STUDIA UNIV. BABE$-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

PROGRAM TESTING IN LOOP-EXIT SCHEMES

F.M.BOIAN and M.FRENTIU

Received: March, 3, 1993
AMS Subject Classification: 68Q50, 68Q60

REZUMAT. - Testarea schemelor Loop-Exit. In aceastd lucrare se
introduce notiunea de drum complet intr-o schemd¥ Loop-Exit gi se
aratX importanta drumurilor complete intr-o schemd program pentru
testarea programelor. De asemenea, se construiegte un limbaj care
genereazd mul{imea drumurilor complete.

1. Introduction. In this paper we consider the Loop-Exit
Schemes as they were defined in [2]. Nevertheless, we impose a
minor condition: there is an initial assignement a; just at the
begining (after START block in the corresponding flowchart), and
a final assignment a, at the end (in front of the STOP block).
A and T are the sets of assignment and test symbols,
respectively, and M = AUT. Also, we denote by SW(S) the skeleton
word associated to S, and we denote by D(xay) the direct word
from x to y (as in [41]).

To each Loop-Exit Scheme S a language L(S) may be
associated. More exactly, we have the following definition:

DEFINITION 1. The language L(S) associated to the Loop-Exit
Scheme S is generated by the following context free grammar
(1,2,3):

G(S) = (N,z,P,v)
where

N

{V) (W] {I]|J>0} (W] {Lk'k>o},

M) M u {+,-}

Ij is a nonterminal for IFj, and L, and B, are two nonterminals

* University of Cluj-Napoca, Departament of Computer Science,
3400-Cluj-Napoca, Romania

F.M. BOIAN and M. FRENTIU

for LOOP, from the definition of the Loop-Exit Scheme S, v is-a
new symbol - the axiom of G(S), and the set P of the productions
is constructed by the following rules:

a) v —-—--> SW(S)

b) the following productions

bl) I; ---> b-
b2) I; ---> b+SW(a) only if a has not the form a'EXIT;
are in P if

IFj b THENj a ENDIFj ;
is in s.

c) the productions

cl) Ij --=> b+SW(a) if a¢a'EXITk;
€2) I; ===> b-SW(B) if BwB'EXIT,;
are in P if

IFj b THENj a ELSEj ;) ENDIFj ;
is in s.
d) if
LOOP, aja,é ENDLOOP, ;

is in S then the productions

dl) L, ---> SW(a,a,8)L,
d2) By ---> SW(a,x,8)B, | €
d3) Ly ---> D(LOOP) @; IF;) b+SW(B)
if
@, = IFj b THENj B EXIT,; ENDIFj;
or

a, = IF; b THENj B EXIT,; ELSEj Y ENDIFj;

d4) Ly --~> D(LOOP, a, IF;) b-SW(B)

22

PROGRAM TESTING IN LOOP-EXIT SCHEMES

if
a, = IFj b THENj Y ELSEj B EXIT,; ENDIFj;
are in P. A
Intuitively, L(S) contains the set of all sequences which

can be met during the execution of the scheme.

2. The complete paths in a Loop-Exit Scheme. An important
problem in software development is program testing. Testing may
be done starting from the specification of the resolved problem,
or starting from the text of the program. In the second alterna-
tive it is important to know all the paths from the STARf block
to the STOP block of the corresponding flow chart. For this
purpose we introduce the notion of complete path in a Loop-Exit

Schenme.

DEFINITION 2. A word z= a;X;a,X;...a; X; 1is a section for

S iIf and only if there is weL(S) such that:

a) w = xzy

b) i,< iy, for j=1,2, ..., s-1
c) 1f xwe then x= x’a; X, with iy > i,

d) if yee then y= a, X, y' with iy > ig,,.

The set of all sections is denoted by SEC(S).

The following theorem is proved in [2]:

23

F.M. BOIAN and M. FRENTIU

THEOREM 1. For each S we have L(S)c(SEC(S)).
DEFINITION 3. A word ze€SEC(S) is a branch for S if and only
if there is weL(S) such that w=zy. The set of all branches of S
is denoted by BRA(S).
Next, an algorithm to construct the set BRA(S) is given.
Algorithm 1. Which constructs the set BRA(S), has the
following steps:
Btep 1. The grammar G; has the productions obtained from
the productions of G(S) by replacing the productions
By --> aBy | €,
with thq production B, --> a and in all the other productions
which have not this form the metasymbol B, is replaced by ¢.
8tep 2. Putting off the inaccesible and unseful metasymbhols
of G, we obtained the grammar G, (1];
8tep 3. The grammar G; is obtained from the grammar G, by
replacing the productions of the form
Ly --->a L,

by the productions

a _———
Lk > a

where Li is a new metasymbol associated to Ly

8tep 4. The grammar G, is constructed from the grammar G3 by
adding to the productions of G, some new productions. If L, is a

recursive symbol in G, and A --> a L, B is in G; then add the

24

PROGRAM TESTING IN LOOP-EXIT SCHEMES

production A --> Li to G,. Here Li is the symbol associated

to Lg.
8tep 5. One computes BRA(S) = L(G,).
To each metasymbol A of a grammar
G=(N,z2,P, v)
one can associate the grammar
G, = (N,z,P,A)
which has the metasymbol A as the axiom.
If BRA(A) is the result of the application of the algorithm
1l to the grammar G, then the following theorem holds [1]).

THEOREM 3. If S is a Loop-Exit Scheme then

SEC(S) = BRA(S) u {BRA(A)| A is recursive in Gé },

where G; is the reduced grammar of the scheme S.

DEFINITION 4. For each xy"zeL(S) with n20 and yeSEC(S) the
words w,=xz and w,=xyz with x=ayx, and z=z,a, (i.e. which contains
the assignments ay and a;) are called complete paths of the Loop-
Exit Scheme. The set of all complete paths of S is denoted by
CP(S).

THEOREM 4. Let G, be the grammar obtained from G in the
following way: If A is a recursive symbol in G and

A--—>aal B, | B, ... B,

25

F.M. BOIAN and M. FRENTIU

are all the A-productions of G then the A-productions of Gp are
A--=> p; 0 By .. Bl aByt aBy, ...l aBy
The language generated by the grammar G, generates CP(S).

The proof of this theorem follows imediatelly from the

definition 4.

To ilustrate these we consider the following Loop-Exit
Scheme:
a; a,
LOOP,
IF, ay; THEN; EXIT, ENDIF,
IF, a, THEN, ag
ELSE, a, a; ag ENDIF,
ENDLOOP,;

ag

The grammar G(S) and the reduced grammar Gé are

G(S) GY,
v --=> a, ay L, a4 v -~-> a, a, L, ay
Ly-=-> 1, I, Ly | a3+ Ly==-> I, I, L, | a3+
By---> I, I, B, | € I,---> a;-
I,---> a,- I;-==> agtay | as-aga,ag
I,--=> aztag | ag-agajag

For this Loop-Exit Scheme we have

BRA(S) = { aj,ajajytag , a a,az-a,tag , a,azaj-az-—agaqag }

26

PROGRAM TESTING IN LOOP-EXIT SCHEMES

and
SEC(S) = BRA(S) u { ajtag , aj-a,*tag , az—a,—aga,ag }
The grammar G, has the following productions:

v ===> ay a; Ly ag

Ly---> I, I, az+ | az+

I,-==> az-

I,=-=> as+ags | az-agajag

and the set of the complete paths is

CP(S) = { a,ajsajtayg , aja,a;-astagastag , a,aj,a;-a,-agd;agaztag }.

3. Testing a Loop-Exit Program Scheme. Similarly to [6] any
Loop-Exit Scheme becomes a Program Scheme if the assignments and
test symbols are defined as follows.

Let

V=(vy, Vo, vee, Vp} = T uWuuoO
be a set of variables, where I is the set of input variables, W
is the set of working variables, and O is the set of the output
variables. We may suppose, as in [9), that the set I, W and O are
mutually disjoint. Let

F ={f,, £, ..., I,}
be a set of functional symbols. We suppose that each assignment
aeA is of the form

v = L(Yy, Ya: ce-0s Yi)
where feF, k20, Y,, Y3, «-+, Yye\W, and ve WuO.

Further, let
T = {t;, ty, ..., t.}

be a set of test symbols. We suppose that each test symbol of the

27

Loop-Exit Scheme is of the form
(Y1, Y2r vve0 Yi)
where teT, k20, and y;, Y5, ..., YyeIW.

DEFINITION 5. A Loop-Exit Scheme S is a Loop-Exit program
Scheme if the symbols aeM are defined as above, and for any
weL(S) and any veW if w=w,aXw, and a is of the form t(...,v,...)
or u:=f(...,v,...) then there is a'c¢A of the form v:=f(y;, Y2.
..., Yx) such that w=w'a'w"aXw,.

As an example, from the Loop-Exit Scheme given above we
obtain the following Program Scheme:

d:=nl; 1:=n2;
LOOP,
IF, d=1 THEN, EXIT; ENDIF,
IF, d>i THEN, d:=d-i
ELSE, t:=i; i:=d; d:=t ENDIF,
ENDLOOP,

div:=d

In other words, the definition 5 asks that any working
variable is first initialized and then this vgriable may be used
in computation.

The condition of the definition 5, taken from {6}, is very
strong. An example of a Loop-Exit Program Scheme which do not
satisfy this condition but all variables receive their values
before their use, is given in [4]. Also, in [4] is shown that a
scheme S is a Program scheme if and only if this condition holds
for any ze¢BRA(S). It follows that if a variable does not satisfy

this condition for every 2zeBRA(S) then it is certainly an

28

PROGRAM TESTING IN LOOP-EXIT SCHEMES

uninitialised variable. This fact is very important for the
verification of the program corectness. Also, it is important for
the programmer to be informed about all the uninitialised
variables on some branches of the program.

Testing a program [{7] means to observe the results obtained
if the program is run for some testing data. A run is needed for
each complete path. Therefore, for program testing it is very
important to know all of its complete paths.

Knowing a complete path is also useful for choosing the
coresponding testing data. If the input variables receives these
data the program follows this path. That is, all test conditions

met in this path are satisfied.

REFEREWNCES

1. Aho A.V., Ullman J.D., The theory of Parsing, Translation and
Compiling, Prentice Hall Inc., 1972-1973.

2. Boian F.M., Sisteme conversationale pentru instruire in programare,
TezX de doctorat, Cluj-Napoca, 1986.

3. Boian F.M., Loop-Exit Schemes and Grammars: Properties Flowchartablies,
Studia Universitatis "Babeg-Bolyai", Math.(1986), n0.3, pp. 52-57.

4. Bolan F.M., M.Frentiu, and Z.Kasa, Parallel execution in Loop-Exit
Schemes, Seminar on Computer Science, Preprint no.9, 1988, pp.3-18§.

5. Floyd,R.W. (1967), Assigning meanings to programs, in Proc. Symposium
App.Math., XIX,(J.T.Schwartz ed.), Providence, Am.Math.Soc.

6. Greibach 8., Theory of Program Structures: Schemes, Semantics,
Verification (Lecture Notes in Computer Science), Springer-Verlag,
197s.

7. J.C.King, Symbolic Execution and Program T'esting, Comm. ACM, 19 (1976),
7, 385-394.

8. S.Katz, Z.Manna, Logical Analysis of Programs, CACM 19(1976), 4, 188-
206.

9. Manna, 2. (1974) Mathematical Theory of Computation, New York:
McGrawHill.

