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REZUMAT. Asupra unei probleme neliniar-fractionari de optimisare
in grafe. Fie G(N,A) un graf finit gi neorientat. Asociem
fiecdrei muchii a grafului doul ponderi pozitive: costul c.. g¢i
capacitatea k;;. Notdm cu Y mul{imea tuturor arborilor” de
acoperire ai afului G@. Pentru TeY definim costul c(T) gi
capacitatea k(T) a arborelui T. Scopul acestei lucridri este de a
rezolva urmidtoarea problemdi de optimizare: Si se determine un
arbore TeY care minimizeazd c(T)/k(T) pe multimea Y. In articol
se prezint¥d gi un algoritm aproximativ de determinare a solutiei
optimale.

1. General problem. Let Q(N, A) be a finite undirected graph,
where N is the vertex set and A ¢ {(i,j): i,] € N}\{(i,1i):1 € N}
is the edge set.

We associate to each edge (i,j) in A two positive integer

pounds, that is a cost c¢;, and a capacity kij .

J
Let Y be a given set of subgraphs of G(N,A). For every

subgraph T in Y we define:

c(T) = 2}; c;; and k(T) = min { k;; : (i,7) € T},
(1, Vet
representing, the cost and the capacity of the subgraph T,
respectively.

We consider the following general fractional problem:

(P). Find a subgraph T'in Y minimizing the ratio c(T)/k(T)
over the set Y, namely:

min { ¢(T)/k(T) : T € Y }.

The particular case of problem (P) , when Y is the set of
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paths between two given vertex of the graph G was studied by
Martins [3]. In the paper (5], we gave a generalization of
Martins algorithm.

The purpose of this paper is to apply this general algorithm
for a particular case of the set Y. Namely, we take Y to be the
set of all spanning trees of the graph G. In this case, we solve
problem (P) by the perturbation of its cost coefficients. We
obtain an approximate optimal solution for the initial problem
and we give an evaluation of the deviation from the optimal

value.

2. Basic properties. Firat we introduce the "nondomination"
relation on the set Y of spanning trees.

DEFINITION 1. Let 7T,T'e Y be two distinguished spanning
trees of G(N,A). T dominates T' if and only if c(T)<c(T') and
k(T)2k(T') and the strict inequality holds at least once.

The fact that T dominates T' we denote by T D T'.

Let Y, = {T € Y : 3 T' € Y such that T' D T } be the set of
dominated spanning trees.

DEFINITION 2. Y, = Y - Y, is the set of nondominated
spanning trees.

From the above definition it results that Y, can be viewed
as a set of optimal solutions for a bicriterion problem
associated to (P).

The algorithm that will be presented for solving problem
(P), 1s based on the concept of nondominated spanning tree. This

concept is inspired by the procedures of solving the bicriterion
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problem.

Further on, we present without proof some theorems and
propositions which represent the theoretic support for the
algorithm. In the general case, when Y is an arbitrary set of
subgraphs of G, we allready proved all these results (see, (5]).

Let Y, be the set of optimal solutions of problem (P). The
following theorem establishes a relationship between Y, and Y.

THEOREM 1. ([5)) Any optimal solution for (P) 1s a
non-dominated spanning tree, that is Y, € Y, .

DEFINITION 3. The subset Y,' of Y, is a selection of Yy, if
and only if for any T in Yy there exists a unique spanning tree

T' € Yy' such that c(T)=c(T') and k(T)=k(T').

PROPOSITION 1. ((5]) Let Yy’ a selection of Yy. If T' and T*
are two distingueshed spanning trees such that T',T"e¢Y,' then
c(T') is not equal with c(T") and k(T') is not equal with k(T").

From Proposition 1, it follows that the number of elements
belonging to Yy,' is bounded by the number m' of edges with
distinct capacities from G(N,A). Hence, a selection Y,' can be
computed in O(m’C(m,n)) time, where m is the number of edges of
G(N,A) and C(m,n) is the time needed for determining the minimum
cost spanning tree.

It follows that the complete determination of a selection
Y' can be done in polynomial time. Therefore, the execution of
an exhaustive search for Y,' (using Theorem 1), in order to
compute an optimal solution of (P) is not unrealistic. However,
in the algorithm that we present, we need not to find an entire

set Y,'. As a consequence the number of executions of a minimum
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cost spanning tree algorithm is minimized.

PROPOSITION 2. ([5]) Let Yy' ={ T;,T;,...,T;} ( r < m) be a
selection of Yy. Then Yy' can be ordered such that c(T;)<c(T;4,)
and k(T;) < k(T;,,) for i=1,2,...,r-1.

We consider now the following set:

Yy" = {Ty.,....Tp} € Yy' where T;,...,T, are the first h
elements of Y,' and Y,' is a selection which has the elements
ordered in sense of proposition 2.

THEOREM 2. ([5)) Let k' > max {k(T) : T € Y }. If the
element T; € Yy' verifies the following conditions:

i) c(Tj)/k(Tj) =min { c(T)/k(T) : T € Yy'},

ii) c(Ty) < [ c(Ty) /k(T;) ] k',

iii) T, is not in Y,,
then exists T, in Y, and (Y,'-Y,") such that:

k(Tg) > [k(T;)/c(T;)] c(Ty).

3. Algorithm for the problem of the spanning tree with
minimum cost/capacity ratio. The basic scheme of the algorithm
that we propose is the same as the algorithm for the
MINSUM-MAXMIN bicriterion problem. Let us assume that T, € Y,'
was just determined with such an algorithm. Then, as k(T,,;) >
k(T4), the edges (i,j) € A, for which kij < k(T,), can be deleted
from G(N,A). In the resulting graph, the subgraph 7T.,,, is
determined as the spanning tree with minimum cost and maximal
capacity relatively to the set of all spanning trees with minimum
cost.

In fact, the difficulty is that we haven't an algorithm to
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determine the whole set of minimum cost spanning trees. The
algorithm of Kruskal find only one of these spanning trees. These
difficulty doesn't appear when Y is the set of all paths between
two given vertex of G(N,A) or Y is the set of assignements in a
bipartite graph (see, e.g. {1], [2], ([31).

We avoid this dificulty by using the following method.

Let ¢ = {c¢;,¢9,...,Cn} be the sequence of cost values for
the edges of G(N,A) in a nondecreasing order, and let
E={(i1,,73),.-+,(ip, Jn)} be the sequence of corresponding edges of
G(N,A). Further on we suppose that ¢, < ¢,. Otherwise we have c
= ¢y = ... = C, and (P) degenerates to the usual problem of
determining the maximum capacity spanning tree of a graph G(N,A).

The following algorithm generates some perturbation pounds
dij and perturbated pounds cij"°1j+dij' ordered in the sequences
D = { dy,...,d, } and C' = { c¢;',...,c,' }, respectively,

corresponding to the same edges as the elements of C.

Algorithm 1.
Step 1. Take kX = 1 and p = 0.
Step 2. If k+1 > m, then 4, = 0 and go to Step 11. Otherwise, go
to Step 3.
Step 3. 1f cp = Cpyy, go to Step 4. Otherwise, set d; = 0, take
k+1 instead of k and go to Step 2.
Step 4. Set d, = 0.
Step 5. Take p+l1 instead of p and go to the next step.
Step 6. If k+p = m, then go to Step 10. If k+p < m, then go to

Step 7.
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Step 7. If ¢ = Crepr then go to Step 5. Otherwise, go to Step 8.
Step 8. For g from 1 to p do dy,, = ¢ 107L (Ckep=Ck) /P, where L is
a natural number choosen such that 10%Y > m.

Step 9. Take k+p instead of k and go to Step 2.

Step 10. For g from 1 to m-k do

d q 107% (m-k)~! max { c,,q-cp, : h=1,...,m-1}.

q

Step 11. For q from 1 to m do cq'ch + dq .

Step 12. Stop.

This algorithm modifies the costs of those edges from G(N, A)
which have the same cost. More exactly, the algorithm adds to the
costs of these edges a positive quantity in order to
differentiates their costs. In this way, all values of costs
associate to edges are different. 1n this case, the spanning tree
of minimum cost is unigue.

The following theorem estimates the maximum error, due to
this method, in the determination of the spanning tree with
minimum cost/capacity ratio.

Let-e = 107 max { ¢;,; - ¢, :t h=1,..., m-1 } and

g = min { kij s (i,7) € A}.

THEOREM 4. The maximum error caused by Algorithm 1 1in
finding the spanning tree with minimum cost/capacity ratio is
(n-1) e/g.

Proof. Let suppose that 1'* is the spanning tree with minimum
cost/capacity ratio. Then, from the definition of e and g, it

follows :



ON A NONLINEAR-FRACTIONAL OPTIMIZATION PROBLEM

Y cyy Y (cy+diy)

c/(T*) _ (i,7)eT" - (i,j)eT” .
k(r*) min { k;; : (i,7)eT*) min ( k;; :+ (i,5)€T*)
Y oy Y. di;
- (i,7)eT’ . (i,j)er <
min { k;; ¢ (i,5) €T} min{k;; : (i,j7)eT}
c(T") N (n-1) e
k(T*) g

Since, for any (1i,j) in A, dij > 0, from the above

relations, it results:

c(T") _ c(T?) _ (n-l)e

k(T*) = k(T*) g

0 <

which means that the conclusion of the theorem is true.

Further we will present an adjustement of Martins's
algorithm. Theorems 2 and 3 are used as an attempt to decrease
the number of spanning trees that have to be determined.

Three working variables are used in the algorithm: T, c¢" and
z. T' keeps the best spanning tree that was determined until the
curent iteration, ¢ keeps the value of (c(T')/k(T')) k' and z
keeps the value of c¢(T')/k(T'). Foregoing k' is a parameter of

the algorithm which is fixed such that k' > max{k(T): T € Y}.

Algorithm 2.
Step 1. Apply the algorithm 1 for G(N,A), and let denote by cij'
the perturbed costs.
Step 2. Set c'=INF, z = INF and the graph H(N,B) = G(N,A), where
INF is integer positive number such !%at:

INF > 2 max {c(T)/k(T) : T € Y}.
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Step 3. Find T" the spanning tree with minimum cost from
Y(H)= { T C Y : T spanning tree for H(N,B)}, that is

c'(T") = min { ¢'(T) : T € Y(H) }.
Step 4. If Y(H) is an empty set or c'(T") > c¢", then finish the
algorithm. In the opposite case go to Step 5.
Step 5. If c'(T")/k(T") < 2z, then perform the following
operations:

i) Take T' = T".

ii) Take c' = (c' (") /k(T")) k' and z=c' (T")/k(T").

iii) ?ake x=k (T") and go to Step 7.

If‘c'yT")/k(T") > g, then go to Step 6.
Step 6. Set x = ¢'(T")/z and go to Step 7.
Step 7. Eliminate from H(N,B) ail the edges (i, j) which has
kij < X. After this the new set of edges B is :

B:=B - {(1,]) € A : kij < x }.
Go to Step 2.

In order to clarify the implications of theorems 2 and 3 we
explain the algorithm step by step.

The first step modifies, if it is necessary, the costs
associated to edges of G(N,A) such that these became distinct.

In the second step the working variables ¢* and z are
initialized

In the third step we determined a nondominated spanning tree
T". This step is the most complex step of the algorithm because
each iteration requires the solving of an optimization problem
on the spanning trees set Y@). We can use in this step Kruskal's

algorithm (see, e.g., [4], [(2]).
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In the fourth step, we check a stop condition of the
algorithm. Thus the algorithm stops with an optimal solution 7'
when either in Y(H) there is no elements or it is verified the
condition of theorem 2.

Step 5 is performed when the spanning tree T" determined in
Step 3 is "beter" then the best spanning tree determined until
that moment. Also in this step we actualize T', c* and z. If T"
is worse than T', Step 6 is performed. In Step 5 is used Theorem
3, to justify the elimination (in Step 6) of some edges from the
auxiliary graph H(N,B). In this way, it can be possible to avoid
some nondominated spanning trees which not belong to Y, .

In Step 7 the edges having the capacities smaller than x are
eliminated from H(N,B). We must note that x=k(T') when the Step
4 is performed. But when Step 5 is executed the value of x is

determined by the Theorem 3.
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