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REZUMAT. - Asupra unor metode paralele in algebra liniari. Sint
etudiate din punct de vedere al complexitdtii mai multe metode
numerice de inversare a matricelor gi de rezolvare a sistemelor
algebrice liniare.

The barallel computation had became an actual problem in
many application fields.

Of course, not each mathematical method can be efficientely
projected in a parallel version.

To characterize the depth of the parallelism of a given
method there exists specificaily criterions. Such criterions are
the speed and the efficiency. The goal of this paper is to discus
some methods in linear ilqebra from the parallelism point of
view,

Let X be a linear space, X, a subset of X, (Y,|.l) a normed
linear space and S,S1 X, ~ Y, a given operator. The problem: for
given ¢>0 and x ¢ X, find an y ¢ Y such that |S(x) - yl<s ¢ is
called a § - problem, x is the problem element, S is the solutien
operator and s = S(x) is the solution element. 3 e¢ Y for which
! s -8 < e is called an ¢ - approximation'of the solution s.

In order to solve a § - problem there are necessary some
informations on the‘problem element x. 8o, let 3 be a set (the
set of informations). The operator J: X -~ Z is called the

informational operator and ¥(x) , x € X,, is the information on
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x. To compute a solution of a S -~ problem for a given information
J(x) we need an algorithm, which is defined as an application a:
$(Xg)~Y. So, for a given x € X;, a(J(x)) s the approximation of
the solution S(x) given by the algorit!*a a with the in{ormation
J(x) as the input data. If a (J(x)) is an £ - approximation o/
S(x) then § and a are called e - admissible. So, to solve a § -
problem means to find an ¢ - admissible informational operator
and an ¢ - admissible algorithm for it.

DEFINITION 1. A couple (J¥,a) with $:X-2 and a : § (Xy)~V is
‘called a method associated to a S -~ problem.

If 3 and a are ¢ - admissible then the corresponding method
is called also e - admissible.

Next, one denotes by M(S) the set of all admissible methods
for the problem S. A method peM(S), u = (J,a), is called a serial
methqd if all the computations are deecribed as a single
instructions stream (a is a serial algorithm). If the
computations are described as a multiple instructions streans
then u is called a parallel method (a is a parallel algorithm).

To distinguish the two kind of methods one denotes by M,(S)
the set of all serial methods for the problem § and by MP(S) the
set of all parallel methods for S.

For a method ueM(S) one denotes by CP(u;x), X € Xo, its
computational complexity for the element x or the local

complexity, while

CP(p) = sup CP(u;x)

X€X,y

is the complexity of the method u for the problem S(global
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complexity) (3].

DEFINITION 2. The method p € M, (S) for which
CP(R) = inf CP(p)
pEM(S)

is called the optimal method with regard to the complexity.

Now, let u be a serial method, u ¢ Mg, (S).

Generally speaking, by a parallel method bp € My (s),
associated to u we understand a method in which all the
operations, independent to each others, are performed in parallel
(in the same time). So, we can image the serial method divided
in many parts (segments - streams of instructions) independently
or partial independently from the computation point of view, say

Biseeesbbp. Then

cpP = max CP
(“D) uis)i (“4)

is the complexity of tho'corresponding parallel method HBp-
DEFINITION 3. Let & be a given problem, By € MP(S) a
parallei method and j, ¢ M, (S) the optimal serial method with
regard to the complexity.
Then

CP(@,)

S(PP) = W“—p)—

is called the speed of the parallel method Hp-
Remark 1. The speed is also denoted by S(up;r), where r is
the number of the instructions streams of the method Bp.
Obviously, S(up; r) sr.
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Remark 2. A more practical value to judge the parallel
version bp of a serial method u, is

CP(p,)

S“‘pl'r) = —ém';—)"

We also have s (up;r) 2 S(pp;r).

DEFINITION 4. The value

S(py,i
E(p,) = J‘f_i

is called the efficiency of the parallel method Bp-

As 0 < S(uP;r) £ r it follows that 0 < E(pp) S 1.

Next, we consider first some examples.

B.1. Let & be the following 2xpression :

E=t, p t; p ... pt,
where p is an associative operation.

The serial computational complexity of & is

CP(&) = (n - 1) CP(p) ,
where CP(p) , is the complexity of the operation p .

A parallel version 8’p of the expression & is obtained as
follows: in the first step we compute, say ¢t;: = tyi-1p tyy, for
all possible i. To do it more clear, let meN be such that 2™ <
< n s 2™ If n < 2™ then vwe supplement the expression & by

thep = +-- = typ = 0, i.e.

E=t,ptyp ...ptpt,,p ... p Lo
80,

€} 1 =ty Pty 1 =1,...,2™
In the second st;ap we have

€2 ixtd i p 3, i=1,...,2m2
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and so on
tf =t p e, i=1,...,2mk
for k = 3,...,m. Finally, we have & = t,” .Hence, the necessary
steps'to compute & is m. Taking into account that 2™! < np ¢ 27,
one obtains m = [log,n), where [x] , x ¢ R is the integer with
the property x s [x] < x + 1.
It follows that
CP (8;) = [log,n} CP (p) .
So, we have
s(&;(n/2] ) = T;’#:n]
and

n -1 2
B (n/2] (log,n) [1og,n]

where (x] is the integer part of x.

Remark 3. If we consider the binary tree associated to the
expression & then the cohplexity of the parallel computation of
€ is the depth of the tree [5].

E.2. Let be X = M, (R), Xo =X , Y=Rand § : X - ¥,

A-det A. Hence, S is the problem to compute the determinant detA
of the matrix A. The method used consists in the transformation

of the determinant

a, a,... a

det A = a;, a,;... 4y,

a, a... a,



in the form

1 af, af,

\ 3

det A:= aj,*...*sam~|0 1 ... az,
0 A

using the operations :

aj; : = a;; » 1,3 =1,...,n

af;

1

afy :=——f ,i=p+1,...,n
app

afj' i=afi-afxaly’ ., i, =p+1,....n
for p=1,...,n-1.
So, we have
det A = aj,*a}»...*a) .
Remark 4. Next we suppose that CP(+) = 1 ( a unit time) and
CP(*) = CP(/) = 3.
If one denotes by u, the serial method to compute det A,
one obtains
CP(p,) = {é(n—l)(8n3+5n+18)
A parallel version of the considered method using n parallel

instructions strems (n processors) is :
begin
det A: = 1;
for p: = 1 step 1 until n -1 do
begin
ab
(det A: = det A * aj,; (p+ 1< j s n) aﬁf:=rig) ;
a

((p+1 £ ] < n) for i:=p+1 step 1 until n do
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E(n,) = % .

B.3. For X = M, (R), Xo= {A | det A » 0, A€ X} ,
Y = M, (R) and sS(4) = A"l , s is the problem to compute the
inverse of a matrix.

We use the method based on the succesive transformations of

the matrix [A | I,) in the matrix (I, | A), where I, is the unit

matrix of order n. The transformations are : first one denctes
the elements of the matrix (A | I,] by tj;, i=1,...,n;
j=1,...,2n. Now,

o _ tp
t},’jl:s-zf;l , J=p+1,...,2n

PP
efti=tf-efxtlt . i=1,...,n, ivp ; F=p+1,...,2n
o ,
thyt= n . j=n+1,...,2n,
n
ton

for all p =1,...,n-1.
So,
Ala=(tf)) i=T,n; J=n+1,2n

If u, is the corresponding serial method then

CP(u,) = —3— n (4n® - 50 + 3).

A parallel method, Bp, can be projected as follows :

.

begin
t11
for p:=1 step 1 until n - 1 do

begin for j:=p+l1l step 1 until 2n do
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. o 5o . ) .
tR ) b= :11 ; (1sisn, iep) tf5' :=tf-tfatf)?
PP
end;
n
[(n+1sj52n) tny 1= t"’]
Enn
end
We have
CP(pP;n) = 6(n2 -n+1)
and
1
s(p,in) = n - Y
respectively

E(up) ~ 1.

Remark 6. From these three examples we can see that the
matrix inversion permites a very good parallelism (E(up) s 1),
while for the determinant computation E(up) % 2/3 and in the
first example

E(S}) = 2/[log,n] .

Linear algebraic systems.

If X = {[A|b]| A€M (R), beM, ; (R)}, Xo={[A|b)eX | det As0}
S([A|b])=A“1b then S is the problem to solve the system As=b.

Next, there are discused serial and parallel versions for
some well known numerical methods for the solution of 1linear
algebraic systems.

I. Cramer's method. Taking into account that the solution
is given by s; = D;/D,i=1,...,n, where D=det A and D; is the

determinant obtained by D changing the i-th column vector by b.
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So, we have to compute n + 1 determinants of order n, with the
complexity CP(u,) from the example E,, and n divisions. It
follows that the serial complexity of Cramer's method u. is

CP( Wpg) =(n+1)CP(p,) + nCP(/), i.e.

CP(ps) = =(8n* + 5n° + lon* + 13n - 18). (1)

-y

A natural parallel method here is to compute in parallel the

(n+1) determinants and than to perform the n divisions. So,
CP(u?) = -Gl-usn3 - 3n? + 13n) (2)

where pg is the mentioned parallel method.

Hence, one obtains

s(pz; n+l) = (n+1) - 18 . n+l

8n3-3n%+13n

and

E(np) = 1. (3)
As a conclusion we can remark the very good parallelism of
Cramer's method (E(up) =1).
1I. Gaussian elimination method. As, it is well known first
the given matrix [A|b] € X, is transformed in the matrix ‘
(T, | b), where T, is an upper triungular matrix (T, = (ady)

i=1,...,n; j=i+1,...,n; aé=1) using the relations
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ay:=ag, / af, j=p+1,...,n; bY / aj
1 s
af; :=afyj-af,*ajy, i,j=p+1,...,n

byt i =bf -af,+bf , i=p+,...,n

by

for p=1,...,n-1, and b := , where for the begining

1 1 Gnn
ajyi=ayy, by:=b;, i,j=1,...,n.

The complexity of this computation is n(n2-1)/3*%[CP(+)+CP(*)] +
+ n(n+l)/2 * CP(/). Now the triangular system T,s = b is solved

Ly back substitution method:

S,:=b,

n
s;:=b' - z: ajy * x;, di=n-1,...,1,
1*Th

with the computational complexity n(n-1)/2 * (CP(+) + CP( * )].

It follows that
cP(pd) = % (8n° + 21n? - 11n) . (4)

A parallel version pg of the Gauss method is :
begin

for p:=1 step 1 until n-1 do

begin
aP
(p+1sjs<n+1) afj: =—-—‘:l :
pp

for i:=p+1 step 1 until n do
begin ((p+1<jsn+1) afj':=af-afxaf); bi':=bf-af,+b] end
end;
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n

an,nd
n
ann

for k:=1 step 1 until n - 1 do

n
an,nnt=

((k‘i‘n"l) ant:i,ml ¢ =an?i,n~1 ‘an-i,n-kq‘an‘:ku,ml)
end

where af,..=b}.

So, s;:=a,., , 1=1,...,n.

It follows that

CP(pg;n) =2n? + s5n - 11 (5)

and

respectively

Ew) ~ 2. (6)

III. Total elimination methed. The matrix [A|b] € X, is

transformed in the matrix ([ I, | b") .

First,
1 1 .
agji=a;;, &j,a=b;, i,j=1,....,n.
Now, one applies the succesive transformations
o, Ay
af':="2l, ja=p+1,...,n+1;
a’
af*: '-ag‘:a{},tafjl; i=1,...,n; diep; j=p+l,...,n+l

for all p=1,...,n.
So, the solution is s,:=af’},,, i=1,...,n.
The computational complexity of this method in the serial

version (p) is
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cP(pl) = %(m’ +30% - n). (7)

As a parallel version (p.f,) of the total elimination method

is the following :

begin
1
a
2 12
a3, z_—.;-. H
a

for pt=1 step 1 until n - 1 do
begin
for j:=p+1 step 1 until n do

p
a { *
(aj‘:’;ﬂ”—%}l‘l (1sisn iwsp) aft: aﬁ_aﬁ.agjl)

PP
FY 9y
a +1, p+ad . 1 +1
agfx,pnh—%;-L; (1<isn, isp) aff.,:=af...-af*al'l.,
ap*l.pb?
end
an
o no1 b -"L?" (1gi$n-1) a’pt=ain1-am*as
nn
end
We have
CP(pp) =2n* +2n + 3. (8)
8o,
splim) »n- 1
4
and

E(pp) = 1. (9)
IV. Iterative methods. One considers two iterative methods.
IV.1. Jacobi iteration. For a given x{® = (x,(®, .. . x,(0)T, the

sequence of the succesive approximation x{™1) jg given by

29



GHEORGHE COMAN

(me1) 1 : (m) - ,
x4 =-a—-(b1—; a;x™ 9, i=1,...,n
i It

If CPI(p]) is the computational cémplexity of one iteration then

the serial complexity of the Jacowi wevaod is

CP(p}) =m,(e) CPI(u}),
where m; (e¢) is the iterations number for which x (oo is an

e~approximation of the solution. So, we have

CP(pJ) = (4n? - n) my(e) . (10}
A parallel version of the method ui is to compute, in
parallel, each x/™ , i=1,...,n.
Henca,
CP(pp 1n) = (4n-1) m, (e) . (11)

It follows that

o{u3i n)-n

and

E (up)=1

IV.2. Gauss - 8Siedel iteration. Starting with x{9), the

iterations are given by

i-1 n

xfm0 . L (b, - agx ™y - axf™),i=1,...,n.
ayy -1 Pr ¢8

The serial complexity of the Gauss-Siedel method is
CP(puS®) = (4n® - n) mg(e) , (13)

where mgg(e) is the iterations number.
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It is obviously that the parallelism of the Gauss-Siedel

method is more less than of the Jacobi iteration. Certainly we

solve for x;™"using already the "new" value x,™V, for x/™V it

is used the "new" values x'™! x™%and so on. Hence, x;™'tan be

(m+1)

computed only when the computation of x; is finished and the

(m+1) (m+1)

computation of x,™'hust wait for x, and x, and so on. It
follows that a parallel version pg‘ is to do the computation
begining with the first line ( x{”45 than the second one

( x,™) and so on. One obtains

CP(u3’)=n([log,n] +6) mys(e)

. 401 -1/n)
E(" ) [log,n] +6 °

conclunibnl. Taking into account the serial and parallei

and

complexity of the above methods for linear algebraic systems it
follows:

PROPOSITION 1. CP(pd ) <CP(pg) <CP(ng), Vm2.

The proof follows directly by (1), (4) and (7).

Remark 7. Of the Gauss - Siedel procedure may be viewed as
an acceleration of Jacobl method, so we generally have mgg(s)s
my(e) i.e.

CP(pS%) <cP(pl) .
Now, from (2) and (10), it follows :
PROPOSITION 2. If mgg(e) < tn/s] then
cP(p@)<cp(pd .
Remark 8. For the systems with a lagre number of egquation

(such that ((n/3) + 1} iterations are sufficient to get a good
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approximation the Gauss - Siedel iteration is better than of the
Gauss elimination method.

The following two propositions give some informations
regarding with the parallel methods.

PROPOSITION 3. CP(p}) <CP(uJ) <CP(p5) Vm>2.
The proof is based on the relations (2), (5) and (8).

Remark 9. For the parallel version pj and p; we have
CP( Wg)>CP( p;) just if in the serial case the relation is
CP( pf)<CP(uf). So, generally a good serial method does not
conduct to a good parallel version.

PROPOSITION 4. If mp(e)<{n/2) then CP( p;)<CP( pJ).

Remark 10. In the parallel case it can be done just [n/2]
iterations without passing the complexity of the best parallel
method pj

. Finally, from (3), (6), (9) and (12) it follows that the

best parallelism is possessed by the Jacobi iteration method
(E( u:)-l). Also, a good parallelism has the total elimination
method (E(u)»1-—-)and the Cramer's method  (E(hj)=1). But the
complexity of the Cramer method is, in both serial and parallel
versions, a polynomial function on degree with a unity greater
than the other ones. So, the Cramer's method is never recommended

from the computational complexity point of view.
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