main featuros af the Formal Class Mado! Thia object-oriented model with
olasses and multiple inheritance ia closed 1o sbatmct daia types, but has a more operationl fiwvous.
Using this model we detail the design of the makeindex command. Laat, using the ahove exampie,
we ilusirate some foatures abous the validaticn and the implemeniation of the design.

Résuméy

Dans ce document nous déerivons los principalea caracteristiques du moddle des clesses formelica.
Ce modéle A objets, clasaes ot hérilage multiple est proches des types abstralis algsbriques mais aves
uns erientation plus opéeationolle. Nous peésentions Ia conception do ls commende makeindex dans
so modéle. Finalement nous itlustrons & V'aido de P'exemple quolques aapecia conosrment ia validation
ot Pimplantation semi-automatique de Ia conoeption.

1. INTRODUCTION

The professional dovelopment of large correst software systoms in 8 systematis, sructured and
moduler way is still a challenge for rescarch and practice in software euginsering. In rocent yesrs,
many sofiwase techaigues improved the techaivel standards in seftware engiusering, previding
better atrustusing teckaiques supporting abstraction sad reusability.

Objact ariontation aad formsl methods aro the main fruitful techaiques to produss high quality
softwere. Objost-Oriented Design noeds formal specifications to maeke proofs snd verification
sutomatiselly. Objest-Oriented Progremuming is & complele and consistent framewotk for
software development. Ineremenial development of olasses, rousability end sxtensibility are the
main kenoflts, Abstrastion and formal specification techniques were developed to reinforce safety
and rousability.

Weo proposs « wpifylag modei for Object-Orieated Desiga [1], based on aigebruic
spesificetions, whish unifios the major consepts of Objset-Orlented Programming. The sutcomes

* Equipe de Recherche en Tochnalogie o Objers IRIN - Faculté des Sctences et des Technigues Université de
Nantes 2, rue de in Houssinibre 44072 Nanies Cédes 43, FRANCE
* Lubaraiord de Corcetare in informaticd Faowliaiea de Matematicd i Informaitcd Universitaten "BABES-
BOLYAL" wtr. M. Kogdiniceame, 1 3460 Civg-Napoca, ROMANIA
* This work was supporied by GDR de Programmation de C.N.R.S., te France. A short version af this paper
was presented at ConT1'94 {1}

P. ANDRE, D. CHIOREAN, C. CIRSTEA, 1.C. ROYER

of suck & model are: desiganing consistent and complete libraries of classes, supparting revey
enginecring, application rowriting, comparing or reusing classcs coded in the same language orit
difforent languages, A last bouefit is the passibility of teaching Object-Oricnted Programmingins
ware shetmct way than by using Ohject-Oricnted Languagos. The main steps of the design in ew
farmal model are:

» 3 figst design of the class with copsistency and inheritancs chocking;

* the proof of abstract praperties;

* (ealing with rowriting;

< {ranalation 1o concreie languages.

This paper is oeganized as follows: Section 2 describes the nain goals and aspects of Obje:
Orientcd Design. Bection 3 presents the Formal Class Model regarding Object-Oriented Dosipy
Bection 4 is o survey of an sxample deaigned using this model. Section S presents verification
peoof tuchaiques supporied by the formal deaign. Section 6 describes an implementstion of
formal classes nsing o concrets laaguage like Eiftel, The conclusions are presented in Section 7.

Owur Formal Cinss Mode} vorifies the requiresnenta of the Object Core Mode! Group. Furthermes
i allows formal specificasions of methods end it has more gesers! rules.

3. OBJECT-ORIENTED DESIGN

Object-Oriented Denign is characterized by the development of reusable and robust componesy
naamed classes. A class definition mist be roadable, consistent and extensible. There aro presenty
difforent object-oriented methods described by OMG's Special Interest Group on Analysis and Duig
{SIGAD). There arc extromely differsnt views of many fundamental concepts concerning sk
sad design.

Ws aim at formally dosign epplications and implement them in Object-Orisnted Languages. Tw
class construction matst be based on an sbetrsct description of its instences. This allows
incremental development of classes and applications, a betisr reusability and consistency chockiy
An abstract deflnition of classes is indopendent from concrete languages, therefore swnl
implementation languages are possibie.

1.1. Formal specification

Formael epecifications are needed for a guality software devclopment. The main benefll w
shetraction {reinforces pousability, simplicity and gemerality), proofs (design, coneisiency wi
compietion proofs) and documentstion (fundamental to reuse and amlviain sofiware).

Whea integrated with object-oriented techaiques, formsl methods stiow precise specification of e
semantics of cissses. Of courss, in order 10 sisist deaign, various tools must be defined.

1.1. Correctness and Reusability

Object-oriontation shhances modularity of specifications enabling separate parts of a developms
10 be worked sepaenisly. These parts can be refined independenily, since the correctness of highim!
parts of a specification can be proved without knowing the internal deiails of the lowlewl
specifications that implement its operations. Reuse is sided by the ability to specify systems wig
‘inheritance, aggregation and genericity

In order to model the iransition from specifications to program implementation, classes and fomsl
specifications have to be related to u notlon of correctness. This is formalized in an algebraic twoy
and hence it enables formal reasoning.

THE FORMAL CLASS MODEL: AN EXAMPLE OF OBJECT-ORIENTED DESION
3. DESCRJPTION OF THE MODEL

In this section we present a formal way 1o describe a class. To differentiste botwesen classes from
conceete languages and clasaes from our model, we will name the Jast anos Farmal Classes.
Our mode! unifles major concepis of Objoct-Orienied [anguages. A Formal Class i an abstraction
of & concrete class in » language liks C++, Eiflel, CLOS or Somlitall, and also an algsbmic
flension, s Abstract Data Type (ADT), with sn objest onlentation. Algobraic sxioms deflac an
tract semantics of the behaviour, whows propertios can bo checked wsing term rowsiting, The
Bmcmmm.mmm It is an anawer to the requirements of Ohject-
Orientod Design. Concopiuatly, & Formal Claes apocifios the object description and hehavious.
Syntactically, it containe an aspect and & st of secondary methods. The sapect part is ag shetrect
dosceiption of the kermol behaviour of ahjocts, while secondary methods describe the remaining part of
the hehaviour. Secondary methods stlow ws 10 incremenially suiend the behaviour of a class, without
modifying the charactarization of obdecta,

3.1, Formal Classos

The information conversing & Pormal Clais is erbodded in & bow snd includes iia name, sspect
d secondary methods.

SClaaa namer
& < t- irect supercliasses>
|—gamments; <commancs for Lk 38>
ic secondary mthﬂdﬁ
@k! <dsseri gginn of an aspect>

_Shatsset styugture conetreints |
<name> 1 <Class name> — <Reaulting Type>
L __seguires: <precondition» : <conditions>

11 <name> 1 <comments fur the secondary method>
<name> : <Argument Typaer* — <Resulting Type>
sequires: <precondition>

vae: <Variable Name 1 Type;>*

J - <auigmp>®

RS

Figure 1: The genoric box for & class

We use the following votatiens: the term Self and those declared by var: ate variablos. Other
torme beginuing with an uppercase lotter are classes or prodefined types. Torms beginaing with a
lowercase fetier ate method names. Message seading is written as & function call:
<selecter> (<receiver> <,argument>*). The receiver is denoied by self (then there is
single dispatch).

A secondary method is desceibed by lis profite, axioms, and, if needed, preconditions. We use a
funictional tation for methods. Such a presentation is a set of axioms, impiich rewrite-rules (left
to right) of form: condition = wm(Self,...,2) == u, where condition is a conjunction of
equations havisg the form t == v where t, u, v are algebraic terms.

As in Object-Oriented Languages there are abstract classes and abstract methods. The
corresposiding keyword is ABSTRACT. The class being defined is named the class of interest or the
Cutrent Formal Class (CFC). When the resulting type of an operation is the CFC, the operation is
called a constructor, else it is called an observer.

P. ANDRE, D. CHIOREAN, C. CIRSTEA, J.C. ROYER
3.1.1. Aspeet

In this model, object characterization uses the concept of aspect. An aspect is & pair (abstract
structure, constraing). The shsiract structurs is a set of field selectors (partial or total observers of the
class). The constraint is a predicate on thess fleld selociors, which can be scen as a condition 10 crese
or to modify an ohjecs. This is the same kioa as a class invariant in Eiffel. Constraints implichly

the sxioms of the mathods. Both the precoaditions of fleld selectors and the constraint ae
writton using conditions, as in aigobealc axioms,

3.1.2. Methods

To define a keme} representation of & olm ita behaviour is split into two pasts: primitive sd
secondary methods.
Primitive methods are sssentisl for the description snd the manipulation of instances. Romovlm
primitive meothod chuses at least ons of the following:
* the set of deacribed instances is modified,
¢ some parts of an {nsisace can not bs accossed;
* instances can not be described of
Primitive methods are twofbld: primitive observers and primitive constructors. Among primitive
observers we distinguigh: the fleld sclectors, the semantic squality (equal?) and the description
method (describe). The set of fisld aeloctors is o family of cbservers which allows to distlaguish
betweon two instancos of the same clsss. In this senss we can say that an aspect charactc.zos a st of
objects without confusion. Semantic squality allows us to compare ohjects in sn absiract wy
(implementation independont). An objsct description s an external representation of the object.
Primitive construcions are:
* new, the generator of instances;
* copy, used 10 creste now ohjects fom the exiating ones.
In practice, designers construct methods using primitive methods, predefined objects and coniro
siructures. Secondary methods are extensions of the primitive ones, that is, every application ofs
secondary method can be reduced to applicstions of the primitive methods.

3.2. Relations

Instanciation, inheritance, structural dependency and ctientship are the main relations in Objut-
Oriented Programming. If there are no motaclesses, instanciation is s trivial relation. Clientship (s
use refation) is well-known. That’s why we do not discusa these two relations.

THE FORMAL CLASS MODEL: AN EXAMPLE OF OBJECT-ORIENTED DESIGN
3.3.1. Structura} Dependency

The resulting types of the ficld selectors (fsel;) are named the structuring typoes (T1) of the class.
The set of links between a FC and its struciuring types deflaes the Simictursl Dopendoncy Graph
(SDG). A well-designed class deflncs af loast ane instance and its insiances are flalialy geperated, so
we have a well-found induction on obiects. Because of the flsld selector proconditions (prec) there
is no general and static crterion to chock that. ln many cases procy are equivalent 1o true 50 & lass
is well-designed if and only if the 8DG Is without cycle.

A mare general and neceasary criterion, hmm.mmmymmu 8 CEC is woll-deaigned
ifand only if for al] £sely 71 we have ons of the following:

* 7y is8 predefined type,

» or T4 is a well designed FC which does net structurally depead an the CPC,

sar Ty is 8 FC which structurelly depends on tho CFC snd whoae field selector precondition is
not equivalent to true.

3.2.3. Inhoritance and Subtyping

In our model we wse imheritance more rigorously thap in concrote langusges. The instance
variables are not inherited. The inheritance rules are:

* Secondary methods arc always inherited and it is podsible to redofine thom,

* There Is no inheritance of primitive methods (field selogtars, new, #i¢) or constraints,

* An inheritance link between two clesses is possible if overy fleld ssloctor of tho supervines
exists in the subclass with the sams type or a subtyps of this typs. If there are constraints or
field selector preconditions, the rule implies stronger constraints and stroager precondisions
in the subclass.

- The inheritance graph (1G) must be without eycles. Inheritance implies subtyping. In order o
obtain strong typing we add the following rule:

« Mothods are redefined acoarding W o rule which is covariani only on the recelver type and the
resuiting type and other arguments are naveriant. This rulo is consistent with the previous
inheritance criterion and, as we can see in {3], it allows geaericity,

To avoid the increase of the complexity in method lookup, name clashes are solved by method
redefinition.

3.3. Other Features

313.1, Type Checking

The model fits well to dynamically typed languages but alse to strongly typed languages like
Eiffel. A first problem concerns some terms Hke head (tail (newFullPages(...))) which awe

meaningful but type erroneous. Our solution to this problem Is similar to [6] and described in [3].
This solution needs an additional parsing bofors the real type checking,

The type checking assumes expliclt declarations of varisble and method types. We do not handle
functions as objects. This avoids the need of a contra-variant réle [5] which would not be consistent
with our inheritance rules.

The primitive method proflles for CFC are:

fsely : CFC —» Ti for euch fleld selector
new<CFC» ¢+ Ty ... Tp - CFC
equal? 1 CFC OBJECT -9 Boolean
describe t CFC — String

copy t CFC — CFC.

¥. ANDRE, D. CHIOREAN, C. CIRSTEA, 1.C. ROYER

Aii cxpoession e having the type T is writlen e T. A type is cither a predefined type (which is s
class) of 8 FC. The main rule for typing & messags exprsssion is:
iet m(el ok);3f ojiCj, profile(m,Cl) = 81 ... 8k — 8,
and £or 813 3, €] ake 8j oxr Cj = Sj, then m{el ... ek): S.
The expression profile(m,T) stands for the profile of an operation or a8 method. If ¢} it
prodetined type thea misa fined operstion with s predefined profile.
The type checking al usas the following niles; ‘
* A cinss is well-typed if its secondary methods are weli-typed.
+ A method is woll-typed if its axioma arc well-typod.
= An axiom is well-typed if oll its squations are well-typed.
o An squation is well-typed if the left and right sxpressions arc well-typed and have the um
Type. .
if we use » simpls covariant redofinition rule, this chocking is safe. It means that the evaluationo
sach woll-typed expression built on well-typed classes doos not produce a type error. However, it
often useful 1o use & multi-covariant mile. Problenw may arise both in ocur functional model, ad s
side offoct languages like Eiffel {4]. Nose that it ls passible to use multiple dispatch; in this case o
extended type checking s still safe. With slagle dispasch an’ multi-covariant method we baw
defined sdditionsl check to ensuse typo safeness. Furthormore if such & problom occurs, 8 very st
principle ia so systomatically redefine methods which directly use a multi-covarisy

method

3.3.2. Genoriclity

As in [D] genericity can be simulated by inhoritance. We have defined a formal design for lists w
have studied its genericity. We showed in {3} how 10 create generic lists and how to use them. Uil
genericity mechanisms as in Ada, Eiffel or Modula are under study.

3.3.3. Sido Effects

Side effocts are not an essentia) concept in OOP, however they are fundamental in practice. Th
main goels of side offects are some optimizations and the reinforcing of object identity. But the pin
1o be paid is to loose the simple proof techniques of functional programming. The use of sids efficy
sliows g soR trensition from functional design to real implementation.

Introduclag side effects does not modify the inheritance and type checking rules. The modd
additions are:

* As in impemtives languages, we distinguish statemonts from expressions. Btatements my
produce side effects but expressions do not.
* There are additional primitive methods:
- modifyt ¢t CFC Ty ... Th ~+ CFC modifies the value associated to a fild
seloctor but proserves the ldentity of the receiver.
- aq? ¢ CFC OBJECT — Boolean tests the equality of two object identifiers. The
differences between equal? and eq? are classic in Lisp or Scheme.
+ Bids effocts are restricted to the receiver.
» Control structures as IF THEN ELSE, WHILE DO are possible.

The input data of the \makeindex command consists of items like “word 4*.

Jtemln .
jnlkerity fyem OBJRCT

apmments: class for ipput data
. agpest | itenin
§ :_apeindex

:_SEEUOENES sepateelnk
fuwor v

[page : Itemis -+ Integer
77 onsindex 1 this mathod Ezansforms an imput item in & simple output one

oneinden : ItemIn — Inden
oneindex(8elf) o= newlindex(woxd ~ word(Seslf),

Rages ~ agd(newknpeyPages(), page(Seif)))
Figure 3: The Itemin Formal Class
The TtemIn class le described by its sapect and the set of secondary methods. The field selecton:

word ; ItemIn -—+ 8tring, page: ItemIn —» Integer are necessary and sufficient 0
doscribe and distinguish the class instances. '

4.3. Using Constraints
In order to desgribe the pages of an Index, we miist tec 8 constraint (see Figure 4).
Tulifages

ages
copmants: class for nop empty liet ¢f pages
sspeat : fulllist
__Abstragt styucture nt
head ; FullPages — Integsx empty? (tail (Self)) orelse
tajl 1 FullPages — Pages hoad (Belf) < head(tail (Self))

Figure 4 : The sspoet of FullPages Formal Class
This consirint states that an instance of FullPages is sortod and without duplication. Th

instasice resuited from a call of newFullPages sstisfiss this constraint. Applying a seconduy
method 1o an instance of FullPages also preserves the constraing (seo Section 5.3).

4.4. Describing Socondary Methods

A simple secondary method is oneindex (see Figure 3). A mere complex one, where the axioms
coatain conditiots, is insert (see Figure 5).

FullPages

t; insert : insert a page in a full list of pages

insert : FullPages Integer -5 FullPages
vaz: X : Integer;
X < head(8elf) == true = insert (Belf, X) == add(Self, X)
X = head(Self) == true = insert (Self, X) == Self
X > head(Self) == true = insert(Self, X) == add(insertltail (Self),X),

head (Self)]

Figure $: The insert method of FullPages

10

P. ANDRE, D. CHIOREAN, C. CIRSTEA, 1.C. ROYER

i1 putword! : add an input item
putworxd! : BmptyOut ItemI: — Fullout
vaxr: X 1 ItemIn;
putvwerd! (Belf, X) == add(Se ane (X))
CLASS Fuliout
i1 putwordl t parxse a nsw input item
putword! : FullOut XtemIa — FullOut
wvar: X i Itemin: old, new i Out

1L word(X) < ward(head(Self))
add (8elf, omeindexiN))

dakai=8el e,
"HRILE not (empty? (data)) m word(X) > word(head(data)) Do
old i~ data
daka 1~ tail(data},
iR
1E empty? (data) ex word(X) < word(bsad(dats))
madify! (old, kail = add(data, oneinden(k)))
| modify! (data, head » modify! (head(data),
pages = insext! (pages{head(da’)), page(X))))
Bupy

ENDy
LRNR.

Figurn 8 The putwoxd! method

4.7. Flat Versus Hierarchical Design

Skitl design mixes inheritance and conditional skuotirel dependency. An exampie of bad desipn
for Haets of pages is:

Figue 9 : Bad design for Pages

The foliowing dosign named “fist" is cormect becauss the genersl criterion from 3.2.1 is satisfled:

’ , ORJIECT
| _oemmenks; class for list of peges
aspect ﬁtt
[skelwack ghruetuse . senntraint

smpty? : Pages — Booleah
head : Pages - Integer
xeguites: empty? (Self) == false
tail : Pagee — Pages
roquires: empty? (Self) == false

Figure 10 : Flat design for Pages .

However we prefer the “hiersichicid” design because we can teuse the FullPages class and this
design allows a finer type vl =iy 4 complete comparison is out of this paper.

12

S. VERIFICATION AND PROOFS

5.1. Graph Verifications

As mentioned in 3.2.1., if there sre no preconditions for the field selectors, we must check that the
SDG is without cycle. We must also verify that the 1 is without cycle and that the inheritance
critorion ia trus. Both conditions are satisfied in our example.

8.2. Type Checking Applications

The following short example shows the idoa of typs cheoking. Counsider the insext axiom (ses
Figure 5):

X < head(Self) == txue = inasrt(Belf, X) == add(Self, X).

Assume add: FullPages Integer — FullPages and head: FullPages — Integer.
The condition is well-typed becasise both of its parts have the typs Boolean. The left and right terms
of the equation have the typs FullPages, so this axiom is well-typed.

To get & right resulting type, the add method is redefined in the subcldesss of Lisc. But this
method is multi-covariant, so typiag problems may ariss. In order 10 sxamplify this aspect, let us
assume that SFulllList is & subclass of TPullList, coresponding 1o sorted and without duplicstion
lists of elementa of type 3 and T respectively, whore 3 is & iubtyps of T sad instances of both 5 and T
can be compared using the relation “<”. The TFullList class can be obtained by replacing the type
Integer with the type T and the typs FullPages with the type Trulllist in the FullPages
formal class. The 3Fulltist oises is given below. The corresponding T1list, TEmpetyList, SList
and SEmptyList clnsses are also defined.

grul

Anherite |
comments: claas for nop empty 1ist of pages
fontures: add

t

sopeet: fyllliet
ot st [
head i 8Fulllisk -+ Integer | smpty? {tail (8elf)) orelse
tail 1 SFulllist — SList head (Salf) <

' ‘ :igmu {8010))
71 add 1 put a new page in the fyont of tha list

add 1 SFulllist 8 -4 SFullList
var: X 3 8

add(Self, X) =~ pew SFulllLisc(hesd = X, tail = Self)
Figure 11. The srullList formal class

Note that the add method is redefined by arulllist, whils the Ltnsert nwihod is luherited from
Trulllist. Then there is no problems, we can inhetit the insert method. But a method like
pb(self) = add({Self, newT(*)] in clsss TrullList will bo rejected by the type checking.
Because using pb with & SFulllList instence produce s type error. Thea a solution is 1o redefine pb
where add is redefined then redefined it in cless sFuliList.

13

P. ANDRE, D. CHIOREAN, C. CIRSTEA, J.C. ROYER
8.3. Proofs

The model allows proofs in an algebraic style. The basic principle is equational deduction or tem
rewriting. Methods are interpreted as algebraic axioms or rewrite rules. It is trivial for secondary
methods and simple for primitive ones [2). The original thing is the fact that the hierarchy of clais
Implics a hieearchy of axioms.

We define a call-by-valus siratogy where method selection depends only on the receiver class. The
type of an ekpression is given by its normal form. An equation ia in sormal form either if its typs ls
predefined, or if it is 8 new<CFC> on narmal form expressions. In the last case its type is simply cec.

Let m(el, ..., en). The staps of the svaluation strategy ars:

+ evaluate all the argument expressions to a normal form.

» the first evaluation, eval (el), gives the receiver class (if the narmal form is & predefined

sonstant and m is a predefined operation, then the computation is predefined).

+ select the method (m) to be applied from the inheoritence graph.

+ rewrite the entire expression.

Inductive proofs are also possible because we assume a well-found induction on instances, in ft
on normat form terms. Consider for example that we want to prove ' e following lemma:

(SelfiEmptyPages or SelfiFullPages) and Xilntegyer
=p insert (Self, X)iFullPages.

This means that if Self is a list of pages, inserting s now page produces a non empty, sorted list of
pages (it verifles the FullPages structure and construing),

Two cases have to be considered:

a) if Belf=newEmptyPages, the insert rule applied is the one in the EmptyPag :s cls
insert (8elf, X)==add (Self,X)==newPullPages (head=X, tail=5elf).

The FullPages instance obtained satisfies the constraint:
empty? (newEmptyPages) ==true.

b) Self=newFullPages (head=%, tail=Y),

XiInteger =» insert(Y,X) iFullPages

Now the insert method applied is the one in the FullPages class (see Figure S):

o if X<head{8elf) then insert(Self,X)=newFullPages (head=X,tail=Self) and th

constraint is true because head (Self)<head(tail (S8elf)) by hypothesis.

¢+ if X=head(Self) then insert (S8elf, X)=8Salf, so the receiver does not changs.

s if X>head(8elf) then

insert (Self, X)=newFullPages (head=Z, tail=insext (¥,X));
since tail=insext (Y,X) is & FullPages by induction hypothesis and £ is loss than X and all ¥
pages, then insert (S8elf, X} isa FullPages and satisfles the consiraint. QBED

6. IMPLEMENTATION

Rapid prototyping {s an ¢ssential tool for specifioation validation. The transition from FCs to
Object-Oriented Programming classes is quite natural and partially automatic. FCs are simple o
implement in concrete languages like CLOS, Smalltatk, Biffel or C++. Such a translation takes the
formal deseription as input and produces the class structure, primitive method code and secondary
method signature. In this stage, the concrete secondaty methods must be written by hand. However,
an automatic translation of secondary methods s possible because of the rewrite rules.

We experimented an sutomatic translator to Eiffel. The tanslation begins by associating an Eiffel
class (and a flle named <CFC> . e) to each FC. If the class is sbstract, the Eiffel class is DEFERRED.
The same holds for abstract methods. All the primitive methods must be specified in the Expor?
clause. Tor each superclass, an INHERIT clause, with DEFINE and REDEFINE clauses, must be
provided. The (re)definitions are nsed to avoid name clashes.

14

THE FORMAL CLASS MODEL; AN EXAMPLE OF OBJECT-ORIENTED DESIGN

Afier that, tho main taak is to define the FEATUREs. For each field selector which is new or
specinlized in the subclass, & private atiribute and an Eiffol routine which reads this atributc must be
defined. The fleld selector precondition becomes 8 REQUIRE clause of this routine.

We must also define # CREATE procedure whose argument types are the field selector types. The
new<CFC> is a functionsl call 0 CREATE. The consimint may become REQUIRE clause for
new<CFC>, or better, a clnss INVARIANT. The primitive aqual? is implomented by deep_equal
and copy by deep_clone.

Finally, for each secondary method we define an associsted Biffel routine whose profile is the
secondary method one, withous the receiver type. The tmnalation of axioms must cops with the
pointed Eiffel notation: <ssisctor> (<recaiver><,args>*) becames
<receiver>.<selector> (<args>*). The precondition is implemented by a REQUIRE clause.
Axiom conditions are uansiated into IF ... THEN ... ELSIF ... END conirol structures. The
result of & method is defined by tho special varisble RESULT. Noie that 8a1f bacomoes CURRENT ad
s message like m(Self, *) is transiated into m(*). We muat use some Jocal variables because
CREATE is a procedure, not s function. ‘

Strong typing is not 8 problem because our type checking is mars strict than the Biffel one.

7. CONCLUSIONS

We defined & minimal abstract model for Object-Oriented Design. This model is a8 formal
specification language, closed to algebraic abstract data types but with an operstional favour. This
allows us to adapt the rotions of consistency and complotion of algebreic specifications. However,
the model s ofien more concrete than algebraic specifications.

‘We defined rules for inheritanos, safe type checking and an abstract semantics based on term
rewriting. The inheritance rules allow specislization of the resulting type of a method.

The model is as powarful as the Biffol lungungs, excepting the aseociation types. Genericity can be
simulated by inheritance.

Some extensions are under study: mesaciasses (based on the ObjVLisp modsl), schemes, methods
s objects and association types, These sxtensions add difficultios to type checking.

Tho main features of our mode! are:

+ an object-oriented and formal model to abstinctly design applicetions, i.c. without the neod of &

particular Object-Orlented Language,

* rules and criterion to check graphes, types, method redeflnitions, inheritance links, ..

* & symbolic evaluator and proof techniqus,

+ a direct jmplementation in concrete languages.

APPENDIX

Forma! Classes
Ttenin ‘
HIK] t FOCo 88
H i .
R TN T ———— T
__Rage) Itenis -3 Iategey

$1 ensindexn 1 cyeate a ahpgo nguom

onsinden 1 ItemIn ~+ Inden
onnlnden (Self) == newlndeu(word = word(Self),
pages = add (neulaptyPages(),

|_pase(felf)))
In
’ —buberite fyemw List
uqm..m
o ShEEyash stypatuye T T

11 makeindax 1 built the indan table fyom the input list
wakeinden 1 In — Out .

1+ makeinden | built an empty table
makeinden 1 Rmptyla — Out

Fullln
1List In
: claas fox ® st
k: fulllist
. §betseet gtrusture [CTTITIINY
| head t Fylils -+ fvemIn

11 makeindex : built the table
makeinden 1 Fullln — Out

16

| makeIndew(Self) == putword(mekeindex(teil(Seif)), head(Self))

THE FORMAL CLASS MODEL: AN EXAMPLE OF ORJECT-ORIENTED DESIGN

ABSERACY Fages
inherise fyem List
|__commente: clasa for list of paqes
|____feasures: insert, add
aspess: list
stres l sonstraint

11 add : put a new page in the fromt of the liat
add 1 Pages Integex — Fulllages
ABSTRACT

11 insert 1 insext a new page in the list
iasexrt 1 Pages Integer — FullPages

147 1
EnptyPages
8
‘ ’ $8: olass fo ty list of 8
{__featuves: insert, add]
' -%’ ;i smptyliot
shstrpet strueture

15 add : put & new page in the froat of the list
add 1 EmptyPages Integexr — FullPages
var: X 1 Integer;
- nOW | 4 w X = felf)

11 insext 1 insert a new page in an empty list
insext : -EmptyPages Integer — FullPages
vax: X 1 Integexy

se 8 -

qeg
inhe _$xom Pﬁ-mut Pages
sssmentai slass for m.una
sspoph; fulllist

él__hgct astrusture) .
| __head : FullPages -+ Integer smpty? (tall{Self)) erelse
tail 1 FullPages — Pages head(Self) <«
)

1) add 1| put & new page in the front of the list
add 3 FullPages Integer — FullPages
vax: X : Integer;
il 11 [} - i1 = 8elf)

i1 insert 1 insert a new page in & full list
insert ¢t FullPages Integer — TullPages
var: X 1 Integesx)
X < head(8elf) == tyxue= insert(Self, X) == add(Self, X)
N = head(Self) == true= insert(Jelf, X) == Belf
X > head(Self) == true = insert (Self, X) ==
& insert 41 (8 X d(8e

17

P. ANDRE, D. CHIOREAN, C. CIRSTEA, J.C. ROYER

Index

inherita fyom OBJECT

cowments: class for outapt item

l!!t!“l : oneindex
[t: index

abstract SErucENES sonstraint
word i Index — String '
page i Index —» FullPages

ascondaxy aethods

7+ makeindex 1 built the table
makeindex t Fulllan — Out
makalndex{(Self) == putword(makeindes(tajl(Self)), head(Self))

Qug

inhexzits from List

gomments: class for output table

features: putword, add , .
, aspeak: list
abstract styuotuze | constzaint

77 add 1 put a new index in the freat of the list
add : Out Index — FullOut

ABSTRACT

i3 putwoxrd i parse a new input item
makeindex : Out ItemIam -+ FulloOut

ABSTRACT

Empt yOut

inhaxits from Emptyl st Out

commenta: class for empty output table

foatures: putworg, add ‘
agpest: emptylist

sbatract strusture i constraint
sesondasy

;s add 1 put a new index in the front of the list
add : EmptyOut Index — TullOut
vax: X : Index;
add(Self, X) == newFullOut (head = X, tail = Self)

RTINS A

17 putwoxd : add an input item
putword : EmptyOut Itemin — FullOut
vax: X : ItemIn;

_putword(Self, X) == sdd(Se}f, oneindew(X))

THE FORMAL CLASS MODEL: AN EXAMPLE OF OBJECT-ORIENTED DESIGN

Fullout -
inheritsy fyom Fulllist Out
comments: class for non empty output table
features: putword, add

2 £: fulllist

ahstyact struoture sangtyaint
head § FullOut —» Index ompty? (tail (Self)) oxelse
tail 3 FullOut -+ Out _word(head(Belf)) < word(head(tail(Self)))
[.

i1 add 1 put a new index in the fyoat of the list
add : Fullout Iandex — FullOut
add (Se [—_—T ad » i} = Self)
)1 putwoxd 1 parse a new imput item
putword 1 FullOut ItemIm — FullOut
vay: X : ItemlIn;
word(X) < word(head(Self)) == tyue =» putword(Self, X) ==~
add(8elf, oneindex(X))
word(X) = woxd(head(Self)) == true = putword(Self, X) ==
add(tail (Self), newlndex(word =~ woxd(X),
pages = insert (pages (head(Salf)), page(X))))
woxd (X) > word(head(Self)) == true = putword(Self, X) ==
o Self 8

Eiffel Classes

This appendix contains some Eiffel V2.3 classes resulting from a direct translation of formal
classes

STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, XXXIX, 3, 1994

CLASS lemin

EXPQORT word, pags, aneindex

INHERIT OBIECT

FEATIRE
- peivais fields
ward_privite : String;
prge_private : Injager;

-~ grosie redefinition
C%%Aﬁtn:m.p:mﬂ)u

ward_privete = m;
_privale (= p;
, ~- GTo8ls

-~ flald seloctors
word : String 18
m 3
RESULT 1= word_pelvats;
. BNIX; -- word

pags : Integer I8
po
RESULT :» page_private;

+ s simplo inden

oneindex : Index 18
LOCAL ¢ : EmptyPages;
po

e CRBATE;
RESULT.CREATE(word, s.add(page))
END; -- onsindex

END; -- Romln

CLASS Index
EXPORT werd, pagos
INHERIT OBIBCT
FEATURE
~- private felds
word_private : Sising;
pages_private | FullPages;

-~ crosts redofinition
CREATE (n ! Sudag, p : PuliPuges) I8
Do
word_private ;= m;
pegos_ptivaie 1= p;
BND; -- croato

-- flold sclecton

word ; Siring IS
DO
RESULT := word_private;
BND; -- word

pages : FullPages IS
(28]

RESULT ;= pages_privato;
END; -- pages
END; -- Index

DEFERRED CLASS In
EXPORT makeindex, add
INHERIT List

REDEFINDE add;
FEATURE

-- built an index table
makeindex () : Out IS

DEFERRED
END; -- makeindex

~- put an Itemln in frons of the list
add (i : Itemin) : Pullln 18
DEFERRED

END; -- add
END; -- la

€1.ASS Emptyln
BXPORY makeindox, add
INMERIT EmptyList

REDEFINE add;

-- put s emin in front of the lin
add (i : hemln) : Pullln 18
DO
RESULT.CREATE(, curreat);
END; -- add

-- oresiss an Index
makeindex () : EmptyOut IS
DO

RESULT.CREATE();
END; -- makeindox
ENL; -- Emptyln

CLASS Fuilln
EXPORT head, tall, makeindex, add
INHERIT PullList
REDEFINE hoad, tall, add;
In .
REDEFINE add;
FPEATURE
- private flelds
private_head : Jtemin;
private_tail : In;

-- creats redefinition
CREATE (1 : hemin;1:1n) I8
DO
private_head 1= i;
private_tail = {;
END; -- create

-~ fleld selectors

head : ltemIn I8
DO
RESULT := private_hoad;
END; -- head

tail : In 8
DO
RESULT := private lail;
END; -- tal))

-~ put an liemin in front of the : «

THE FORMAL CLASS MODEL: AN EXAMPLE OF OBJECT-ORIENTED DESIGN

add (i : hemln) : Fullln IS

po
RESULT.CREATE(, cutrent);
BND; - add

-- creatos an Index
maksindox () : PullOw 18
Do .
RESULT := private_tail. makeindox
. -ptword(privaie_hoad);
END; -- maksindex
END; -- Pullln

DEPERRED CLASS Pagos
EXPORT insest, add
INHERIT List

REDEFINE add
FEATURE

-~ piit & now page in from of the list
add(i : Jategen) : FullPages IS
DEFERRED

END; - add

-- insort & new page in the list
insent(l ; Intoger) : PullPages I8
DEFERRED
END; - insert
END; --.Pages

CLASS BmptyPages

EXPORT insent, add

INHERIT BanptyList
REDEFINE add
Pages
REDEFINE add

FEATURE

-~ pait & new page in fromt of the st

add(i : Integer) : FullPages I8
RESULT.CREATE(L, current);
END; -- add

-- inssst & new page in the ket
inseri(l : Imoger) : FullPagos I8
RESULT.CREATE(, current);
BND; -- insent
END; -- EmptyPages

CLASS FullPages
EXPORT hoad, tall, insert, add
INHERIT PuliLin
REDEFINE head, tall, add
Pages
REDEFINE add

FEATURB
-- ptivaie fislds
private_head : Integer;
privaie_tall : Pages;

-- field selector

head : Integer IS
Do
RESULT := private_head;
END; -- head

tsi) : Pages IS
po
RESULT := private_tail;
END; -- it

- put & pew pags in front of the list

addd(i : Intoger) : FuliPages IS
RESULT.CREATH(, curreat);
BNTY; -- add

-- insert 5 waw pags i the lint
insore(t : Intngor) : FullPages IS
1P 1 < private_hoad
THHN RESULT.Croale(], current); .
RSENFi= ,nm_hud
THEN RESULT = ousvent;
EBLEE RESULT.CREATE(puivate_heud,
privais_jail.inseri(l);

END;
END; -- {osont

INVARIANT

private_tail.ampty? crlse private_head.woed <
private_tall.private_head. word;
END;, -- FuliPages

DEYBRRED CLASS Om

-- put an index in front of the Hist
add (i : Index) : PullOwt IS
DEFERRED

BND; -- add

-- lasont & woud and its page
putword (i : hemin) : PullOw 18
DEPERRED

END; -- pstwerd
BND; - Ot

CLASS EmpiyOw
EBXPORT putword, add
INHBMIT BmptyLis
REDRFINE add;
Om
REDEFINE putword, add;
FEATURB
-- creste redefinition
CREATE IS
Do
ENI); -- creato

-- put an index in front of the list
add (1 : Index) : PuliOw 18

Do
RESULT.CREATE(, current);
END; -- add

-- Insort & word and its page

putword (i : hemin) : FullOw IS
Do
RBSULT := add(i.oncindex, current);
END; -- putword

2t

END; - EmpiyOut

CLASS FullOw
EXPORT head, wil, putword, add
INHERIT FullList
REDEFINE head, tail, add;
Ot
REDEFINE putword, add;
FEATURBE
-- private flalds
private_baad : lndex;
private. tail : Out;

-- cresis redefinition
CREATE (i : Index; 1 : Ou) I8
3 ¢
private_head i= §;
private_tail = 1;
BNI); -- create

-- fisld seloctors

. head : Index I8
bo
RESULT := private_hoad;
BND; - head

tall : O I8

‘DO
RESULTY ;= private_tall;
END; -- tall

-- put an index in front of the Hist
add (i : Index) : FullOut I8
po

RESULT.CREATE(, current);
END; -- add

-~ insert a word and its pags
putword (i : Itemin) : FullOut 18
LOCAL ind : Jodex;
DO
1F i.word < head.woed
THEN RBSULT := add(i.oncindesx,
curreat);
ELSIF {.word.deep_squal(hoad. word)
THEN ind. CREATE(l. woed,
hoad.pagos.insert(i.pago);
RESULT := tail.add(ind);
ELSE RESULT =
tail. putword(i).sdd(head);
END;
BND; -- putword

INVARIANT
private_tail.omply? orclso private_head.word <
private_tail.private.head. word;
END; -- PuliOut

22

(1

2]
(31
4]
(3]
i}
Y
(8}
191

(10]

{1

(12]

REFERENCES

Pascal André, Dan Chiorean Corina CIRSTEA and Jean-Claud. Rayer,
Object-Oriented Design With Formal Classes, in: ConTI'94: International
Conference on Technical Informatics, 1994, 16-19 November, Timigoars,
Roménia.

Pascal André, Dan Chiorean and Jean-Clauds Royer, The Formal Class
Model, in: Joimt Modular Languages Conference, Uim, Germany,
(1994).

Michel Augeraud and Jean-Claude Royer, Une interprétation du conoept
de classe on termos de type abstnait, in: Journdes du GDR Programmation
avancée et oulils pour l'intelligence artificisls, pages 13-27, Nancy,
France, (1992) Rapport du GRECO ds Programmation.

Pascal André and Jean-Cleude Royer, [a modélisstion des listes on
programmation par objets, in: Pierro Cointe, Christisn Queinnec and

Beomard Serpstte, ods. Journndes Francaphonss des Langages Applicatifs,
Collection Didactique, 11 (1994) 259-285.

Wiltiam R. Cook. A Proposal for Making Eiffel Type-safs, in: The
Computer Journal, 32 (4) (1989) 305-311.

Luca Cardelli aad Peter Wegner, On Understanding Types, Deta
Abstraction and Polimorphism, in: Computing Surveys, 17(4) (1985) 471-
522.

Joseph A. Goguen, Claude Kirchner, Héléne Kirchner, Aristido Megrelis,
José Meseguer, and Timothy Winkler, An Introduction to OBJ3, Rapport
de recherche 88-R-001, Rapport du Ceatre do Recherche vn Informatique
de Nancy, (France, Vandoeuvreles-Nancy, 1988).

Leslic Lampont. LATEX User’s Guide and Reference Manual (Addison-
Wesley Publishing Company Inc., 1986).

Kevin Lano and Howurd Haughton, eds., Object-Oriented Specification
Case Studies. Object-Oriented Series (Prentice Hall, 1993).

Bertrand Meyer, Object-Oriented Software Construction, International
Sieries in Computer Science (Prentics Hall, 1988),

Jean-Claude Royer, Un exercice de spécification formwlle de preuve ot de
conception & objets, Rapport de recherche 30, IRIN, Faculté des Sciences
¢t des Techniques, Université de Naates, 1993.

Pierre Cointe. Metaclasses Are First Classes: The ObjVlisp Model. 'In
ACM OQPSLA’87 Proceedings, 156-167. ACM, October 1987

23

