STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

EXTENDED B-TREE

F. M. BOIAN

Received: January 3, 1993
ANS Subject Classification: 68P10, 68P20

REZUMAT. B-arbore extins. In lucrare se prezintd o extindere a
conceptului de B-arbore. Prin aceastd extindere se permite
accesul relativ in acest tip de structur3d de date. Prin acces
relativ se intelege posibilitatea de deplasare optimal¥ in B-
arbore peste n chei fat¥ de cheia curentX.

DEFINITIONS. In [3] B-tree was formally defined. We denote
by m the order of the B-tree, and we denote by e the number of
keys from the current node from B-tree. By p, p,, pP;, pp etc. We
denote some pointers to nodeé from B-tree. At last, by K, with
possible subscripts, we denote value(s) of key(s) from B-tree.

If p is a pointer to a node from B-tree, we denote by S(p)

the sub B-tree having the root in the node pointed by p.

DEFINITION 1. The possession of S(p) is the total number of
keys from S(p). We denote this number by Z(p).

Let a = K; 1K;,5...K;,,. be the r succesive keys from the same
node of B-tree. Let p;, DPi,i1: Piy2s v+ Pi.r be the neighbours

pointers for the keys from a.

Notations. By S(a) we denote the sub B-tree which has in its
root only the keys from a and the descendents S(p;), S(Pjs1)
S(Pjs2) s «--r S(Pjiey)-

We denote by Z(a) the possession of S(a).

By | a | we denote the number r (the number of keys from a).

* University of Cluj-Napoca, Department of Computer Science,
3400 Cluj-Napoca, Romania

F.M. BOIAN

THEOREM 1. The following relations (with the above
notations), holds:

Z(a) = r + Z(p;) * Z(Pj4y) * Z(Pjsa) * -t Z(Piyy)

For each j from 1 to r,

Z(a) = Z(K1+1...Ki+j) + Z(Ki+j+1"'K1+r) - Z(pi*j) and

Z(a) = Z(Kjpye-Kiujo1) + 1+ B(Kjpjin---Kiop)

The proof of this theorem immediately follows from the
definition of possession.

With these considerations, we continue to define an extended

B-tree.

DEFINITION 2. An Extended B-tree [l]) is a B-tree having in

its nodes the following information:

ZoPo K, Z,py K, Z,pP, NN ze"lpe! | ke | zepe
! | | | |

where z; = Z(p;), i =0, 1, ... , e

An example. In fig. 1, an extended B-tree is presented. In
each nodé, only values of keys are presented. For leafless nodes,
there are two arrows near each key: one on the left and the other
on the right. On the left of each arrow, in brackets, the value
of possession appears, and on the right, the value of the pointer

(here is the number of the node) appears.

14

EXTENDED B~TREE

Z(py) :=2(d) + 1 + Z(f);
2) From (II) to (I) of the fig. 2 (rotate to left):
Z(py) = 2(b) + 1 + 2(d);
Z(py) := 2(f);
3) From (II) to (I) of the fig. 3 (fusion of two nodes into
one):
Z(py) = 2(b) + 1 + 2(4d);
4) From (I) to (II) of the fig. 4 (transformations two nodes

into three):
Z(py) = Z(b);
Z(p,) i= 2Z(d) + 1 + Z(f);
Z(p3) := Z(h).

We have used these four transformatios in (1] for
implementation. If only these are used, at most two nodes are
necessary for operations with B-tree.

When these transformations must be applieds? From [3] these
are applied, possibily, after deleting a key or inserting a key,
if after that the number of keys from the current node are less
than m / 2 or great m. If after a deletion, in node remain less
than m / 2 keys, then this event is called undersiszed. If after
a insertion, in the node there are great m keys, then this event
is called overflow. The following rules are applied, in this
order:

1 If (|bcd| = m+1 (overflow) and |f| < m) or

(|]f| =m / 2 - 1 (undersize) and |bcd| > m / 2)
then
b and d are choisen so that | |bcd| - |f| | < 1
and rotations on the right are applied (see I to II in
fig 2).
2 If (|dEf| = m+1 (overfloﬁ) and |b] < m) or
(lp] = m / 2 - 1 (undersize) and |dEf| > m / 2)

17

F.M. BOIAN

then
d and f are choisen so that | |dEf| - |b| | s 1
and rotations on the left are applied (see II to I in
fig. 2).
3 If undersize and |b| + |d| < m
then
two node join into one (see II to I in fig. 3).
4 If overflow and |bcd| + |fGh| = 2m+1

then
transform two node into three other, with (approximate)
the same numbers of keys: b, d, f and h are choise so
that:
||b|-|dEf|]| < 1 and ||dEf|~|h|| < 1 and ||b|-]h|| <1
(see I to II in fig. 4).

Relative access in extended B-tree. Let K, (current key) and
K, (target key) two keys from a B-tree. Suppose that between K,
and K., in ascendent order, there are other n-1 keys. The problem
is to construct an algorithm so that to minimize the number of
moves in B-tree to find K, when K, is the current key.

Let p be the pointer to the nearest node so that both K_ and
K, can be accessed from it. This node is called common ancestor
from both keys. Its clear that all the n-1 keys between K, and
K, are in S(p). Because each other ancestor of K., and K, is
ancestor for their common ancestor, it results that minimal
number of moves is from common ancestor to K,.

To find common ancestor between current key and any other
key, we purpose to create and update a stack. When a key K_ is
found, for each ancestor of K, an record is pushed in this stack.
An record from stack has the following structure:

(pj, Jj;, 2l;, 2zr;, Kl,, Kr;)
where:

i is the current level in B-tree (the root has the level 1);

pP; is the pointer to the node;

In the following, we suppose that the node p; has the form:

ZjoPio Ky - - « Kij Z;5Pi5 - - - Kig Z;4Pje

18

EXTENDED B-TREE

J; is the index of the key K., if K;j; = Koy or K. is in
S(pij), if Kijj » K.;

8l; = Z(Kj..-K;5) - Z(piy) - 1 (the possession to left of
Kij):'

sr; = Z(Kij...Ki,) (the possession to right of Kij);

Kl; is the minimum value from S(p;):

Kr; is the maximum value from S(p;);

For example, in the B-tree from fig. 1, if K, = 211, the
stack is:

i pi j iy 21 1| 2r 1| K1 i} Kr 1

1 8 1 11 28 -00 +00
2 7 1 5 22 097 | +oo
3 9 5 4 2 157 | 233

The fields of this stack can be completed during the search
for a key. All informations for a record are known from the
current node or from its father. The last record from stack
corresponds to a node having the current key in it. The maximum
size of this stack is very small (see [3] for details).

Now, suppose that the current key is XK, and we want to skip
over n keys (forward or backward if n < 0). For that, we pop from
stack until n < zr; when n 2 0, or until -n 5 z1, when n < 0. The
pj from top of stack pointed to common ancestor to K, and K, over
n keys over K.

This stack helps to reduce the number of nodes accessed when
looking for a key having a value. For that, its suffices to pop
from stack until the value of the new key is between K1; and Kr,.
In the most cases, the search a new key begins instead the root

with an it's descendant for a same level.

19

F.M. BOIAN

REFERENCES

Boian F. M., Sistem de figiere bazat pe B-arbori, in Lucrldrile celui
de-al VII-lea colocviu national de informatic¥, INFO-IASI, 1989, pp.

33-40.
Boian F. M., Cdutare rapidd in B-arbori, in Lucr¥rile simpozionului
"Informatica gi aplicatiile sale”, Z2ilele academice Clujene,

Cluj-Napoca, 1989.
Knuth D. E., Tratat de programarea calculatoarelor; vol 11I, Sortare gi

clutare. Ed. Tehnic¥, Bucuregti, 1976.

