STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

VARIOUS KINDS OF INHERITANCE

8. MOTOGNA" and V. PREJMEREAN’

Received: November 18, 1992
AMS Classification:68065, 68099

RESUMAT. Diverse tipuri de mojtenire. Lucrarea de fatd se vrea un
mic setudiu comparativ, in functie de avantajele gi dezavantajele
lor, a diverselor tipuri de mogtenire implementate in limbajele
orientate obiect, Studiul s-a flcut In principal pe limbajele
Smalltalk, Beta gi CLOS decarece exemplificd cel mai bine
mogtenirea aimpl¥, multipl¥ gi in CLOS introducerea claselor
abstracte numite mixin. ’

1. Introduction : A variety of inheritance mechanisms have
been developed for object-oriented programming languages. These
mechanisms range from Smalltalk single inheritance to the complex
and powerful multiple inheritance combination of CLOS.

These languages have similar object models and also share
the view that inheritance 1is an incremental modification
mechanism, but they differ widely in the kind of incremental
changes supported.

Inheritance is a hierarchical incremental modification
mechanism that transform a parent P with a modifier M into a
result R : R = P + M as in figure 1.

Parent P)
} R=P+ M
Modifier M |

fig. 1

The parent P, modifier M and result R have a set with

finite number of attributes :

* "Babeg-Bolyai” University, Department of Computer Science,
3400 Cluj-Napoca, Romania

S. MOTOGNA and V. PREJMEREAN

P= (P, Pyy .., Pp)
M= (M, My, ..., Mp)
R= (Ry, Ryy «+v, Ry)

When the attributes of the modifier M differ from those ot
the parent P then the result R has p+m attributes, contains the
union of the P and M attributes. For the overlapping attributes,
the modifier attributes redefine the parent attributes, in the
same way as the identifiers declared in an inner encapsulated
module redefine those declared outside the module.

The inheritance in Smalltalk, Beta, CLOS are representative
of three kinds of inheritance. The inheritance mechanisms seem
to be very different but they have a common structure. This
mechanism combines two sets of attributes P and M such that

duplicate attribute definitiona are given a value from one set.

2. 8ingle Inheritance : If we consider single inheritance,
each class has at most one superclass, the determination of the
class procedure list is trivial : we only need to traverse a
linear path to the most general superclass of its inheritance
hierarchy.

Inheritance in Smalltalk is a mechanism for incremental
derivation of classes, it is a single inheritance and was adopted
fromn Simula.

In Beta the inheritance is single, too and is designed to
provide security from substituting of a method by a completely
different method. Inheritance is supported by prefixing of

definitions.

76

VARIOUS KINDS OF INHERITANCE

These two mechanisms are the same, only the direction of
modification is different. In Smalltalk the new attributes are
favored and may replace the inherited ones, in Beta the original

attributes are favored.

3. Multiple Inheritance: The real world has in many
situations to deal with multiple inheritance. The natural
inheritance comes from two parents more than from one.

Let's consider a class T which inherits from superclasses
Ty, Ty eooy Ty ¢

class T inherits (T, T,, ..., T,) in T - body.

Some multiple inheritance systems, as ClLOS extend the
inheritance hierarchies, i.e. by ordering 7, ..., T, in a linear
order from left to right.

The problem of the multiple inheritance is at the moment of
invoking a method. If a method is defined in more than one
superclass which of them should be invoked? There must be no
conflict between characteristics inherited from independent
classes (even if these characteristics have the same name).

There are some algorithms for linearization the hierarchy,
for reaching a method but each of them has some disadvantages.

There are two kinds of strategies to solve the conflict
problem in multiple inheritance : linear strategy and graph-
oriented strategy.

The principle of linear strategy is that the inheritance
graph should be transformed to a linear structure, without

duplicates and treat the resulting graph as a single inheritance

77

S. MOTOGNA and V. PREJMEREAN

one. This goal is realised ordering the superclasses list of a
class using depth-first search or breadth-first search.

The graph-oriented strategy works directly on the
inheritance graph without modifying it, allowing to access each
inherited characteristic. When a conflict occurs the superclass
from which we want to inherit must be specified . We mention that
this class is not necessary the one which defines the
characteristic. A technic which is used in extended Smalltalk is
the selector composition. A composed selector is a selector
preceded by the class name.

Using linearization, a CLOS multiple inheritance hierarchy
could be reduced to a collection of inheritance chains, each of

which can be interpreted using single inheritance.

4. Mixins : A mixin is an abstract subclass that may
be used to specialize the behavior of a variety of parent
classes. In contrast to classes, mixins are no objects which can
create own instances. In mixins we may define new methods that
perform some actions and then call the coresponding parent
methods, but these methods are only textually. When a class is
defined, the methods of its mixins will be defined for that
class.

Stroustrup(6] had the followiné argument for using multiple
inheritance : "it might be useful to have class B inheriting from
two classes A) and A, ...". This is not possible using mixins but

if we use factorization we obtain a solution for this.

78

VARIOUS KINDS OF INHERITANCE

PERSON SPORT PERSON FACULTY
P . [N , IR P |
SPORTSMAN STUDENT { SPORTSMAN ' STUDENT |
. . | ! !
SPORTYSTUDENT SPORTYSTUDENT

using multiple inheritance using mixins and

factorization
fig. 2

CLOS supports mixins and it seems to be not so difficult to
extend Beta and Smalltalk to support mixins and generalized

inheritance.

REFERENCES

1. Wegner, P. and 2donik, S. B., Inheritance as an Incremental
Nodification Mechanism or What Like Is and Isn’'t Like, in ECOOP'88
Proceedings,pp 55-77.

2. Ducournau, R. and Habib, M., Oon Some Algorithms for Multiple
Inheritance in Object Oriented Programming, in ECOOP'87, pp 243-252

3. Bracha, G. and Cook, W., Mixin-based Programming, in ECOOP/OOPSLA'90
Proceedings, pp 303-311.

4. Bretthauer, H., Christaller, T. and Kopp, J., Multiple vs. Single
Inheritance in Object-oriented Programming Languages. What Do We
really Want, 1989.

5. Wegner, P., Concepts and Paradigms of Object Oriented Programming -
Expansion of Oct. 4 OOPSLA'89 Keynote Talk, OOPS Messenger, vol 1, no
1, pp 7-87, Aug 1990.

6. Stroustrup,B., The C++ Programming Language. Addison Welaey, 1986.

