A COLOR DITHERING ALGORITHM

Radu-Lucian Lupsa, Dana Lupsa

Abstract

This paper presents a very general method for color dithering — it is
not restricted as far as the number or the color of inks is concerned.
Keywords: image rendering

1 Introduction

When printing an image, it is necessary to produce the colors in the image
from a small number of inks. The colors are produced by alternating dots
of diferent inks, so that the average color in a small region around each
pixel in the rendered image approaches the desired value (the value in the
original image).

There are four distinct uses of dithering:

e offset printing

e printing on an inkjet or laser printer

e displaying of an image on a fixed palette display

e displaying of an image on an application defined palette display

This article adresses only the printer case, and the fixed palette display
as a special case.

There are various dithering algorithms available for monochrome im-
ages. Most of them are of error-diffusion type, that is, the pixels are
taken in a predefined order,forming a path throughout the image, and the
output pixel values are generated, while maintaining the error value (the
difference between the sum of the pixel values seen so far in the original
image and the sum of the generated output pixel values). That error is
distributed to some neighbour pixels (and each error-diffusion algorithm
comes with a scheme). The advantage is simplicity and speed; the dis-
advantage is that there are, for each algorithm, some “bad gary levels”,
that is, levels that generates some annoing repetitive patterns — such as
stright vertical or sloped line, or other “artifacts”.

2 Quad-tree error diffusion

2.1 Quad-trees

Let n be a positive integer (for most of our tests, n = 3), and let us suppose
the image sizes are multiples of 2". Now, let’s consider the division of the
image into squares of 2" by 2", and let’s call it the level 0 division. Also,
let us associate a quad tree to each such level 0 division square, with the
root associated to the level 0 square.

Then, we divide each level 0 square into four squares. and we associate
them with the sons of the corresponding root node in the corresponding



tree. The resulting squares will be the level 1 division squares. We con-
tinue the procedure until level n, where each division square will consist
of exactly one pixel.

Now, for each division square, regardless the level, we can define an
average color as being the average of the pixel values of the pixels in that
square. We have therefore average values for the original image, and also
average values for the dithered image we are constructing. We can also
define a distance (or error) between the average value in the constructed
image and the corresponding square in the original image.

Our method is trying to achieve, for each square, an error that is less
than a certain threshold; the threshold will depend only on the level of
the square.

2.2 Quad-tree error-diffusion for orthogonal col-
orspace

Let’s suppose now that each pixel can have one of the colors: Black (0,0,0),
Red (1,0,0), Green (0,1,0), Blue (0,0,1), Cyan (0,1,1), Yellow (1,1,0), Ma-
genta (1,0,1), and White (1,1,1). So, each pixel can have any color that
have integer components.

As a level k division square is 2" ™% x 27~* pixels, its averaga color can
be any color that is multiple of 4n+lv Moreover, the work on the three
color components can be done independently.

Now, our algorithm takes each level 0 division square of the origi-
nal image and, for each color component, computes that component for
the pixels in the corresponding square of the constructed image. This is
achieved in three steps:

1. First, compute the original image’s average value in each node of
the quad tree. This is performed bottom-up, from the leaves to the
root.

2. Next, if the average value v in the original image is a multiple of 4%
then let the average value ug of the root for the constructed image
take the same value (uo = vo). Otherwise, let

[4” ’Uo]

’
Vo = an

(the square brakets denote the integral part) and we put the average
value the average value of the root for the constructed image be
uo = vy + X, where X is a random value that can be 0 or 1 with the
probability of being 1 equal to 4" (vo — vg)-

3. For each non-leaf node of the tree associated with the constructed
image, we compute the average value of its sons as follows:

Let k be the level of the current, non-leaf, node (the sons are then
on level £+ 1, and 0 < k < n). Then, let vg be the average value

.. . 4"_kvo
of the current node for the original image, vy = [4"7_,0], uo the
average value of the curent node for the constructed image (uo = v,
or up = vy + M%,c), v1, V2, v, and vs the average values of the sons

of the current node in the original image, and we shall construct



the average values u1, u2, us, and w4 of the sons in the constructed
image.
Now, we put, for 1 =1,4:

, [4n_k_lvi]
v = gqn—k—-1 7
and,
di =V — ’U;.

It is easy to see that, if uo = vg or wo = v + ﬁ, then up lies

4 4
between ) v; and uo lies between ) v; + 4 =%=r. Therefore, for
i=1 i=1

each i = 1,4, we can put either u; = v} or u; = v} +

1
= =

So, the ideea is, the same as for the root node, to put u; = v} +
Xi ﬁ, where X; is a random variable that can take the values 0

and 1, with the probability to be 1 of dﬁ_d:m. Unfortunately,
it is possible that Wiﬁ—dpl. So, we just sort d; in decreasing
order, and if m then we put X; = 1.

The algorithm guarantees, for each division square, a difference be-
tween the original image average value and the dithered image average
color of at most the contribution of one pixel. Also, there are no artifacts
as long as the random number source is good enough.

3 Methods for non-orthogonal colorspace

In the previous section we considered that each pixel can take any color
with color components of 0 and 1. For a real color printer, this condition
cannot be met but within rather coarse approximation. A real yellow ink,
for instance, can never reflect as much red and green light as the white
paper, nor can it absorb all the blue component. Also, combining two
inks does not result in a reflection coefficient exactly equal to the product
of the reflection coefficient of the two component inks. See [1] and [2] for
a complete light reflection model.

Therefore, we must first measure the reflection coefficients of the paper
and of all available inks and combinations of inks. Let C be the set of
colors of the white paper and all the inks and combinations of inks. (in
fact, each element of C is the tuple (cr, ¢y, cs) of the reflection coeficients
for the red, green and blue light).

Now, C is the set of achieveable colors for one pixel.

The dithering algorithm takes again each level 0 square independently:

1. For each node, from leaves to the root, compute the average color
and the set S of admisible achieveable average colors. The set S for
a leaf node is a subset of C of the first colors from S in decreasing
distance from the pixel color in the original image; also we require
that that distance be below a given threshold. For non-leaf nodes,
the set S is a subset of S1 + S2 + S3 + S4, where S1, Sa2, S3, and Ss
are the sets of admisible achievable colors for the four sons of the
current node.



2. For the root node, choose the best admisible achievable color (from
the associated S set).

3. For all other nodes, pick the color in S that participated in the
generation of the color of the parent node.

4 Conclusions and future work

The quad-tree error-diffusion algorithm is a fast dithering algorithm giving
a good-contrast image with no artifacts.

The method for non-orthogonal colorspace gives an acceptable dithered
image for very small color set. However, it is slow (due to the exhaustive
search in S1+ S2 + S3+ S4 which can have a few dozens to a few hundreds
elements) and creates artifacts due to the deterministic approach. The
expected improuvment should be to combine somehow the randomized
error-diffusion with the second method.

References

[1] JoaNNA L. POWER, BRAD S. WEsST, ERIC J. STOLLNIZ, DAVID
H. SALESIN Reproducing Color Images Using Duotones Proceedings

of SIGGRAPH 96, p. 237-248, 1996

[2] Eric J. STOLLNIZ, VICTOR OSTROMOUKHOV, DAVID H. SALESIN
Reproducing Color Images Using Custom Inks Proceedings of SIG-
GRAPH 98, p. 267-274, 1998



