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Abstract: - The work deals with the parallel implementation of
the pre-processing stage of the polynomial/rational extrapolation
techniques for solving initial value problems in ordinary
differential equations. The multiple use of the Euler method is
analysed in the case of three step number sequences (n,): n =ak+b,
n,=2%*k, and Rg=ntn g, k=0,..,K. We make use of th PRAﬁ model
o% parallel cohputgtign and propose a specific parallel algorithm
for each type of eequence. It is assumed that the number of
processors is a factor of K. The performances concerning the
parallel processing time and the effectiveness of processor
utilization are established. Some conditions ensuring the
optimality of the proposed algorithme are also given.

Keywords: ordinary differential equations, polynomial

and rational extrapolation, parallel algorithms.

1. Introduction. The parallel implementation of the
polynomial and rational extrapolation techniques ({10}, [12~-13])
for solving initial value problems in ordinary differential
equations (ODE's) is discussed in [8)] where two ﬁypes of systolic

arrays are proposed.

We consider here a complementary task, namely, the design
of parallel algorithms for computinég%he initial data input to
the systolic arrays in [8].

The stages involved by the extrapolation methods for solving
initial value problems in ODE's are described in section 2. In
section 3, we present three parallel algorithms to compute the

data entering the extrapolating process, and consider Euler's
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method applied to three types of step number sequences. The
performances concerning the parallel processing time and the
effectiveness of processur utilization are established. Some

comments are given in the last section.

2. Extrapolation methods for solving ODE's. Consider the
initial value problem
y'=f£(t,y), tost<b, y(ty)=yyi (2.1)°
and let us suppose that we need to compute y(t,y+H), to+tH<b. Let
y(t) be the true solution of (2.1) and y(t,h) be the approximate
solution obtained by using step length h, h<H, and a suitable
numerical method which is applied many times. Let us take some
step-number sequence ny<n;<n,<..., put h,=H/n, and define
Y(k,0)=y(to+H, hy), (2.2)
the numerical solution obtained by performing n, steps with step
size h,, k=0,2,...,K. The computation of the VY(k,0)-values
represents the pre-processing stage of the extrapolation.
Let us su;;ose that y(t,h) admits aﬁ asymptotic expansion
in h of the following form
y(t, hy=y(t)+dh™ D +d,h" Vs, 4d pT My (2.3)

where 0<r(1)<r(2)<...<r(m),d,,d,,... are independent of h.

2.1. Polynomial and rational extrapolation. If we consider
r(i)=ir in (2.3) then following [13] the polynomial extrapolation
involves the computing of the Y-values table given by
Y(k,m)cY(k+1,m—1)+[Y(k+1,m—1)—Y(k,m—1)]/[(nk+m/nk)’—1] (2.4)

. for k=0,1,...,K-m and m=1,2,...,K. The computation given by (2.4)
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is represented (for K=5 and m=5) in Fiqure 1.

For n,=H/(hobX), be(0,1), (2.4) becomes
Y(k,m)=Y(k+1,m-1)+[Y (k+1,m=1)-Y(k,m-1) 1/ (1/b™-1], (2.5)
k=0,1...,K-m m=1,2,...,K.

Usually, r=1 or r=2. The process is stopped ((13)) when
abs(Y(0,m)-Y(0,m-1))<tol, (2.6)
where tol is a prescrbied tolerance and Y(0,m) approximates
Y(to+H) .
The rational extrapolation ([10]) is defined by
R(k,-1)=0 ; R(k,0)=Y(k,0) ; (2.7)
R(k,m)=R(k+1,m-1)+[R(k+1,m~1)-R(k,m=1) )/ {(hy/hs,m ?(1-
(R(k+1,m-1)-R(k,m-1))/(R(k+1,m=1)-R(k+1,m=-2))]-1} (2.8)
for m>1. This scheme is illustrated (for K=5) in Fiqgure 2. The
process is stopped ([10]}) when
abs (R(k-m,m)-R(k-m+1,m))<tol (2.9)
for some XK and m. If (2.9) holds then the result R(k-m+1,m) could

be accepted.

2.2. Basic pre-process#ng methods. In the case of non-stiff
equations (([10], (13]), for r=1 the basic method to compute the
Y(k,0)-values is the Euler method

Yin=Yithif (E5,y;)  tyg=t +h,, 1=0,...,nm-1, (2.10)

Y(k,0)=Ypx-
For r=2, a numerical integration formula for which (2.3)

holds is the second order Gragg's method described by
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z(tg, hy)=yo, (2.11a)
z(ty, hy)=yo+hef(to,Yo) i
ti=to+ih,, Z(t;,y,h)=z(t;_,, h)+2h,f(t;, z(t;, h)); (2.11b)
i=l,...,mp 33
Y(k,0)=(z(t,k-1,h)+z(t k, h)+h £(t k,z(t,k, hy))]/2
Extrapolation of implicit methods can be used for stiff
equations. Some symmetric and non-symmetric methods which are of
interest are described in [12]. In this case, for each Y(k,0)-
value, we must solve n, nonlinear equations, and consequently the
computing time cannot be predicted. However, a lower bound to
this time could be given by the time needed by Gragg's method.
In what follows this lower bound will be used instead of the

exact time.

3. Parallel pre-processing algorithms. This section deals
with the parallel computation of Y(k,0), k=0,...,K. We consider
the case of explicit methods. The entire computational diagraph
of the polynomial extrapolation is illustrated for K=5 in Figure
3. The computation required by Y(k,0) is represented by the
sequence of vertices denoted by seq(k). éach vertex in this
sequence represents just one step of the Euler method, while an
arc (v,v') denotes the sending of the y-value from v to v'. The

first vertex in each sequence requires Y, as the starting value.

For each fixed k, Y(k,0) is obtained by performing n, steps

with the step size h;. It is reasonable to suppose that each step
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requires an amount of time which depends on the applied explicit
method and the complexity in evaluating f(t,y), and does not
depend on the step size hj.

Let t(0) be the time to perform the operation Oe(+,*,/) and
define the time unit (TU) as t(/). Let us denote by c the time
to execute just one step of the Euler's method (2.10). The
dominant part of ¢ is represented by the time to compute f. In
the case of formula (2.10), Y(k,0) requires cn, TUs.

If Gragg's method is used then Y(k,0) is computed in c+(n,-
1) [c+t(+) )+ (c+t(+)+t(*))=n+1 TUs, because t(+)<<c. Therefore,
the use of the Gragg's method for computing the initial Y-values,
can be studied by considering n,=n; +1. In the case of n;=ak+b
this can be simply done by taking b:=b+1. Some problems arise for
nk=2k and ng,,=n,+n,_;. In each case, n, exponentially increases
and n, does not differ significantly from n,. So, we can reduce
the discussion to Euler's method applied to the above step number
sequences. Also, we can suppose that c=1.

We make use of the idealized model of parallel computation
known as the PRAM ([11]). We shall suppose that s processors, P,.
s=1,...,S, are available. We consider the parallel execution of
the sequences seq(k), k=0,...,K, where K+1>S. The processors
execute the same program implementing Euler's method for the same
function and initial condition, but for different step sizes and
number of steps. We remark that the use of the PRAM model is
motivated by the necessity to consider functions of arbitrary
complexity and not by the intrinsec structure of the numerical

method computing the Y(k,0)-values. We note that if f is a
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polynomial both in t and y, or is given by a small size
arithmetic expression including elementary functions, then a
soft/hard-systolic implementation is also possible ([(2-6), {14-

15), [17-18)).

3.1. Case ng=ak+b. Let Q and Q, be two positive integers so
that K+1=(2S)Q+Q,, with Q,<2s.

The K+1 sequences are organized in Q bands B(gq),g=1,...,0Q,
of 25 succesive sequences and the band B(Q+1) of Qo sequences.
The bands B(q), g=1,...,Q0+1, are processed in a serial fashion,
while the sequences of each band are processed in parallel, as
it is illustrated in Figure 4 for S=4. The g-th band is formed
by seq((g-1)2s+j-1), j=1,...,28, g=1,...,0Q.

The processors P,,...,Pg begin the execution of B(q) at the
same time, say ts(q). P, executes seq((g-1)2S+r-1) and then
seq((g-1)28+2S-r), r=1,...,S, and this computation takes

Tp(q)=t((g-1)2s+r-1)+t((g-1)2s+2s-r)=a(4(g-1)s+2s-1]+2b TUs.

This time does not depend on r, thus the processors
terminate the processing of B(g) at the same time, ts(q)+Tp(q) -
A serial algorithm takes Ts(qg)=S*Tp(q), then the efficiency of
processor utilization is Ec(q)=Ts(q)/(STp(g))=1 i.e. the strategy
to process each band is optional.

The execution of B(g+l) starts at ts(g+l)=ts(q)+Tp(g) and
is done in the same manner. If Q,;=0, then the parallel processing
time for Q bands is

Tp=ts (1)+Tp(1)+...+Tp(Q)=Q(2b+a(25-1)+2aS(0-1) ], (3.1)
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for ts(1)=0. The total time required by a serial algorithm is
Ts=Ts(1)+...+Ts(Q)+S[Tp(1)+...+Tp(Q) )=S*Tp, (3.2)
therefore the global efficiency Ec=1.
Now, let us suppose that Q+#0 and B(Q+1) is processed like
the previous bands.
First, if 1<0,<S we use only Q, processors to process
seq(20S-1+j), j=1,...,0Q9. Therefore
Tp' (Q+1) =t (2Q5-1+Q,) =t (K)=aK+b TUs,
while
Ts'(Q+1)=t (20S)+t (205+1)+. ..+t (20S+Qy-1)=
={a(205-1)+b])Qy+aQy(Qot1) /2.
Thus, we obtain that the effectiveness of processor utilization
for the last band is
Ec' (P+1)=1-a(Qgp-1)/[2(aK+b)].
Oon the other hand,
Tp'=Tp+Tp' (Q+1),
Ts'=Ts+Ts"' (Q+1),
and from (3.1) and (3.2) we obtain the effectiveness of processor
utilization for the entire process as
Ec'=Ts' [ (STp')=
=1-[aQy?/2-Qq(aK+b+a/2)+S (aK+b) ] /S (Tp+aK+b) )<1,
and Ec' has the greatest value for Qo=S when
Ec'=1-a(S-1) /[2(Tp+aK+b)].
Second, if §+150,<2S-1, we have that S processor execute the
sequences sedq(2QS-1+j), j=1,...,Q9. Let us take Pge (1,...,8-1),
so that Q,=S+Qs. For the sake of regularity we use the same

strategy for peocessing this last band. Therefore, Pj performs



O. BRUDARU and G.M. MEGSON

only
seq(2SQ-1+3), j=1,2,...,S-Qs while P, executes seq(20S-1+h) and
then seq (20S+2S-h), h=S-Qs+1,...,S. Consequently, the parallel
processing time for the last band is
Tp" (Q+1) =t (2QS-1+S) +t (2Q05+S) =a(4Q5+25~1) +2b TUs,
while tlhie corresponding sequential time is
Ts" (Q+1)=Ts"' (Q+1)
and we obtain that
Ec" (Q+1)=(Qy/S) [a(K+1-Qg~1) +bta(Qpt+l) /2] /[a(2(K+1-Qq) +25~1) +2Db].
In this case, the total parallel processing time is
Tp"=Tp+Tp" (0+1)
and the corresponding sequential time is
Ts"=Ts+Ts" (Q+1),
and from (3.1) and (3.2), the obtained effectiveness of processor
ut;lization for the entirelpropess is
Ec“=Tg" / (S*Tp")=1-{a[-252 (1+20) +5(1+20Q0) H (Qg=1) /2] +b (-28+Q() } /
[S[Tp+a(40S+2S~-1)+2b]}}.
As a conclusion of the above analysis we can state
THEOREM 1. Under the above assumptions, 1f ny=ak+b, k=0,...K
and 8 processors are used to compute Y(k,0), k=0,...,K, then the
following assertions are true:
(1) if K+1=25Q then the algorithm is optional with respect

to processor utilization and the parallel processing time

is
Tp=Q(2+a(2S-1)+2aS(Q-1)];
(ii) if Qy=K+1-2SQ and 1sQ,<S then the parallel processing

time is

as
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Tp'=Tp+aK+b
and the effectiveness of processor utilization is
Ec'=1—[aooz/z—oo(ax+b+a/2)+S(aK+b)]/[S(Tp+aK+b)]
<1-a(S-1) /[2(Tp+aK=b)],

while the equality holds for Qu=S;

(1ii) 4ir Qu=K+1-25Q and S+1<Qp%25-1 then the parallel

processing time is

Tp"=Tp+a (4QS+2S-1)+2b,

and the effectiveness of processor utilization is

Ec"=1-{a[-25%(1+2Q)+S(1+200Q4) +Qo (Qg=1) /2] +b(-25+Q¢) ) /

{S[Tp+a(40QS+25S-1)+2b}}.

The above discussion could be extended in the following way.
Let m be a positive integer, 1<m<K+1, with K+1=m*N, and define
Cb-{seq(p+jm)/j-0,...,N-l}, p=0,...,m=1. Also, consider the
positive integers a, and b,, p=0,...,m-1. A mixed pre-processing
strategy is to compute Y(k,0) in accordance to the step number
sequence a,*k+b,, . as ‘it 'is required in the case of stiff
equations ([12]). A desirable prbperfy of the parallel processing
scheme is that whenever'k<k', the Y(k,0)-value is obtained before
Y(k'.0), because in this case the stopping condition (2.6) can
be efficiently used to save time and hardware. On the other hand,
the precedence constraints appearing in the extrapolation stage
do not require such a property (see Figures 1-2). It results that
we could relaxe the above condition by requiring that it holds
only for a given number of succesive Y(k,0)-values. So, an
acceptable compromise is to assign seq(pt+jm), p=0,...,m-1, to

processor p,.,, J=0.,,,.5-1, S>N, and to continue with Py,
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Py,.... for j=s, s+1,... and so on. This solution is compatible
with the necessity to adopt a local synchronization technique
({19], [16]) for interfacing the set of S processors and the

systolic arrays in [8].

3.2. Case nkzzk. If S processors are available to compute
seq(k), k=0,...,K, the obtained efficiency is
Ec(S)=N(K)/(S*Tp(S)),
where N(k)=ng+...+n, and Tp(S) is the corresponding parallel
processing time. Since N(k)=2n,~1 and
Tp(S)zmax{n,/k=0,1,...,K}=n,,
we obtain
Ec(S)=(2ng-1) /(Sny)<(2n,-1) / (2ny) .
This upper bound does not depend on S and because
Ec(2)=(2ny-1) /(2ny)
we conclude that it is fruitless (from the efficiency point of
view) to use more than two processors to execute seq(k),
k=0,1,...,K. If the processors are P; and P;, then P, executes
seq(k) ,k=0,...,XK-1 in N(K-1) TUs and P, performs seq(X) in
ny=N(K-1)+1 TUs as it is illustrated in Figure 5. If we need to
extend the activity of P;, i=1,2, to seq(k), k=K+1,...,K+R+1, and
P, executes seq(k), k=K+1,...,K+R, while P, acts on seq(K+R+1),
then the obtained efficiency is
Ec(2)=ny,N(R) /(2N pgsy) =1-1/28%1,
Now, P, works in ny, N(R-1)=2K'R*1_2K*1 pug  while P, needs

ny.p+y TUS.
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These results suggest the following strategy. Let us suppose
that S$=2S' and the sequence seq(k),k=0,...,K are divided into M
bands B(m), m=1,...,M of equal size, and band B(m) is divided
into S$' subbands SB(m,s), s=1,...,S of equal size R, 1i.e.
K+1=MS'R. Therefore B(m) contains seq((m-1)RS'+j-1), j=1,...,RS?*,
and SB(m,8) consists of seq((m-1)RS'+(S-1)R+r-1), r=1,...,R,
s=1,...,8', m=1,...,M. The processing begins with B(1) so that
the S' pairs of processors start at the same time. The s-th pair
of processors, say (P(s,1l),P(s,2)), acts on SB(1,s), s=1,...,S!
so that P(s,1) executes the first R-1 sequences and P(s,2) the
R-th sequence. As goon as P(s,j) terminates its work for SB(m,s)
it passes to the corresponding sequence(s) of SB(m+l1,s8), and so
on. This strategy is illustrated in Figure 6. It results that
P(s,1) executes seq((m-1)RS'+(s-1)R+r-1), r=1,...,R-1, while
P(s,2) acts on seq((m-1)RS'+sR-1), m=1,...,M, s=1,...,5'. Let t,
be the time when P(s,j), s=1,...,8', j=1,2, start the activity
for B(1). Also, let us denote by tf(k) (tin(k)) the time when the
execution of seq(k) 1s terminated (initiated). Clearly, for each

se{1,...,8"}, from the activity of P(s,2), we have that

tf(sR-1) =t +297°1,
tf((h-1)RS'+8R-1)=tf((h=-2)RS'+¥sR-1) +2(mM RS 4sR-1 = .o,
and consequently, we obtain

tf((m-1)RS*+sR-1) =t +28R"1(2MRS'_1) , (2RS"_qy | pm=1,...,M.
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Oon the other hand,
tin((m-1)RS'+SR-1)=tf((m-1)RS'+sR-1)-2(M"1IRS"+sR-1
tf((m-2)RS'+sR-1), m=1,...,M.
Now, let us analyse the activity of P(s,l1l), se{1,...,S'}.
This processor executes in the order ((seq((m-1)RS'+(s-1)R+r-1),
r=1,...,R-1), m=1,...,M). Let TB(s,m) be the time in which
P(s,1) executes the sequences bglonging to B(m), m=1,...,6M.

Clearly,

R-1
- / - -
TB(s,m) = E 2(m-1)RS/¢(8-1)Rer-1
r=1

= (2R 1) 2 (m-1)RS'+ ($-1IR

Also, let TF(s,m) be the time when the last sequence of B(m)
associated to P(s,1) is terminated. Clearly,
TF(s,1)=ty+TB(s,1),
TF(s,h)+TF(s, h-1)+TB(s, h), h=1,...,m.

Thus,
m
TF(s,m) = t, + TB(s, h)
to+2(271) (281 ~1) (2@’ _1) /(2R 1),

If TS(s,m) denotes the time when P(s,1) begins the execution
of its first sequence from B(m), then TS(s,m)=TF(s,m)-TB(s,m).
For a better analysis, we compute tf((m-1)RS'+(s~1)R+r-1),
r=1,...,R-1, m=1,...,M. Clearly, we have
while

tin((m-1)RS'+(s-1)R)=TS(s,m)
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r
tf((m—l)RS’+(s-1)R+r—l)=TS(S,m)+2: 2(m RS’ (s 1) Reh -1
B (3.3)

=-TS(s,m) +(27-1)2(m RS (s IR,
and
tin( (m-l)RS'+(s—1)R+r-1)=tf( (m-1)RS'+(8-1)R+r-2), r=2,...,R-1,

Now, let wus compute the effectiveness of processor
utilization, Ec(S',R).

The time Ts required by a sequential algorithm is

Ts=ng+...+ng=2%"1,

The number Np=2S' of processors leads to the parallel
processiné time Tp whose value is obtained by analysing the
activity of (i) p(s,1), s=1,...,S' and (ii) P(s,2), s=1,...,S'.

(1) From (3.3) we obtain the equivalent form of the final
time tf((m-1)RS'+(s-1)R+r-1)=t + (287 1-1) (2™MR9'_1)2(8-1)R; (RS’ 3 _

(2R-1-1)2(m-1)RS'+(s-1)R,
(zr_l)z(m—i)ks'-f(.—l)nl
r=1,...,R-1, m=1,...,M.

The last task executed by P(s,1) is obtained for m=M and
r=R-1 and has ti’le ending time tfg given by

ff2,1=tf((M-l)RS'+(s—1)R+R-2)=
to+&.2R°1°1) (2K*1-1)2(8~1)R; (oRS'_3)
because K+1~=MRS'¥.

(1i) The last task executed by P(s,2) has an end time tf,, 2
obtained from tf((m-1)RS'+sR-1) by taking m=M, i.e.
tf, ,=to+(2K*1-1)28R-1,(oRS"_p)

But

Tp(S',R)=max{tfsll,tfs’2/3=1, «e.,8')-ty=max{tfi,tr2},
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where
tfl=max{tf, ,/s=1,...,S8"'}-ty=tfg. ,-to=
(2R-1-1) (2K+1.1)2(8'-1)R; (5RS" 3y
while
tf2=max{tf, ,/s=1,...,5"'}~tg=trlg, ,~tgo=
(2K+1-1)2RS'~1, (aRS' _qy
and finally, we obtain
Tp(S',R)=(2K*1-1)2RS"~1,(2RS"_q)
Therefore,
Ec(S',R)=Ts/ (NpTp(S',R))=(1-1/2R8") /s, (3.4)
As it was expected, by taking S$'=1 and R=K+1 in (3.4), it
results
Ec(1,K+1)=1-1/2%*1
and
Ec(1,K+1)2EC(S',R)S'.
Also, for M=1 it holds Ec(1,K+1)=Ec(S’',R)S'.
On the other hand, Tp(1,K+1)=2% and
Tp(S',R)/Tp(1,K+1)=(1-1/2K*1) s (1~1/2(X+1)/H) (3.5)
By taking M=1 in (3.5), Tp(S',R)=Tp(1,K+1l) results. If M>1
consider f(x)=(1-x™)/(1-x), with 0<x<1/2. A simple calculation
shows that 1<f(x)<2-1/2%"1 and therefore we obtain that
Tp(1,K+1)<Tp(S',R)<Tp(1,K+1) (2-1/2¥"1),
In fact, we have proved the following
THEOREM 2. Under the above assumptions 1if nk—zk, k=0,...,K,
and S processors are used to compute Y(k,0), k=0,...,K, then the
following assertion are true:

(1) if Ec(S) 1s the effectiveness of processor utlilization
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for an arbitrary parallel algorithm then Ec(S)<Ec(2), for S22;
(ii) if S=2S' and K+1=MRS' and the above strategy is used
then
(ii.i) the parallel processing time is
Tp(S',R)=(2K*1-1)2R9" "1/ (2R%"-1);
(ii.ii) the effectiveness of processor utilization is
Ec(S',R)=(1-1/2R8") /s ;
(i1.1iii) if M=1 then
Tp(1,K+1)=Tp(S’,R)
and
Ec(1,K+1)=Ec(S’',R)S"';
(ii.iv) if M>1 then
Tp(1,K+1)<Tp(S',R)<Tp(1,K+1) (2-1/2""1)
and

Ec(1,K+1)>Ec(S',R)S"'.

3.3. Case n;, =n,+n,_,. Let us consider the case when (n,) is
a Fibonacci sequence, for some prescribed n, and n;. The reason
to consider this sequence is that it is possible to determine a,
b, ny and n; such that ak+bsn,<2**k holds for k2k,, where k, is
a prescribed rank. We suppose again that $=25'. We split the set
of K+1 sequences into S' bands B(s), 5-1,:..,5'. The band B(s)
splits into the subbands SB(s,r), r=1i,...,R, where SB(s,r)
consists of three succesive sequences, 1i.e. X+1=3RS' and
SB(s,r)=(seq((s-1)3R+3(r-1)+h)/h=0,1,2} as it is shown in Figure
7(a). The pair of processors (P(s,l),P(s,2)) acts on B(s),

s=1,...,8' and all pairs begin the activity at the same time t,
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(Figure 7(b)). The processor P(s,l) executes the sequences
({(seq((5-1)3R+3(r-1)), seq((s-1)3R+3(r-1)+1), r=1,...,R) in this
order, while P(s,2) executes (seg((s-1)3R+3(r-1)+2), r=1,...,R)

in this order. Therefore P(s,1l) needs t(s,l) time, where

R

t(s,1) = E (Ng1ysra-n * De-1)3reaz-190) 1
=1

while the time required by P(s,2) is

R
t(s,2) = E Bg-1)3Re3(r-1) 427 (3.6)
b=t

and because (n,) 1is a Fibonacci sequence it results that
t(s,1)=t(s,2). Therefore, the time to execute B(s) is t(s,2) and
the parallel processing time is

Tp=max{t(s,2)/s=1,...,8'}=t(S',2)=

R
E Ng_1y3me3r-1 TUS.
r=1

It g, and g, are the roots of the equation x2-x-1=0, then

ny=c g, M +cq,%, (3.7)
where Cj, j=1,2, are determined by n, and n,. Using this form of
n, and taking into account that qj3-1=2qj, J=1,2, from (3.6) we

obtain

2 R
t(s,2) = p c, E gl
-1

I=1

(3.8)
2

0.5 E C1Q1('_1)u'1 (Q'j"-l) ]

1=1
Therefore, it is obtained that
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2
Tp=0.5 ; c @i R (gif-1) .
-3

on the other hand, the time required by a sequential algorithm
is

sl

Ts = 2 t(s,2),
2

and from (3.8) we produce

—

2
TS = ; Ciq“ (Q'fﬂ—l) ]
=1

while from (3.7) and the fact that X+1=3RS', we obtain
Tp=0.5(ng,2 Nxs2-30)
and
Te=ny,,~n,.
Thus, the effectiveness of processor utilization is
Ec=Ts/(S*Tp)=3R(ny,y~n;) /[ (K+1) (Rg,a=Ng,5_38) ]+
Let us remark that S'=1 yields k+1=3R and ng,.,_3p=n;,

consequently Ec=1,

As a consequence of the above analysis we can state
THEOREM 3. Under the above assuptions, if {(n,} is a
Fibonacci sequence, a number of S=25' processors are used to

compute Y(k,0), k=0,...,K, and the above parallel algorithm is

used, then:
(1) the parallel processing time is
Tp=0.5(nky3-Ngs2-3p) TUS;
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(ii) the efrfectiveness of processor utilization is
Ec=3R(ng,p-n1) /[ (K+1) (Ng,p=Ngen-38) 17

(iii) if S=2 then the parallel algorithm is optimal with
respect to the processor utilization.
Now, we are able to give a better motivation to our work.

A serial implementation of the extrapolation stage requires 0 (K?)
amount of time. The pre-processing stage needs 0(cK2) time for
n,=ak+b, and 0(cqx) time, where g=2 for nkazk and g=max{(q,,q,) for
Fibonacci sequence, where c¢ includes the time complexity in the
evaluation of f. The comparison still indicates that a parallel
approach of the pre-processing stage is well suited. A similar
situation appears in the case of Romberg's extrapolation method

for numerical integration ([1]), [7]).

4. Final remarks. There are two contradictory aspects in any
attempt to parallelize the extrapolation methods for solving
initial value problema in ODE's.

The first aspect refers to the adaptive feature of the
method which allows us to stop the first stage computation as
soon as it is obtained the desired accuracy. A considerable
amount of time can be saved in this way. Clearly, the best way
to accomplish the adaptive task is to use a serial algorithm,
which starts the computation of Y(k,0) value only if Y(h,0),
h=0,...,k-1, do not lead to a true value of the convergence test.

The second aspect concerns the fact that if we wish to
obtain a short parallel computing time, then the parallel
algorithm must anticipate the computation of some Y(k,0)-values

before knowing that these values are necessary or not to obtain
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the desired tolerance. If they aren't then an useless computation
was performed, and this comes as a price. In compensation, a
certain gain of accuracy could be obtained if the extrapolation
stage continues while it consumes the Y (k,0) values whose
computation was already started and does not need much time to
be finished.

The proposed algorithms accomplished a serial processing of
the bands, while the parallel processing addresses to the tasks
within of each band. For this reason, they seem to be a good

compromise between opposing restrictions.
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Figure 3: Polynomial extrapolation including the pre-processing

stage (K=5).
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