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REZUMAT. - Sisteme de rescriere a termenilor g¢i demonstrarea
teoremelor prin algoritmi de completare. In acest articol sunt
prezentate principalele rezultate privind problema cuvlntului
pentru o teoris ecuationalX, tratatd¥ ca sistem de rescriere a
termenilor (TRS), inclusiv o versiune sinteticl a algoritmului de
completare Knuth-Bendix.

Abstract. In this paper we survey the main results
concerning equations and the»methods for reasoning about them
like term rewriting systems (TRS). This TR8 are used to reduce
expressions to canonical form, if this form is unique. A
simplified version of Knuth-Bendix completion algorithm is

presented.

Like most surveys, ours does not contain any new results,
but it gives an idea on the application of TRS to theorems
proving. This paper is justified by the interest of this subject
and it presents the most important things in the completion idea.
Since the piloneering paper (Knuth and Bendix, 1970), which
indroduced the algorithm Knuth-~-Bendix, and the influential papers
(Huet and Oppen, 1980), there has been a great deal of research
in this field. For an excellent survey see (Avenhaus, Madlener,
1990).

This paper is organized as follows: Chapter 1 presents
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equational systems and TRS, Chapter 2 the "critical-pair" idea
and the "critical-pair" completion algorithm, and Chapter 3 some
of the examples.

1. Introduction.

DEFINITION: An equational theory (F, V, E)
consists of

. a set F of function symbols or operators (with the same

sort, for simplicity).

. a set V of variables. Let T(F,V) be the set of terms built

from F and V.

. a4 set E of pair of equations, s=t, s,t € T(F,V).

The set of equations E defines a syntactical equality
relation ;on T(F,V), usualy defined by the concept of "replacing
equals by equals". One has also a semantical (logic) definition
in equational theory E denoted by: E = s=t,

The theorem of Birkhoff (1935) assures that both notions
coincide: t . t, = E ~ t =t,.

A tundﬁmental problem is the “validity problem* or "“word
problem", which is undecidable in general:

"Give 8,t ¢ T(F,V), does BE t 2"

Obviously, the undecidability (more precisely, the semi-
decidability) of the "word problemn" is transfered on the approach
by TRS. But this approach is, on the our opinion, more
algorithmicaly.

DEFINITION: A TRS R is a set of rules:

R={l1-r| 1, r € T(F,V) every variable occuring

in term r also occurs in term 1}.
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It defines a rewrite relation ; :

DEFINITION: sgt iff there is a rule l-r € R, an occurence
p in s, such that:

s/p=0(1), t=s(p-o(r)).
for some substitution o .

The relation E is compatible with the term structure in
T(F,V) (i.e. 8+t implies tl[%;s] t,(p-t]) and with the
substitutions (i.e. s—t implies a(s);o(t) for each o ).

We denote by : . : the reflexive - transitive and
reflexive - transitive - symmetric closure of ;.

DEFINITION: The transfering of "word problem" to a TRS is:

"Given an equational theory E, compute an R such thats;t

»*
is equivalent to s«t .

The problem ogzcompute R is a "completion procedure because
R is constructed step by step by collecting new rules in R, which
is in the same time simplified as much as possible.

Let t {| R (or ti) normal form of t, that is such term with
the properties:

1) ¢ : tl

R
2) ti is irreducible.
If R has the properties that every term has a unique normal

form, then:

-
s~t Iff sl = tl.

- * R ,
because s ~ t is s-sl = tl-t)
R R R

Fact: If in R every term t has a unique normal form then
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s=t if sl = tl!
E
DEFINITION: A term rewriting system R with the property that
every term has a unique normal form is convergent and it has the

properties:

a) R is terminating (or Noetherian) that is it allows no

infinite seguences:

G b b

R
(such that every term t has at least a normal form ti)
* *»
b) R is confluent, that is: ¢t ,-¢t,, t,~t, implies that does
* " R R

exist u such thatta;u, t,;u (every term t has at most a normal
form ti).

The properties 1 and 2 are, unfortunately, undecicable
(Dershowitz, 1987). However, there are useful tools to prove
termination, the most important ones are reduction orderings on
T(F,V). An ordering > on T(F,V) 1is a reduction ordering if > is
well founded, is compatible with the term structure and is
compatible with substitutions.

THEOREM: A TRS R is terminating 1ff there is a reduction
ordering > such that t>r for every rule e-r in R.

Due to a result of Newman (Newman, 1972) the confluence is,
for terminating TRS, equivalent to the weaker property of local
confluence, which is: tl;taandtdétz, implies that does exist u
such that tziu, t,iu. Hence, a terminating R is confluent iff it

is locally confluent.
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2. Critical pair oompletion.

DEFINITION: Let ¢,~r, and ¢£,~r, be two rules in R. By
renaming of variables we may assume that they do not share common
variables. If o, and o, are two substitutions, such that:

0,(2,) = 0,¢,)
then (0y(ry), o,(ry)) is a critical pair for R. Let
CP(R) be the set of all critical pairs for R as equations.
“Critical Pair Lemma" (Knuth and Bendix, 1970) say that:
For any TRS R, if t,~t, and q;t3 then either does exist a

*
term u such that ¢,-u, t,-u (if R 18 locally confluent) or
R R

“epir) . .
Clearly, if for every (a;, a,)€CP(R) we havulEaz or aa;eal,
then R is locally confluent. This think can be tested. The
completion procedure do this. The simplest form of a completion
procedure is:
INPUT: A set E of equations, an reduction ordering >.
OUTPUT: a) A TRS Rp convergent, such that
*
£ R,
b) FAILURE.
c) The algorithm run forever.
The Completion Algorithm:
R = e.
If every equations in E can be oriented
then
Ri= {=r| ¢ >r., ¢t =r ¢ E}

else
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"FAILURE". STOP.
while CP(R) * o do
(t;,t;):= an element in CP(R)
It calculates t;} and t,!.
If t,4 » t,4
then
If neither t;{ > t,{ nor tyi > t !
then
“FAILURE" STOP
else
CP(R)=CP (R)\{(ty,£;) }.
R =R u {t;1 =+ tyi}.
or
R =R U {tyt - t,i}
else
CP(R)=CP(R)\{t,, t,)}.
STOP.
Some observations are immediatelly:
a) If CP(R) is transformed in e, then the procedure stop
succesfully.
b) The procedure may stop by "FAILURE® if R is not
terminating.
¢) The procedure may run forever, if CP(R) can be not
transformed in e.

(CP(R) grows and degrows in a step).
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3. Theorem proving examples. 1) Let E be given by E={e*x =
x, 1(x)*x=e, x*(y*z) = (x*y)*z}, hence E are the axioms for a
group.
If the ordering is 1 > * > ¢, then R is, at beginning:
I: e*x - X
R{I;: I(X)*»x ~ @
{r,:(xvy)*z-*n-(ytz)
From r, and r; we obtain:
rgii(x)*(x*y) - y.

because:

(I(x) #X) *y ~ 8%y -y
C Iy 2

(1 (x) #x) »y - 1(x) * (x*y)
I,
Hence, (1i(x)*(x*y),y) is a critical pair and r;, is the new
correspondent rule. At the end, we obtain the following TRS

convergent:
R {ry,...ry5}, where r,, r,, ry, r,, are the previously, and:

rg: i(e) -+ e
Fg: Xte - x
ry: 1(i(x)) = x
rg: x*l(x) - e
rg: x*(i(x)*y) -y
rip: i(x*y) - i(y) * i(x).
Thus, for example we have:
1(i(x*y)*e) * i(y*y)=i(y*i(x))
1(i(x*y)*e) * i(y*y) L (d(e) * 1(i(x*y)) * i(y*y) _~

10 Iy, I,
(e* (x*y)) *°i(y*y) ; (x*y) * i(y*y) r* ((x*y) *» i(y)) * i(y)
1 10
(x*y) * (i(y) * i(y)) r* x * (y*(i(y) * i(y)) r* x * i(y)
3 9
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For second member:

I(y*i(x)) ;0 P(i{x)) = j(Y)I; x+i(y)
Thus theorem i(i(x*y)*e)*i(y*y)=i(y*i(x)) is proved, as each
member have the same normal form x * i(y).
In present, several very strong prover have been developed,

such as REVE (Lescanne, 1984), RRL (Kapur et al. 1986) and the

Large prover (Garland and Guttag 1989). A catalogue of theorems

proved is given in (Hermann 1991). Some experiments with a
completion theorem prover was made in (U. Martin and M. Lai,
1989). Another way for using TRS in theorem proving is that
suggestéd by Hsiang (Hsiang 1985, T&tar 1992): The TRS denoted
BA for Boolean Algebra. This is a rewrite-based method for first-
order predicate calculus.

At the end of this short survey let list the best paper

concerned TRS and Theorem proving.
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