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REZUMAT. -~ Integrarea formall a unor clase de functii. Lucrarea
prezintd¥ o metodd de determinare analitic¥ a primitivei unei
functil ragionale. Legat de aceasta, sint expugi gi algoritmi de
manipulare simbolic¥% a polinoamelor precum gi de factorizare a
polinoamelor peste Z(X]. Este descris¥ de asemenea determinarea
substitutiilor prin care problema integririi func{iilor din
anumite clase se poate reduce la cazul ragional.

1. Introduction. The symbolic computation represents the
entrance in a new computer usage era, in which the computer
becomes smarter and powerful enough to do complex scientific
computation, for example the formal integration. We can notice
here the software packages for scientific computation MACSYM2,
REDUCE, MATHCAD and MATHEMATICA.

In this paper we present the formal integration of ratiocnal
functions with integer coefficients {R(x)) and related to this,
the formal integration of functions from the classes R(exp) and
R(sin, cos, tan) where the arguments of the exp, sin, cos and tan
functions have the form kx with keZ.

With these algorithms I realized a Pascal program for IBM
PC compatible computers running MS-DOS, which can be easily
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extended for larger classes of functions.

2. Substitutions. 8Since the problem of the formal
integration of rational functions is simpler than the same

problem for another function types, we try to reduce the given
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function to a rational one by using suitable substitutions. For
this reason the determination and the effectuation of ¢the
suitable substitution represents one of the most important part
of a formal integration program.

In our case, we can apply the classical substitutions.

If the function belongs to the R(exp) class, the suitable
substitution is exp(x)—t and all the terms exp™(nx) become t™°,

' If the function belongs to the R(sin, cos, tan) class we can
transform the function to a equivalent function f from the R(sin,
cos) class. We have three cases:

f(-s8in, -cos) = f(sin, cos)

f(~8in, cos) = -f(sin, cos)

f(sin, -cos) = -f(sin, cos)

The corresponding substitutions are tan(x)-t, cos(t)~t and
sin(x)~t. If our function doesn't verify any of these conditions,
the suitable substitution is tan(x/2)-t.

Through these substitutions we transform our function in a

R(x) class function.

3. The formal integration of a R(x) class function. Suppose
we have to integrate the function f(x)=p(x)/q(x) where p,qeZ[x)
are primitive polynomials, deg p(x)<deg g(x) and .gcd(p(x),
(g(x))=1.

Obviously, every polynomial geéZ(x] has a unique squarefree
decomposition:

g (x)=q; (%) (@2 (X)) 2. (@e(x)) ¥

where q,€Z[x) are squarefree polynomials (some of them can be
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I, (x) "Z Iy(x)

q;(x) £ gqy(x) -
Iiy(x) . s ;
Now we have to compute f (x)d inigk,  1<Fisng.
dy;

If zuj(x)-avguj(x) (a€Q) then the result is the logarithmic term
a ln(qij(x)). However, if deg rij(x)=deg qij(x)-l we can extract
a logarithmic term ln(qij(x)) in order to reduce the degree of
the numerator at the highest deg sij(x)-z.

If deg g,,(x)=2 then we have an arctangent or a logarithmic
term depending on the sign 6f the discriminant.

If deg qij(x)c{3,4} the equation qij(x) can be solved
through radicals and therefore we can factorize qij(x) in a
product-of two polynomials of degree 1 or 2, over a radical
extension of Q(x].

If deg ¢;;(x)>4 we shall search for a substitution in order
to reduce the denominator's degree. Let's suppose we have to

determine:
fu(x)dx
v(x)
with veZ(x] a irreducible polynomial over Z(x}, deg v(x)>4 and

that we can effectuatelthe substitution g(x)—+t. In this situation

there exist the polynomials f,heQ{x] so that:

u(x) _ g/(x) £(g(x))
v{(x) h(g(x))

If deg g(x) = a then follows:
deg u(x) = a-l1l+a deg f(x)

deg v(x) = a deg h(x)
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u(x) = g'(x) £(g(x))
v'(x) = g'(x) h'(g(x))
This relations shows that we can search g'(x) (the
derivative of the possible substitution ¢g(x)) among the divisors
of gcd(u(x), v'(x)) with the property that l+deg g'(x) = deg g(x)

divides gcd(l+deg u(x), deg v(x)).

4. The squarefree decomposition Yun's algorithm. It is
fairly easy to show that if gqeZ[x) and g;(x) is a polynomial such
that it's roots are the i order roots of g, then qieZ[x],. all the
roots of g,(x) have the order 1 and (qi(x))i divides gq(x).

Let's suppose that all the roots of g(x) have the order less
or egqual to keN. In this case:

q(X) =gy (x) (g2(x))%. .. (Ge(x)) k.
Furthermore, since for i*j q;(x) and g;(x) haven't common
roots
ged(q;(x), g4{x)) = 1.
We can now see that: .
@) () . oo (@ (X)) e vk () ... @R (X) (g (x)) &2
“c(x) =gcd(g(x), @’ () =g, (x) (g (X)) 2. .. (g (x))*?
r(x) =%§—E;—=q1(x) @ (xX) .. @ (x)

s(x)=gcd(c(x), r(x))=q;(x)...q,(x)

I (x)
s(x):

c(x) and repeating the above operations untjil g(x) become

In this moment @, (x)-= and ve see that making g(x)<-

constant, we obtain the polynomials g;(x),...,gx(x). We also
remark that r,c,zeZ([x]).

The above relations represent the mathematical basis of the
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Yun's algorithm. The complete description can be found in [2].

-

5. 8imple fraction decomposition algorithm. Assune
p,u,teZ({x) and gcd(u(x),t(x)) = 1. This algorithm will compute

the polynomial reQ(X) so that:

p(x) _r{x) s(x)
u(x) t(x) u(x) t(x)

s€Q[x] can be computed analogously.

and deqg r(x) < deg u(x), where

From the above relation we obtain that:
p(x) = r(x)t(x) + u(x)s(x)
and
r(x) = r(x) mod u(x).
This implies that:
p(x) mod u(x) = r(x)t(x) mod u(x)
= (r(x) mod u(x)) (t(x) mod u(x)) mod u(x)
= r(x) (t(x) mod u(x)) mod u(x).
since gcd(u(x), t(x)) = 1, there exist the polynomials
v,weQ{x) such that:
u(x)vix) + wix)t(x) = 1.
(The polynomials v and w can be computed using the Extended
GCD Algorithm).
By dividing this relation by u(x) we can see that:
w(x) = t(x)"! mod u(x)
and this tells us that

r(x) = (p(x) mod u(x)) w(x) mod u(x).

6. The Hermite~Ostrogradski algorithm. This algorithm

computes the polynomials a,b € Q[x) so that:
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plx) 4. __ax)  bix) ;4
(g(x))” (g(x))? q(x)

where p,q € Z(x) and g is squarefree.

It is easy to show that gcd(g(x),q'(x)) = 1 since q is
squarefree. Therefore we can use the Extended GCD algorithm in
order to determine the polynomials v,w € Q[x] so that:

vix)gq'(x) + w(x)q(x) = 1.

If we multiply this relation with -p(x)/(n-1) and:

s(x) = - (’2_"1("‘) . (X)) = -p(x)w(x)

we obtain that s(x)g'(x) + el glx) _ _pix) and
n-1 n-1

-(n-1)s(x)q'(x) = p(x) + t(x)q(x).

Consequently,

[ 8(x) -]’_ s/ (x) _ (n-1) s(x) q'(x)
(@(x))a? (g(x))t (g(x))”

- _ S0, px)+tx)gix) | _px) , 8(x)+t(x)
(g(x))a? (g(x))" (g(x))" (glx))o?

This means that if r(x) = s'(x) + t(x) then

P(X) gy - 8(x) _f r(x)
{g(x))” (g(x))n? (g{x))n?

It is now clear that using this algorithm for n-1 times, we

will obtain

f p(x) . 85X . e Sp_y (X) . [bix)
(g(x))2 ~ (gx))2r 77 (g(x)) q(x)

and thus a(x) = 8,(x) + 8,(X)g(x) + ... + 8,_1(x) (g(x))*"2.

7. The Berlekamp-Hensel algorithm. Let f(x) = anx"+. ..+ a)x+
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+ a, be a squarefree and primitive polynomial with integer
coefficients.

Also let

S =al+...+a?

M(r) = 2%s (1)

q 2 M(f), gez

The algorithm presented here computes reN and the
polynomials u,, ..., u, € 3[x) irreducible over fZ(x), such that

f(x) = uy(X)...up(x).

It can be prove that if beZ[x]}, b(x) = by+b;x+...+byx? and
b divides f then |b;| < M(f) i=0,s5. (see (4))

This means that if b;>0 then
b, = b, modqe(o,-zg) ;
and if b; < 0 then

b, mod ¢ = ¢q-b, e(‘—g,q) (2)

These observations 1lead us to the idea that the
factorization of f over Z,(x) could be fairly closed to the
factorization of f over Z(x)], since if

£{x) = p(x)t(x) with p, te2(x)
then

f(x) = p(x)t(x) mod gq
and according to (2) we can determine the coefficients of p(x)
mod ¢ which correspond to negative coefficients of p(x).

The Berlekamp-Hensel algorithm is based on these conclusions

and it has the following steps:
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Determnine a prime number p, the least possible, for which
deg f(x) = n (g doesn't divide the leading coefficient of
f) and f remain sguarefree in Zp(x].
Use the Berlekamp's algorithm (see [3]) for the
factorization of f(x) over zp[x]

I'(x) = u,(x)...u (x) mod p
Compute M(f) given by (1).
Pass from the factorization of f over 3,(x) to the
factorization of f over Z.{x],...,Z,(x] using the formula
given by the Hensel's lema (see [3)), until qspk 2 2M(f).
This step computes the polynomials Ujge ooy Ugp € zq[x]
such that

£(x) = u;,(x)...us(x) mod g

U;(x) = u,(x) mod p, 1i=1,s.
Compute the product of each possible combhination of

1,2,...,8 uy,(x) polynomials in Zq(x].

Normalise the coeficients of the product according Lo (2}

by subtracting g from the coefficients greater than %?.

If this normalised product divides f then it represents a
factor of f and the u,,(x) polynomials which compose the
product will be excluded from further combinations since
is squarefree.

Note that this is a polynomial time algorithm. There also

exists the Kronecker's algorithm which is simpler and more

intuitive but it requires exponential time and it become very

inefficient for polynomials of degree greater than 5.
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