BABES-BOLYAI UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS

Zoltan Kasa

Graph algorithms

2003

Contents

8

9

10 Matching in bipartite graphs

11 Extremal problems in graph theory

Problems that led to graphs
Basic definitions

Shortest paths in graphs
Critical Path Method
Eulerian graphs
Hamiltonian graphs

Trees and forests

Planar graphs

Flows in networks

17

27

35

38

45

60

66

89

97

1 Problems that led to graphs

1) The Konigsberg bridge problem (The Euler problem)
a

(=

The corresponding graph

a b
—

2) A diverting problem (The Hamilton problem)
Put the numbers 1,2,3, ..., 9 on a circle, such that the sum of every two
neighbours is not divisible by 3, 5, and 7.

In a group of at least six people there are always three mutual acquain-
tances or three mutual strangers.

@\@);@

3) A diverting problem 2

@)

Let color the edge between z; and z; in red if z; and z; are acquainted,

and in blue if they are strangers. The problem can be reformulated: if in
a graph with at least six vertices any two vertices are linked by a red or a
blue edge, then there exists a red or a blue triangle (three vertices linked
pairwise by only red edges or by only blue edges).

z1 must be linked with at least three vertices by red (or maybe blue)
edges. Let these be: zo,x3,x4. If the edge between z2 and x3, or between x-
and x4, or between z3 and x4 is a red one, we have a red triangle (z1, z2,z3
Or X1,T2,T4 OF T1,T3,2L4). If not, then all the edges between three vertices
(2,3, z4) must be colored din blue, so a blue triangle exists.

2 Basic definitions

A x B ={(a,b) | a € A,b € B} ordered pairs of elements.

A®B = {{a,b} | a € A,b € Bora € B,b € A} unordered pairs of
elements.

Remarks: {a,b} is not considered as a set, because a can be equal to b.

The multigraph

multigraph

G = (V,E,G), where
V is a nonempty set of vertices (or points or nodes),
FE is a set of edges and
G- E—-VQRV

To be more precisely, we can use the following notation too:

G = (V(G),E(G),4(G))

n = |V| the order of the multigraph G

m = |E| the size of the multigraph G

G is an (n,m) multigraph

If G(e1) = G(e2) then e; and es are parallel edges. If G(e) = {a,a} then
e is a loop.

If G(e) = {a,b}, then a and b are joined (linked) by the edge e, a and b
are adjacents (e is incident with a or b)

The set of edges which join the vertices a and b is:

G (a,b) = {e€ E|G(e) ={a,b}}.

Let z be a vertex in G. Ng(z) or N(z) is the set of vertices adjacents
to z, the neighborhood of x:

Ng(z) ={y € V(G) | e € E(G),G(e) = {z,y}}
Ng(z) ={y € V(G) | ™ (z,y) # 0.}

In a multigraph G the set of edges (which are not loops) incidents to a
vertex z is:

Ig(z) ={e € E(G)[3y € V(G),y # z,G(e) = {z,y}}
The set of loops incidents to a vertex z is:
Lg = (z) = {e € E(G)|¢(e) = {z,x}}

The degree of a vertex x denoted bey deg(x) is number of edges incidents to
z (a loop is counted twice). deg(z) = |Ig(z)| + 2|Lg(z)|-

If deg(xz) = 0, then z is an isolated vertex. If deg(z) = 1, then z is an
end-vertex or sometimes a leaf.

denote a graph we write G = (V, E) only.

A multigraph without loops and parallel edges is a graph. In the case of
a graph G we have |G !(a,b)| < 1 for all a,b € V, so instead of writing
G(e) = {a,b} we can write {a,b} ouly, to denote an edge. In this case to

In graphs the degree of z, noted by deg(z) or degg(x), is the number of
vertices in N¢(z): deg(z) = |Ng(z)|.
Examples.

The multigraph G

1

)

) = {273}7 g(e7) = {354}

1) =4, deg(2) = 3, deg(3) = 2, deg(4) = 5, deg(5) = 0.

The graph Go

V(GZ) = {a, ba ¢, da e}a E(GQ) = {{a, C}, {aa d}a {b, C}, {ba e}a {ba d}{ea d}}
If all vertices of a multigraph have the same degree r, then the multigraph

is regular of degree r, or r-regular. The following graph is an (7,14) 4-regular
graph.

o
N\
)

A graph in which all pairs of distinct vertices are adjacents is called a
complete graph. A complete graph of order n is denoted by K.

N
oo & BB

_ The graph G = (V,E) is the complement of the graph G = (V, E), if
V =V and E = {{a,b} | {a,b} & E}.

39 ® \V ®

G G
If G is a graph of order n, then E(G) U E(G) = E(K,).
Two graphs G; and Gy are isomorphic if there is a one-to-one function
p : V(G1) = V(Ga),
such that
if {a,b} € E(G1), then {p(a),o(b)} € E(G2).

We can define the isomorphism for multigraphs too. Two multigraphs G,
and G5 are isomorphic if there is a one-to-one function

@Y : V(Gl) — V(GQ),
such that

|G (a,b)] = 1G5 (1w(a), (b)) for all a,b € V(G1).

Example of isomorphic graphs

(@)

(2) (3
o
® ©

G1 G2

The function ¢ is the following:

z |1 2 3 a b ¢
w(x)‘xl Ts T3 To Tg T4

8

In isomorphic graphs deg(z)=deg(p(z)) for all z € V(Gy).

Directed multigraph

directed multigraph

G = (V,E,G), where
V is a nonempty set of vertices (or points or nodes),
E is a set of arcs and

C;:E'—)VXV

In this directed multigraph the arcs e; and e; are parallel arcs, but eg
and eg are not.

—

Let (G) be a directed multigraph.
N2(y) ={z e V(G) | G (z,y) # 0}

Ng'(y) ={z € V(G) | G (y,2) # 0}

The indegree of = in a multigraph is the number of arcs entering z, the
outdegree of z is the number of arcs leaving x. For a graph this definitions
can be done by neighborhoods.

The indegree of z in a graph:

in-deg(z) = |N™ (2)
and the outdegree of = in a graph:

out-deg(z) = |[N°"(z)|.

Sometimes instead of directed graph we us the term digraph.

Representing the multigraphs

1) — representation by definition

2) — geometrical representation

— adjacency matrix
= (E,V,g), V= {$17$27"'7$n}
= (@ij); j=1» the adjacency matrix when
[16)| it
N 2067w, z5)| ifi=

3)
G
A

Example:

=== o
oON O =
N O N =
oON O =

T4

9o ﬁ;
\

n
deg(z;) = Zaij’ foralli =1,2,...,n
j=1
The adjacency matrix of a graph has only Os and 1s. In the case of a
directed multigraph the representation can be made in the same way.

4) — incidency matrix

G=(E,V,G),V ={z1,z9,...,2p}, E ={e1,e2,...,en}
B = (bij)i—1n j=Trm>
1 if z; is incident with e; and e; is not a loop
bij = 2 if z; is incident with e; and e; is a loop
0 if z; is not incident with e;

B _

e €9 e3 ‘el €2 €3 €4 €5 € €7
z1]1 1 1 0 0 0 0

|1 0 0 1 0 1 0

o)—es(w5) es @ [0 1 0 1 1 1 1
e e [0 0 1 0 1 0 1

10

5) — lists

I Z9 r3 T4

T2 | L1 X3 X3

r3 | T1 ro T2 T4 T4

Ty | 1 T3 I3

also by linked lists

b)

AEIEA R ENEAE BN EA A A R EA N EN R R

c)

AEIEAENEAENENEAEA ENEN ENENEY

1[4 [7 |12]

Properties:
1) G=(V,E,G),|E(G)| =m, then Y degz=2m.
zeV(G)

2) The number of odd vertices is even.
3) In every graph there exists at least two vertices with the same degree.

Proof by pigeonhole principle. If |V (G)| = n, the degrees can be
0,1,...,n—2or
1,2,...,n—1.

11

0(G) = min d inimal d in G
(G) zénvl(%’ : eg T minimal degree in

A(G) = max degz maximal degree in G
zeV(Q)

Submultigraph, subgraph

A multigraph H = (V(H), E(H), H) is a submultigraph of G = (V(G), E(G), G)
if V(H) CV(G) and E(H) C E(G).

For graphs the definition is the same.

induced subgraphs
spanning subgraph, if V(H) = V(Q)

Walks, trails, paths
In a multigraph G = (V, E, G) an alternating sequence

W V0,€1,0V1,€2,V2,...V;-1,€4,Vj,...Un-1,€n,Un, n Z 0

of vertices and edges, where G(e;) = {vi—1,vi},7 = 1,2,...,n is a walk.
The edges and vertices are not necessary distincts. This is usually called
an vg—v, walk. In a graph instead of this alternating sequence we can use
the sequence of vertices only: vg,v1,..., vy, because |G(vi—1,v;)| = 1 for all
1=1,2,...,n. The number n of edges in a walk is the length of that walk.

Special walks:

trail: if no edge is repeated

walk: if no vertice is repeated

Theorem. Fvery vg—v, walk contains a vo—v, path.
Proof. By inductoin on length of the walk. If n = 1 the walk is a path.
Let us consider the property true for all length less than n, and let

W :wvg,e1,v1,. .., 01, €5, Vi - .. yUj—15€5,Vj5 .. En,Upn

be a walk which is not a path. So there exists vertices v; and v; such that
U = Vj- The walk WI 1 V0,€1,V1,---,Vi—1,6€4, Vi, €j4+1Vj+1,-- - €n, Up (Whi(}h
results by removing the v;—v; walk) is shorter than W. So in W’ by the
induction hypothesis there exists a vg—v, path which is a path in W too.

A u—v walk is a closed walk if u = v. If a walk is not closed, it is open.
A closed trail is a circuit. A closed path is a cycle.

12

Two vertices v and v in a multigraph are connected if there exists a
u—v path. A (multi)graph is connected if every pair of its vertices are con-
nected. If a (multi)graph is not connected, it is called disconnected. If a
(multi)graph is disconnected, it has a number of connected components or
for short components. Let us denote by k(G) the number of components of
G.

Connected Component Algorithm

Let z € V(G). Let us define recursively the following sets:
U() = {JI}

Ui =U;-1 U U N(y)

yeU;—1
dk: Uy = U1 =U.
The subgraph induced by U is a component.

In the case of directed multigraphs (digraphs):
directed walk
V0,€1,01,€2,0V2,...0V—-1,€4,Vi,...Un—-1,€n,Un, n > 07

where G(e;) = (vi—1,v),4 =1,2,...,n.
directed trail, directed path
directed circuit, directed cycle

semiwalk
Vg, €1,V1,€2,V2, ... Vi—1, €, Vi, - - - Un_1, €n, Un, n 2> 0,

where G(e;) = (vi—1,v;), or G(e;) = (vi,vi—1), for i =1,2,...,n.

weakly connected multigraph if for every pair u, v of vertices there exists
a directed u—v path or a directed v—u path, but not the both.

strongly connected multigraph if for every pair u, v of vertices there exists
a directed u—v path.

weighted (multi)graph G = (V,E,G, W)

W:E—-R

13

the length of a weighted path P is I(P) = Y W(e)).
e;EP
If a multigraph is not weighted, we always can consider that W(e) = 1,
for every edge e.
The definitions are the same for directed multigraphs.

Distance between two vertices d(u,v): the length of the shortest u—v
path.

du,v) = P ulglgathl(P)

Distance matriz for the graph: G = (V, E), V = {v1,v9,..., v, }:

D= (dz) where d;; = d(v;,v;)

i,j=1,n
‘Warshall algorithm
Dy, D1,Ds,... Dk =D =D

0
Do := (dif))i 1z
W('Ui,’l)j) if {'Ui,'l)j} ekl
where dz(-;-)) =9 0 1=17
o0 lf{’l)z,’UJ}QE,Z#]
For k> 0: dg-c) := min (dz(-;-c_l),dz(z_l) + dg;-_l)) fori,j=1,2,...,n.

Algorithm to compute the distance matrix based on the Warshall algo-
rithm:

D := D()
for k:=1tondo
for i :=1ton do
for j:=1tondo
dij = min(d;j, dix, + dy;)
endfor
endfor
endfor

The proof that this algorithm is correct is given in: S. Baase: Computer
Algorithms. Introduction to Design and Analysis, Addison-Wesley Publ.
Co, 1983. Chapter 6.

Connected graphs without cycles are called trees. Disconnected graphs
without cycles are called forests.

14

Rooted tree — digraph
Sometimes we want to visit all the vertices of a (multi)graph. The are
two major methods:

— breadth-first search
— depth-first search

@

1
@7

®

A. Breadth-first search — visiting the vertices as wave is propagated

3,2,4,1,5 (from 3 to 2, 4, from 2 to 1, 5) or
3,2,4,1,5 (from 3 to 2, 4, from 2 to 1, from 4 to 5)

B. Depth-first search — visiting the vertices as man is walking

15

@\H@
<

3,2,1,5, 4

OaOn®)

ORORORORC

@‘

16

3 Shortest paths in graphs

Moore’s algorithms
An algorithm to find shortest paths from a vertex to all other vertices.

A breadth-first search algorithm.

Let G = (V, E) be a graph. We will use

— 4 to denote the first vertex,

— I(v) to denote the distance from u to v,

— p(v) to denote the previous vertex of v in the shortest path,

~ @ to denote a queue (an element is added to at an end, and removed
at the other end).

Notation:
v — @ adding v to the queue,
@ — v get the first element from the queue in v and removing it
from queue

a) Algorithm to find all distances from a vertex u to all other

Let
l(u) :==0
l(v) := 00, Vo € V(G), v #u
() an empty queue

u— Q
while @ is not empty do
Q—z
Vy € N(z) if I(y) = oo then
ply) ==
l(y) =1l(z)+1
y—Q
endif
endwhile

b) Algorithm to find a shortest u—v path
Let
k= I(v)
Up = U
while k£ # 0 do
ug—1 == p(ug)

17

kE=k-1
endwhile

The resulting paths is: ug,u1,...,ug

Changing N(z) in N°“(z), the algorithm will work for digraphs too.

ec @%j
/@/@ A 2

|]t 2 3 4 5 6 7 8 9 10 11 12|
1o 1 2 1 2 2 3 3 3 oo o0 o
D 1 2142 6 6 5

Example.

u=1,v=8s0k:=3
ug =8, ug :=6, uy :=2, ug := 1.
The shortest path between 1 and 8 is: 1, 2, 6, 8.

Shortest paths in weighted graphs

SHORTEST PATHS FROM A VERTEX TO ALL VERTICES
1. Dijkstra’s algorithm

G = (V,E,W), where W: E — R™.
Let u the first vertex

S:={u}, T:=V\S

I(u):=0

[(v) =00, Vv €V, v # u.

ri=1Uu

18

while T # () do

for allv € N(z) NT do

if [(v) > l(xz) + W(z,v) then [(v) := I(z) + W(z,v)

endif
endfor

pv) ===z

Let z be the vertex from T for which (z) is minim: [(z) = minl(y).

S:=8SuU{z}, T:=T)\ {z}

endwhile

yeT

Changing N(z) in N°%(z), the algorithm will work for digraphs too.

The shortest path can be found by the same b) algorithm.

For different values of u we obtain the followings:

\ [vi|vi va vs v s |
u=v1 |; |O 1 2 3 5
Pi| — U1 V2 U3 V4
u=wvy |l; oo 0 1 2 4
Pi| — — V2 U3 U4
u=wv3 |l; |loo oo 0O 1 3
Pi | — — — 3 v
u=wv4 |l; oo oo 6 0 2
Pi| — — Us — U4
u=wvs |l; |oo o0 4 5 0
bi| — — s v3 —
()
2
-3
For negative weights the algorithm doesn’t work. 4 @

19

2. Ford’s algorithm
Let V = {v1,v2,...,v,} be the set of vertices of the weighted graph.

Leti:=1
l(v1):=0
I(v;) == 00, for i =2,3,...,n.
while ¢ <n do
Vo € N(v;) : I[(v) := min (I(v;), (v;) + W(vi,v))
if the value I(v) is changed and (v = v; where j < i) theni:=j—1

endif
1:=1+1
endwhile

A more detailed description with the vector p of previous vertices.

Let I(v1):=0

I(v;) := o0, for 1 =2,3,...,n.
1:=1
while i < n do

j=1

while 7 <n do
if I(v;) — l(v;) > W(vi,v;) then
l(vj) == U(v;) + W(vi, vj)
p(vj) == v;
if j < then
i=7—1
ji=n
endif
endif
ji=J+1
endwhile
1:=1+1
endwhile

For digraphs change N (v;) in N°"(v;).

20

Example. Let us consider the weighted graph with the following adja-
cency matrix:

(010

(el e i e B e B e B an)
OO W o wo
SO OO N~ O
S OO WwWN OO
OO O UTOoO N O
D00 O O+ OO

OO OO O OO
OO N Wwooto o

The Ford’s algorithm fo u = 1 will give the followings:

i:]1 2 3 4 5 6 7 8
;|0 7 4 6 6 11 9 15
p:l0 3 1 3 3 4 3 7

This algorithms works in the case of negative weights too, if there is no
negative length directed cycles in the digraph.

21

SHORTEST PATHS FROM ALL VERTICES TO A VERTEX

The Bellman-Kalaba algorithm

This is a matrix algorithm which works on adjacency martix. We choose
a vertex (a column in the matrix), and try to obtain distances from all
vertices to this one. Let us denote this column by V) = (V;(l)) . If the

i=1,n

where a;; = d9 that is:

adjacency matrix is A = (Cbij) ij

i,j=1,n’
W(vi,vj) if {vi,v;} € E(G) (or (v;,vj) € E(C_j))

aij =14 0 ifi=j]
00 if {v;,v;} € E(G) (or (vi,v;) € E(G))

We will compute the following vectors for k = 1,2, ... :

k) _ s g (k1) ;
V —;il%(aw—i-vj)forz_1,2,...,n

until VO = VU= for an [.
Example.

Let us compute for the following graph the distances to the vertex 7. So
the vector V(1) will be the 7" column.

| [t 2 3 4 5 6 7[vO[vEA[VvE[v®]
110 2 3 o oo oo 30| 30 30 21 21
20 0 o0 5 o0 4 oo o 19 19 19
3lloc 4 0 8 6 o© o0f| o 00 23 23
4)loc o0 oo 0 10 10 oo | o 25 25 25
S5lloc o0 o0 oo 0 5 oo o 20 20 20
6occ o 00 oo oo 0 15| 15 15 15 15
Tlloo o0 00 o0 o0 o 0 0 0 0 0

The length of the shortest path betwwen 1 and 7 is 21. How can we find
the path efectively? Let us denote V = V¥,

i=21

Vi—Ve=2=W(1,2) so vertex 2 is on the shortest path
Vi _VE& = -2 #W(lag)

Vi - Vr =21 £ W(L,3)

Vo V= —4# W(2,3)
Vo Vs = —4 £ W(2,4)

Vo — Vg =4=W(2,6) so vertex 6 is on the shortest path
Vo — Vr =21 # W(2,7)

Ve — Vo =15 = W(6,7)

The shortest path is: 1, 2, 6, 7.

SHORTEST PATHS FROM ALL VERTICES TO ALL VERTICES

Using the Warshall-type algorithm to compute the distance matrix, we
will complete with a P matrix to get the paths too, not only the distances.

The Floyd-Warshall algorithm
Initially p;; := 7 if d;j # oo and ¢ # j, and in other cases p;; := 0.

D= D()
for k:=1tondo
for i :=1ton do
for j:=1tondo
if dij > di + dk:j then
dij = dik + dkj
Dij ‘= Pkj
endif
endfor
endfor
endfor

An z—y paths is determined by the following algorithms:

23

k:=n:

Uk ‘=Y
while u; # z do

Uk —1 = Pruy
k=k-1
endwhile

The path is: ug, Ugy1,...,Un

Example.

The adjacency matrix of the weighted graph given in the above figure:

0 1 3 oo 8
o0
D():OO
o0
o0

o N R oo

1 o©
0 1
oo 0
4 oo

8 88 <

The distance matrix D
2

nd the matrix P of previous vertices:
1 2 3 4

[e=}

a
5
4
3 P =
2
0

!

Il
8888
888 =r
N oy O
OO = N W
OO O O
o O O O
Ot Ot O N
W O W W
[«=RET TN

The complexity of algorithms

Which algorithm from the above is better? How can the complexity be
computed?

The complexity of an algorithm measures the amount of work done by
the algorithm when solves a problem. The complexity of an algorithm is a
function of the size of input data. Instead of using the computation time in a
computer, we shall use the number of basic operations or the number of steps
given by algorithm. Only in a few cases we can compute the exact value of

24

the number of steps or basic operations, so we will compute this number in
the worst case, and the complexity will be called worst-case complexity. In
the following we shall use this type of complexity.

The notation O(f(n))

f,9: N — Z. If there exists a positive real constant C' and a nonnegative
integer ng such that

|f(n)| < Clg(n)| for all n > ny,

then the order of f is lower than or equal to the order of g, and in this case
we will write:

If f(n) = O(g(n)) and g(n) = O(f(n)) the function f and g have the
same order, so we will write: f(n) = ©(g(n)).

Examples. The complexity of the usual matrix multiplication for Ax B,
when both matrices are n X n matrices, is O(n?) (basic operation: multipli-
cation of two numbers).

The complexity of a sequential search algorithm is O(n), the complexity
of the bubblesort algorithm is O(n?) (basic operation: comparison of two
elements).

The complezxity of the above shortest path algorithms.

25

algorithm complexity | complexity for ”all to all” case
Moore O(n?) O(n?)
Dijkstra O(n?) O(n?)
Ford O(n?) O(n*)
Bellman-Kalaba O(n?) O(n?)
Floyd-Warshall O(n?) O(n?)

26

4 Critical Path Method

First model: activity represented by arc

Activity digraph: a connected, acyclic digraph (has no directed cycles)
G = (V,E,W), where V = {v1,v9,...,v,} with the following properties:

— the arcs represent activities, and the corresponding weights are the
units of time to complete that activities (execution times of the activities),
let us denote d;; = W(v;,v;),

— there exists a start verter, let this be vq, for which: N'"(v;) = 0),

— there exists a terminal verter, let this be vy, for which: N°%(v,) = 0.

Connection between activities:

5 O OO0
O ;
¢ OO0

In the above example activity A must be completed before activities B
and C start. May exist activities with 0 execution time, these are used only
to force some succession (these will be drawn by broken lines). Activity E
can start only when both D and F' are completed (we have here a dummy
activity), but G can start when F' is completed.

We are interesting to see the maximal amount of time to complete the
entire project. This is the length of the longest path in the activity digraph
between the start and terminal vertices. To solve this problem we can use
the algorithms for the shortest paths, changing "min” to "max” everywhere.
But there is another algorithms too.

Decomposition on levels

The vertices of an acvtivity digraph can be distributed on levels. The
start vertex is on level 1. If (v, v;) is an arc, the level of v; is lower than the
level of v;.

The algorithm for decompostion on levels:

fori=1ton do
l(z) =1

27

endfor

for i =1 ton do
call next(7)

endfor

where:

procedure next(s):
for j=1tondo
if (aij #0) and (I(j) <I(i)) then
I(5) :=1(i) +1
if j < ¢ then call next(j)
endif
endif
endfor
end procedure

28

level 1

level 3

level 2

level 4

level 5

level 6

level 7

Let the following project to be completed.

activity | precedent activities | execution time
A - 1
B - 2
C - 3
D A 2
E A 3
F A 4
G B, F 5
H C, G 2
I C, G 3
J B, F,D 4
K B, F 1
L B, F 1
M E, H J, K, L 2
N HILL 3
(@) H, L 2

The corresponding acvtivity digraph is the following:

29

If we consider that vertices vi,vs,...,v, are distributed on levels in this
order, than the following algorithm (the Critical Path Method — CPM) will
give us the time moments ¢; and ¢; attached to each vertex v; in acvtivity
digraph. Vertices in acvtivity digraph can be considered as some events is
the project. If the moment of beginning the project is considered to be 0,
than the time moment ¢; represents the earliest time and ¢; the latest one
when all activities from this event v; can start (these activities are the arcs
outgoing from v;).

t1::0
for j =2,3,...ndo

tj = max (ti + dzj)
v € N (v;)
endfor
ty =1tp

fori=n—-1,n—2...1do

For our example we have:

30

vertexH’ul‘02‘03‘1}4‘115"06"07‘118‘119‘
t; 0 1 2110 512 | 13 | 12 | 16
t; 0 1 511010 |13 |13 |14 | 16

We define now some time resources that are availables running the
project.

Ry(vi,v5) = t7 —t; — d;; the total time resources. Activity (vi,v;) can be
started later with this amount of time without influencing the duration of
project.

Ry (vi,v;) = tj —t; — dyj the free time resources. Activity (v;,v;) can be
started later with this amount of time without influencing the time moment
t;.

R (vi,v;) = max(t; —t} —d;;,0) the safe time resources. Activity (v;,v;)
can be finished later with this amount of time without influencing the du-
ration of project.

Vertices for which all these time resources are equal to 0 are on a path
called the critical path. The activities on this path must be completed
without lateness.

These time resources for our example are the following:

activity | execution total time free time safe time
time resources: Ry | resources: Ry | resources: R,
A 1 0 0 0
B 2 3 3 3
C 3 7 7 7
D 2 7 2 2
E 3 10 8 8
F 4 0 0 0
G 5 0 0 0
H 2 1 0 0
I 3 0 0 0
J 4 5 3 0
K 1 8 6 6
L 1 7 6 6
M 2 2 2 0
N 3 0 0 0
O 2 2 2 1

We can modify the Floyd-Warshall algorithm to obtain the length of the

31

longest paths between any two vertices. In Dy we have:

W(’UZ', ’Uj) if (’UZ', ’Uj) el
dy =140 ifi=j
—00 if (vi,v;)y € E

D := D()
for k:=1tondo
fori:=1tondo
for j:=1tondo
if d;; < dj + dij then d;; := d;;, + di;
endif
endfor
endfor
endfor

The earliest and the latest time for an activity are the following:

t; = dy; fori=1,2,...,n
iy =dip —dy, fori=1,2,...,n

For the above example the length of the longest paths between vertices
are:

L [vl vof vs| wa| vs| we| wr| ws[ouwg]
V1 0 1 5 10 5 12 13 12 | 16
vy || —00 0 4 9 4 11 12 11 | 15
v3 || —o0 | —00 0 5 0 7 8 7111
Vg || —00 | —00 | —00 0| —oc0 2 3 2 6
v || —00 | —00 | —00 | —00 0| —o0 | —0 41 6
vg || —00 | —00 | —00 | —00 | —00 0 0 0 3
v || —o0 | —00 | —00 | —00 | —00 | —00 0| —oc0 3
vg || —00 | —00 | —00 | —00 | —00 | —00 | —00 0| 2
vg || —00 | —00 | —00 | —00 | —00 | —00 | —o0 | —o0 | 0

So, the time moments ¢; and ¢] are:

‘verteval‘02‘03‘04‘05"06"07‘Ug‘vg‘
1; 0| 1| 2|10 512 |13 | 12 | 16
t; 0| 1| 5101013 |13 |14 | 16

32

If activities have no precise execution time, but only an optimistic and
a pessimistic value, we use the PERT method to evaluate the project time.
(PERT = Programme Evaluation and Review Technique or Programme Evo-
lution Research Task). In this case we shall use some probabilistic methods.
The execution time of an activity will be considered as a random values from
the interval given by the optimistic and pessimistic values.

Second model: activity represented by vertex

The activity digraph is modified as follows. The vertices will be the
activities and the arcs will represent the successions of activities. Activities
are considered to be decomposed on levels in the order: vi,vs,...,v,. Here
the start vertex and the terminal vertex are condired not real activities,
they are dummy activities (this is to have only one start vertex and only
one terminal vertex). We shall use the following for each vertex:

tm(’l)i) (% t;‘n (Uz)

tM(’UZ') di t*M('Ui)

d; — the execution time of activity v;

tm(vi) — the earliest time when activity v; starts
t¥.(v;) — the earliest time when activity v; ends
tar(v;) — the latest time when activity v; starts

3, (v;) — the latest time when activity v; ends

The following algorithm compute all these values:

for j:=2,3...,ndo

tm(v;) := max t (v)
v; END(v;)
tm (V) = tm(vj) + d;
endfor

th(vn) = £, (vn)
tar(vp) =t (vn) — dp
fori:=n—1,n—-2,...,1do

ti(v;) ;= min tp(v;
w(vi) e (v5)

33

ta(vi) ==ty (vi) — d;
endfor

v is a critical activity if ¢,,(v) = ta(v) (and of course t7, (v) = t},(v)).
A path with all activities critical is a critical path.

Let us consider the following example.

activity | precedent activities | execution time
A - 2
B - 3
C B 5
D A 3
E A 3
F C,D,E 3
G C 2
0]A |2 2 D5 8|F 11
3215 5(3 8 813 11
01X]|0 2 |[E|5 11]Y 11
0100 51318 11]0 11
0 B3 3 1C |8 8 |G 10
01313 31518 912111

The project can be done in 11 time units. The critical pathis: X, B,C, F,Y .

34

5 Eulerian graphs

A trail is eulerian if it contains all edges of a multigraph. A circuit which
contains all edges of a multigraph is an eulerian circuit. A (multi)graph
having an eulerian circuit is an eulerian (multi)graph. (Take care! In a trail
no edges are repeated. In circuit too.)

Theorem 1 A multigraph without isolated vertices is eulerian if and only
if it is connected and the degree of each vertex is even.

So the graph corresponding to the Konigsberg Bridge Problem is not
eulerian. The degree of all its vertices is odd (deg(a) = deg(c) = deg(d) = 3
and deg(b) = 5).

Proof. a) If the multigraph has an eulerian circuit then it must be con-
nected and each vertex has even degree, because the eulerian circuit enter a
vertex by an edge and leave it by another one.

b) Let us consider a connected multigraph with all vertices having even
degree. We shall prove by induction on number of edges that there is an
eulerian circuit in it. If the multigraph is connected and the degree of
vertices is even, we easily can find a circuit. If this is not containing all
edges of the multigraph, let us delete from multigraph the edges of this
circuit. The resulting multigraph, not neccessary connected, will have even
degree vertices, but less edges. In each its connected component there will
be an eulerian circuit by the induction hypothesis. Let these be €1, &, ... E.
The original circuit with these circuits £1, &9, . . . & will be an eulerian circuit
in the original multigraph. O

Theorem 2 The connected multigraph G has an eulerian trail if and only
if G contains vertices u and v with odd degree and all the other vertices with
even degree.

35

Proof. By introducing a new edge between u and v the multigraph ob-
taining will have an eulerian circuit (see Theorem 1). Removing the added
edge {u,v} an eulerian trail will result. O

Theorem 3 If in a connected multigraph G the number of odd degree ver-
tices is 2k then there exist in G k edge-independent paths which together will
cover all edges of the G.

Proof. Two paths are edge-independent if they have no edges in common.
By adding k£ new edges between the 2k vertices to have only even degree
vertices and using Theorem 1 the proof is immediately. O

Algorithm to find an eulerian circuit (Fleury)

An edge in a multigraph is a bridge, if its deletion increase by one the
number of connected components of the multigraph.

Let us check if the multigraph is eulerian. If yes, let us begin with an
arbitrary edge. Remove it. Select an adjacent edge to the deleted one which
is not a bridge, delete it, and continue until the last edge is selected which
must be adjacent to the first one selected. The selected edges will produce
an eulerian circuit in order in which were deleted.

Another algorithm based on the proof of the Theorem 1 can easily be
found.

For digraphs (and for directed multigraphs too) the following results are
true.

Theorem 4 A connected digraph contains a directed eulerian circuit if and
only if for each vertex out-deg (v) = in-deg (v).

Theorem 5 A connected digraph G contains a directed eulerian trail if and
only if G contains vertices u and v such that out-deg (u) = in-deg (u) + 1,
out-deg (v) = in-deg (u) — 1 and out-deg (z) = in-deg (z) for all other
vertices x of G. The trail begins at u and ends at v.

An interesting result on multigraphs:

Theorem 6 The edges of a connected multigraph can be traversed such that
each edge is traversed exactly twice (once in each direction) and this traversal
will terminate at the first vertex where it began.

36

Proof. After any direction of the edges of the multigraph add an arc
(v,u) for each arc (u,v). For the resulted directed multigraph we can apply
Theorem 4, which we’ll give the corresponding circuit.

37

6 Hamiltonian graphs

In 1857 the Irish mathematician Sire William R. Hamilton invented a game
which used a regular dodecahedron (which has 20 vertices, 30 edges and 12
faces, each face is a regular pentagon). Each vertex was named after a city
and the game asks to visit all cities once and return to the first one. The
corresponding graph is the following:

A path is hamiltonian if contains all vertices of a graph. A cycle which
contains all vertices of a graph (a spanning cycle) is a hamiltonian cycle.
A graph (or maybe a multigraph) is hamiltonian if contains a hamiltonian
cycle. This problem is more complicated than the eulerian one. At this time
we know only sufficient conditions for a graph to be hamiltonian.

Theorem 7 [Ore| If in a graph of order n > 3 for each two nonadjacent
vertices u and v we have that deg(u) + deg(v) > n then the graph is hamil-
tonian.

Proof. Let us consider the graphs with the above property, but which
are not hamiltonian. From these graphs let us consider one which has the
maximal number of edges. Adding the edge {u,v} the graph will become
hamiltonian. So in the original graph there exists a hamiltonian path u =
V1,V2y...,Up = V.

38

U1 V2 U3 Vi-1 U Un

On this path must exist two adjacent vertices v; 1 and v; such that v is
adjacent with v; and v, with v;_1, otherwise deg(v1) < n—1—deg(v), which is
a contradiction. In this case the cycle vi,va,...,vi—2,Vi—1, Un, Un—1,. - - Vi+1, Vi, U1
is a hamiltonian one. O

Theorem 8 [G. Dirac| If in a graph with at most 2k vertices each vertex
has degree at least k (k > 1) then the graph is hamiltonian.

Proof 1. Use the Ore’s theorem!
Proof 2. (Independent proof)
To prove the theorem we shall use the following lemmas.

Lemma 1 If in a graph with at most 2k vertices each vertex has a degree
at least k then the graph is connected.

Proof. Let us consider that the graph has at most 2k vertices, each vertex
has degree at least k, however the graph is not connected. If this is the case,
the graph has at least two components and their is a component with no
more than k vertices. In this component the maximal degree is kK — 1, which
contradicts our assumption that each vertex has degree at least k. |

This property is not true for multigraphs. Give an example!

Lemma 2 In a graph in which each vertex has degree at least k > 1 there
erists a cycle with length at least k + 1.

Proof. Let us consider a longest path ag,a1,az2...:

For each vertex v: deg(v) > k, so ag has degree at least k& too. But
because the path ag, a1, a9, ... is a longest one, ag can be adjacent only with

39

vertices from this path. ag has degree at least k, so it must be joined in the
worst case with vertices a1, as,...a;. In this case a cycle with at least £+ 1
vertices spring up. O
Proof of the theorem 8. By lemma 1 the graph is connected. By lemma
2 in the graph there exists a cycle with length r > k + 1.

Uy
U2
Uy

Uy
@ ®e— - @& —©0
(%1 V2 (U

Ur—1
Up—1 Ur—2

If this is not a hamiltonian one (r < 2k), from one vertex of it, maybe
uy, there exists a longest path w,,v1,...,v; which vertices are not on the
cycle. Because this is longest path and deg(v;) > k, vertex v; is adjacent only
with vertices from this path or from the cycle. But v; cannot be adjacent
with the vertices ui,ug...,u; and uw, j, 4, j4+1,...u, (in this case a longer
cycle will result). Vertex v; cannot be adjacent with two adjacent vertices
Up41,Ul42,- -+, Up—j—1 because after replacing the edge between these two

adjacent vertices by the two adjacent edges with v, a longer cycle result. So
r—

v; can be adjacent only with at most vertices from the cycle. But v;

must have at least k — [adjacent vertices from the cycle (because it can have
— 21
"= 2 S k—1, that is r > 2k,

which is a contradiction. O

at most | adjacent vertices on the path), so

-1
Theorem 9 Let G be a graph of order n > 2. If deg(v) > nT for every

vertez v of G, then G contains a hamiltonian path.

Proof. Let G’ be the graph obtained from G by adding a new vertex z
and all the edges from this to the other. In G’ deg(z) = n and deg(v) >

40

n—1 n+1
g T1=

8 the graph G’ contains a hamiltonian cycle. Removing z from this cycle, a
hamiltonian path in G results. o

for all v in G, but G’ is of order n + 1, so by Theorem

Theorem 10 [L. Rédei] After any orientation of edges of a complete graph
K, (n > 2) the resulting digraph contains a directed hamiltonian path.

Proof. Let us consider a longest directed path L in the K, after the

orientation of the edges.
a p q b

>@ >@ @ i 4 " 4 -—@ -9 L

r

We have the following arcs: (a,r) (if there exists the arc (r,a), L is not
the longest path) and (r, a). In this case must exist the arcs: (p,r) and (r, q)
and then the path a,...p,r,q,...,bis longer than L, which ia contradiction.

O

De Bruijn graphs

Let A be an alphabet of n letters. A* is the set of all words of length k
over A.

De Bruijn graph: B(n,k) = (V(n,k), E(n,k)) where V(n,k) = A* is
the set of vertices, E(n,k) = A**! the set of arcs. There is an arc from
12 ...-Tk to Y1y .. - Yk if.’EQIBg....’L‘k =Y1Yy2...-Yk—1-

The de Bruijn graph B(2,2).

41

The de Bruijn graph B(3,2).

Properties of hamiltonian graphs

Theorem 11 If a connected graph G after deleting k vertices becomes a
nonconnected graph with more than k components, then G doesn’t contain a
hamiltonian cycle. If after deleting the k vertices G becomes a nonconnected
graph with more than k + 1 components, then G doesn’t contain even a
hamiltonian path.

42

43

Latin matrix (or square)

E {
‘]
{

()

0 ab 0 ad
ba 0 0 bd .
A= ca cb 0 cd AT =
0 0 de O
A®) = A® A*
A®) = Ak=1) @ A% for k > 2.
0 0 adc abd
0 0 bde bad
A2 = cad
cba cab 0 { chd }
\ dea deb 0 0
(0 adcb abdc 0
bdca 0 badc 0
AB) = cbad
0 0 0 { cabd }
deba dcab 0 0
adcba
{ abdca } 0 0
R i S
AW = adce
0 0 cbadc
cabdc
0 0 0

4

4

SR & O

}

O T O o

{

o O O o
S Q&R

dcbad
dcabd

}

7 'Trees and forests

Let us consider a multigraph G = (E,V,G), where m = |E|, n = |V, and
k = k(QG) is the number of connected components. We define the cyclomatic
number as v(G) = m —n+ k.

Theorem 12 Let G be a multigraph and G' the graph obtained by adding
an edge to G.

a) If the new edge is a loop or join two vertices in the same component,
then

v(G") =v(G) + 1.
b) If the edge join two vertices from two components, then
v(G@') =v(G).

Proof. In case a) by adding an edge will increase only the number of edges
by 1, so ¥(G') = v(G) + 1. In case b) the number of edges will increase by
1, but the number of component will decrease by 1. So v(G') =v(G). O

Let E = {e1,€2,.--,em}. A cycle is represented by a (characteristic)
vector v = (v1,v2,...0y) where v; = 1 when the edge e; belongs to cycle
and v; = 0 otherwise. We define the addition of vectors: v = v! +v?2, where

v — 1 ifvil—}—vz-?:l
10 ifvz-1+vz-2=2orvz-1+vi220

The cycles c1,ca,...cp are independent if for the correspondig charac-

teristic vectors v, v2 ..., vP we will have for any o; € {0,1}:

011V1+012V2+...+Otpvp:0 = a1 =0,a9=0,...0,5 =0,

where 0 = (0,0,...,0).

45

The characteristic vector for the cycle [e1, eg, eg, e7] is (1,0,0,0,0,1,1,0,1).
The cycles [es, g, €3], [es, €3, €7, eg9] and [es, e5, eg, g, e7] are not independent,
because for their characteristic vector we have:

(0,0,0,0,1,1,0,1,0) + (0,0,1,0,0,1,1,0,1) + (0,0,1,0,1,0,1,1,1) = 0.

A maximal independent vector set is a fundamental (or basic) cycle
system. Every cycle not in the basic cycle system can be written as a linear
combinations of cycles (vectors) in the basic system.

V(@) represents the maximal number of independent cycles (or the car-
dinal of the basic cycles system) in G. If v(G) = 0 then G has no cycles.

A tree is a connected graph without cycles. If a graph has no cycles it is
a forest (which is a union of trees). So for a forest we shall have v(G) = 0.
(A tree is a connected forest.)

Vertices with degree 1 are called leaves. In each tree there are at least
two leaves.

tree forest

A spanning tree of a graph G is a subgraph of G which is a tree and
contains all vertices of G (it is spanning subgraph which is a tree). In a tree
every edge is bridge.

46

Theorem 13 Let G be a graph of order n. The following statements are
equivalent and characterize the trees.

(1) G is connected and without cycles,

(2) G is without cycles and it contains n — 1 edges,

(3) G is connected and it contains n — 1 edges,

(4) G is without cycles, but adding an edge between any two not adjacents
vertices, a cycle will result,

(5) G is connected, and after eliminating any edge it become discon-
nected,

(6) any two vertices of the graph are connected by a single path.

Proof. (1) = (2): If G is connected then k = k(G) = 1 (composed by
only one component), and without cycles, then v(G) = m —n+1 =0, so
m=n—1.

(2) = (3): G without cycles: v(G) =m —n+k=0andm=n—1=
k=1.

(8) = (4): k=1and m =n—1 = v(G) = 0. Adding a new edge, in
v(@G) only the value of m will increase, so ¥(G) = 1, a cycle will appear.

(4) = (5): If G is not connected, adding a new edge between two vertices
in two components a new cycle doesn’t result, which is a contradiction with
(4), so G must be connected.

G is without cycles and connected, so ¥(G) = m —n+ 1 = 0 and
m = n — 1, eliminating any edge, only m will decrease, and k£ must be equal
to 2 to have v(G) =m —n+ k= 0.

(5) = (6): G is connected, and if between any two vertices exist 2
different paths, a cycle result, but in this case by eliminating an edge from
cycle, G will remain connected, which is contradiction with (5).

(6) = (1): If any two vertices are connected by a path, the graph is
connected. If G contains a cycle between two vertices of this, there are two
paths between them, which is a contradiction. O

Theorem 14 A spanning tree T of a graph has the following properties:
(1) T is connected,
(2) T is without cycle,
(8) T has n vertices,
(4) T has n—1 edges.
If a subgraph T of a graph G has any three of the above properties, then
T is spanning tree.

Remark. Properties (2) and (4) guarantee the spanning tree, it is not
necessary a third property.

47

Rooted trees.

A rooted tree is a directed tree in which there is a special vertex r, named
root and for each vertex v there is an r—v directed path.

g

a rooted tree a digraph which is not a rooted tree (but can be)

Binary trees.
Binary trees are defined recursively:

1. A vertex is a binary tree and is considered as a root.

2. If A and B are binary trees with roots a and b then the following are
binary trees in which A is left subtree and B a right subtree:

— a tree with a root r, which is joined by an edge with a and by one with
b’

— a tree with a root r, which is joined by an edge with a,

— a tree with a root r, which is joined by an edge with b.

Graphically:

Binary trees are not directed graphs, but we can consider that their are,
because they have a root and edges can be considered as arcs oriented from
root towards leaves. We always draw binary trees with the root in top and
the other vertices below.

We enumerate all binary trees with 2 and 3 vertices.

48

A

n=2

R

n=3

There are three methods of visiting the vertices of a binary tree:

— preorder traversal
— inorder tarversal
— postorder traversal

©

@)

procedure preorder(a:bin);
Begin
if a<>nil then
begin
write (a”.info:3);
preorder (a”~.left);
preorder (a”.right);
end;
End;

procedure inorder(a:bin);
Begin

49

preorder: A,B,C,D,F,H,E,G
inorder: B,A,D,H,F,C,G,E

postorder: B,H,F,D,G,E,C, A

if a<>nil then
begin
inorder (a~.left);
write (a”.info:3);
inorder (a”.right);
end;
End;

procedure postorder(a:bin);
Begin
if a<>nil then
begin
postorder (a”.left);
postorder (a”.right);
write (a”~.info:3);
end;
End;

Minimal spanning tree

Let as consider a weighted graph. The value of a spanning tree is the sum
of the weight of edges in spanning tree. We are interested in the spanning
tree with minimal value, which is called the minimal spanning tree. There
are two well-known algorithm to find a minimal spanning tree.

50

Kruskal algorithm

Let us arrange the edges in ascending order by the weights. The first edge
will be included in the future spanning tree (the included edge is marked
below by a star). At the beginning each edge is in a separate set. We put
an edge in the spanning tree only if its incident vertices are in different sets,
and these sets will be unified. The algorithm finds the minimal spanning
tree when all vertices belong to the same set.

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}

{5,7} 1 = {5,7}, {1}, {2}, {3}, {4}, {6}, [8}
{7,8} 2 {5,7,8}, {1}, {2}, {3}, {4}, {6}
{3,8} 3 x {3,5,7,8}, {1}, {2}, {4}, {6}
{1,3} 4 x {1,3,5,7,8}, {2}, {4}, {6}
{3,4} 4 x {1,3,4,5,7,8}, {2}, {6}

{4,8} 4

{2,3} 5 x {1,2,3,4,5,7,8}, {6}

{1,5} 6

{2,5} 6

{4,5%} 6

{1,6} 8 * {1,2,3,4,5,6,7,8}

{3,5} 9

{1,2} 10

{5,6} 12

{5,8} 13

The edges marked by star are on the minimal spanning tree. The minimal
spanning tree is the following:

51

Prim algorithm

The basic idea of this algorithm is that among all incident edges to a
given vertex z the one with minimal value must be in the minimum spanning
tree. If not, by putting this edge in the minimum spanning tree, a cycle will
arise, and after deleting any other edge incident to vertex z from this cycle,
a new spanning tree with less value will appear, which is a contradiction.

Let’s begin with any vertices. This vertex will be put in a set A, rest of
the vertices remain in a set B. (Always AU B = V.) Let us consider all
edges between these two sets. Select the edge from these with the minimal
weight. Put the second incident vertex to this in the set A. Continue until all
vertices get in A. The selected edges are the edges of a minimum spanning
tree.

52

53

Prifer code

The Priifer code of a rooted tree is sequence of natural numbers. Let us
label the vertices of a tree by consecutive naturals in any order. From leaves
select the one with the minimal label. Put in the sequence the parent of
this vertex. Delete from tree the selected leaf and continue until no vertex
remains. The obtained naturals represent the Priifer code of the tree.

q @
(@/ (4) @ 2.3,2,1,6,1

For a tree with n vertices, this code will have n — 1 naturals. In the last
position in this code always will stay the label of the root. The first n — 1
positions in this sequence represent an (n — 2)-permutations with repetition
of n elements. There are n® 2 such different permutations. So, this is the
number of all different rooted trees with n vertices. (Between these can be
isomorphic trees but with different labels.)

Theorem 15 (Cayley) If we label with consecutive naturals the vertices

54

of a complete graph of order n, then this will have n™ 2 different spanning
trees.

Example. For K; we will have 42 = 16 different spanning trees.
I : I I L] @
K, a) b) c) d)

There are four spanning trees of type a), four of type b), four of type ¢) and
four of type d).

The decoding algorithm:

Let a be the first natural in the the Priifer code. Consider the least
natural b which is not in the Priifer code (sequence). Put in the tree an
edge from a to b. Delete the first number from the sequence and put in
the number b. Continue until all numbers in the original sequence will be
deleted.

213121161

S (NN | O |

® 660 O ®

55

O @
/@5 @ <\@ /d @i@ \@
® ©

9 6

Huffman algorithm
Let us consider a rooted tree with the leaves v1,vo, ..., v, labeled by the

following weights: w1, ws, ..., w, (in this order). If the length of the path
k

from the root to the leaf v; is /;, then we are interesting in the value Z wjlj,
i=1
the weighted pathlength.

The problem is: Find a rooted binary tree with the minimal weighted
pathlength for a sequence of numbers (which label the leaves).

Select the two least numbers in the sequence, let these be w; and wj,
delete them from the sequence, add to the sequence the number w; + w;,
put in tree the following subtree

Qwi +w;
N

w; O wy

Continue until the sequence will reduce to a single number. The correspond-
ing tree will be with the minimal weighted pathlenght.

Example.

The sequence is: 2,4,7,8,13,19,20

6,7,8,13,19,20

56

8,13,13,19, 20
@ O

A

A
(1) 13,19,20,21
@ @
A A
A e°
@ 20,21, 32
@ O

o7

ﬂ 32,41

"
\,

The weighted pathlength for this tree is:
2-5+4-5+7-4+8-3+20-2+13-2+19-2 =186,

which is minimal. Any other binary tree has a larger weighted pathlength.
For the following tree

58

/O\
AN

O O
® O O 6® ®

the weighted pathlength is: (2+4+7+8+13+19)-3+20-2=199.

8 Planar graphs

A graph is planar if it can be drawn in the plane without any intersection
of its edges.

X

Ky

For example in the figures above the K4 can be drawn without intersec-
tion of its edges, but K5 cannot (At this moment we cannot say that Kj is
nonplanar, this will be proved later.)

n=28
m =11
T =

If we draw a planar graph such that any two edges of it do not intersect
than this is called a plane graph. The vertices and the edges of a plane
graph determines some regions (see regions r1,79,73,74 and 75 in the above
graph). From these only one is unbounded, the other are bounded regions.

Theorem 16 In a plane graph the boundaries of the bounded regions form
a basic cycle system.

Proof. The proof is made by induction on the number of regions. Any new
region contains at least a new edge, so if the number of regions increases by
one, the number of basic cycles will increase by one too. O

So the number of regions is equal to the cyclomatic number plus 1 (cor-
responding to the unbounded region): 7 = v(G)+ 1. From this the following
theorem results (because v(G) =m —n + 1).

Theorem 17 (Euler) If a connected plane graph has n vertices, m edges
and r regions, then

n—m+r=2.

60

Another proof: Let us consider a plane graph and the number n —m 4 r.
If we eliminate an edge from a cycle, the number of edges will decrease by
1, and the number of regions too. So the number n —m + r is the same for
this new graph, and will remain constant by this operation of eliminating an
edge from a cycle. If we eliminate all edges from cycles, the resulted graph
will be a tree for which the number n — m + r is the same constant and is
equal to 2 (because r = 1 and m = n—1). So the original number n —m+r
is equal to 2.

This formula of Euler can be used to prove that the graphs K5 and K33
are not planars.

Ks Ks3

)

Theorem 18 K35 is nonplanar.

Proof. If K5 is planar, we can use the Euler’s formula. We have: n = 5,
m = 10 and each region contains at least 3 edges on boundaries. So

2m 20
Ir<2m = r<-—=—.
- -3 3
So, because r is an integer, we must have r < 6. But from the Euler’s
formula r =2 — n 4+ m = 7, which is a contradiction. O

Theorem 19 K33 is nonplanar.

Proof. If K33 is planar, we can use the Euler’s formula. We have: n = 6,
m = 9 and each region contains at least 4 edges on boundaries. So

m 9

4r<2m = r<-—=-.

- -2 2
So, because r is an integer, we must have r < 4. But from the Euler’s
formula r = 2 — n 4+ m = 5, which is a contradiction. O

We define the contraction on graphs as being the operation by what we
eliminate a vertex of degree 2 and join the corresponding two vertices by an
edge.

61

]E i]E i
Theorem 20 (Kuratowski) A connected graph G is planar if and only if
G does not contain any subgraph which can be contracted to a K5 or K3 3.

In the below graph after eliminating the edges {1, 7}, {6, 7} and {2, 3}, {4, 5}
a graph results, which easily can be contracted to K3 3, so the original graph
is nonplanar.

Each plane graph can be drawn such that the edges are straightline
segments. For example:

&5 %\

Theorem 21 In a connected plane graph with n > 3 the following are true:
a) r <2(n—2)
b) m < 3(n—2).

62

Proof. a) Each region has a boundary of at least 3 edges, so 3r < 2m.
Using the Euler’s formula

3r<2m=2(n+r—2) fromthis r<2n-—4

b) Using the result in a) we will have m =n+r —2 < 3n — 6. O

Theorem 22 In a planar graph always there exists at least a vertex with
degree at most 5.

Proof. If all vertices are of degree at least 6, then

2m = deg(v) > 6n
veV(Q)

From this m > 3n results in contradiction with the result of the previous
theorem, that says m < 3n — 6. O

Dual graphs

For a plane graph (or maybe plane multigraph) G let us define the dual
graph G*. To each region in G will correspond a vertex in G*. Two vertices
in G* are joined by p parallel edges if the corresponding regions in G have
p edges in common.

1

T2

G G*

A set of edges in a graph is an (edge) cutset if by deleting these edges
the graph becomes disconnected. Let us draw the above graphs by labelling
the edges with letter a,b,c,... in G. If two regions has in common an edge,
the corresponding edge in G* will be labelled by the same letter.

63

Let us notice that the set of edges of a cycle in G is an edge cutset in
G* and conversely a set of edges of an edge cutset in G* correspond to the
edges of a cycle in G.

By this remark we can define the duality more general.

Two graphs G and G* are duals each of other if we can make a 1-1
correspondence between edges of them such that to any set of edges of a
cycle in G corresponds a set of edges which is an edge cutset in G* and
conversely, to a set of edges of an edge cutset in G* corresponds a set of
edges of a cycle in G.

Theorem 23 A connected graph G is planar if and only if G has a dual
graph.

64

Crossing number

The crossing number of a graph is the minimal number of crossing edges
among all drawings of the graph in plane. This number will be denoetd by
¢(@). For all planar graphs the crossing number is 0. As we have been seen
before ¢(K5) =1 and ¢(K33) = 1.

Theorem 24 ¢(Kg) = 3.

Proof. Instead of Kg let us consider a new graph: put in every crossing
point a new vertex. Then the resulting graph will have n’ = 6 + ¢ vertices
and m' = 15+2c edges (because K has 6 vertices and 15 edges). In this new
graph, which is a planar one, we have m' < 3n' —6, so 15+ 2c¢ < 18 + 3¢ — 6,
and ¢ > 3 results. But we can draw K with exactle 3 crossings, so ¢(Ks) =

Easily can be proved by the same method, that:

(n—3)(n—4)
c(Ky) > "

For upper bound we have:

)< 5 |"5 |5 |5

For n < 10 the equality holds, and it is conjectured for all n.

For a complete bipartite graph K, , we have:

w352 17

For 1 < min(m,n) < 10 the equality holds.

65

9 Flows in networks

Let us consider some notations which will be useful in the following. Let X
be an arbitrary set, Z the set of integers. If g is a function g : X x X — Z
we shall use the following extension on sets.

If A,B C X, then g(A4,B) = Z g(z,y).

Tz €A
yEB

Properties of this function:

1) g(A,BUC) =g¢(4,B) +g(4,0)
2) (AU B,C) =y¢(A,0) +¢(B,C)
3) If BNC = then
g(AaBUC) :g(AaB) +g(AaC)
9(BUC, A) =g(B,A)+¢(C, A)
HUf: XxX—>2Z,g: XXX —>Z,h:XxX—>Zand f=g+h
then

9(A,BNC)
9(ANB,C)

f(A,B) =g(A,B)+ h(A,B) for A,B C X.
If A = {a} then instead of f({a}, B) we shall write f(a,B). In the
following we shall use capital letters to denote sets and small letters to
denote elements of sets.

A network is a connected directed graph (V, E) with the properties:
a) Is €V : N'"(s) = 0, s is called source,
b) It € V : N°U(t) =, t is called target or sink,
c) A capacity function is defined: « : V x V' — Z_ such that
alz,y) > 0if (z,y) € E,
a(z,y) =01if (z,y) ¢ E.
Such a network will be denoted by (V, E, a, s, t).

A flow in network is defined as a function f : V x V — Z, with the
properties:
1° f(z,y) < a(z,y) (capacity constraint),
2° f(z,V) = f(V,z) for all z € V' \ {s,t} (conservation equa-
tion).
The quantity v(f) = f(s,V) is the value of the flow f.

Theorem 25 v(f) = f(s,V) = f(V,t) for any flow.

66

Proof.

> (f(Viz) = f(=z,V)) = fF(V,V) = fF(V,V) =0,

eV

otherwise

f(Va"E) —f(:E,V) = f(Va 3) _f(S’V)+
m;() {2

+ Y (JVe) — f@V)) +

zeV ;6
T #s,t
+f(Vat) —f(t,V) = f(Vat) —f(S,V).
——

=0

By this theorem we can reformulate the restrictions on flow:
1° f(z,y) < alz,y),

v(f), ifz=s
2° f(.’L',V)—f(V',.’L'): 0, 1fw7és,:v7$t
—u(f), fz=t

Problem.
Find a maximal value flow in a network. A maximal value flow is called
a maximal flow or maximum flow.

Exzamples.

1) Maritime transportation

There are m harbours z1, 2, ...y with some goods in the amount:
81, S92, -. .S, respectively, and n harbours yi,yo,-..,y, with the demands
di,ds, ..., d, respectively. The problem is how can be transported the max-

imal amount of goods by ships from source harbours = to destination har-
bours y if we know that the maximal amount of goods that can be trans-
ported from each z; to each y; in a fixed time interval is ¢;; (capacity of
ships).

Let us consider a digraph with vertices z1,z2,... %y and y1,y2,...,Yn
with arcs from each z; to each y;. Add two new vertices to this graph s and
t with arcs from s to each z; and from each y; to £. Complete this graph

67

with capacities: s; on the arcs (s,z;), d; on the arcs (y;,t), and c;; on each
arc (z;,y;)-
The problem is to find a maximal flow in this network.

I [Cll] 1
[s1 » 2 [d1]

[S9 Z2 Y2 d2]

d
Cln] [
CmZ]
m, > yn
[cmn]

2) Family trip

Families a1, ao, . .., ay, of members s1, s, ..., s, respectively want to go
on a trip by buses. There are n buses b1, bs,...,b, of places di,ds,...,d,

respectively. The problem is the following: can be organized such a trip in
which every two members of a family are in different buses?

The attached network is similar to the previous one. The vertices are
a1,02,...,0y; and by, bo, ..., b,, with arcs from each a; to each b; with the
capacity 1 each of them. Add two new vertices s and ¢ with arc from s
to each a; with the capacity s; arc from b; to ¢ with the capacity d;. The
problem is to find a maximal flow in this network. The problem has a
solution only if this flow saturate all arc from s. An arc is saturated (or is
a saturation arc) if the flow on it is identical to the capacity.

68

3) College dance

Can we organize a dance in a college such that every girl has as partner
an acquainted boy. The acquaintance is denoted by an arc? In the attached
network each arc has capacity 1.

girls boys

The problem has a solution if the maximal flow in the attached network
saturate all arcs from s.

The cut
If in a network we have ACV, A=V \ Aand s € A and ¢t € A then

69

(A, A) is a cut. The capacity of the cut (A, A) is defined as:

a(A,A) = Z a(z,y).
yea

A cut in a network with the minimal capacity is a mininal cut.

Theorem 26 If (A, A) is a cut in a network, then for every flow f we have

Proof. The following are true:
f(S,V) - f(Va 3) = /U(f)a
flz,V)— f(V,z) =0 for z # s,t.

After summing up this equations for all x € A we have:

o(f) = (f@, V)= f(V,2)) = f(A, V) — f(V, A)

T€EA

but V= AUA, and AN A =, and we have (after using the equations from
the beginning of this section):

v(f) = f(AV) = f(V,A) = f(4,AUA) — f(AU A, A)

= f(AaA) +f(AaZ) _f(Aa A) _f(ZaA) = f(A,Z) _f(Z’A) < a(AaA)a
because f(A, A) > 0 always. a

Theorem 27 (Ford—Fulkerson) In a network a mazimal flow has a value
equal to the capacity of a minimal cut.

Proof. By the previous theorem it is enough to prove that there is a
maximal flow and a cut (A4, A) for which:

f(A,A) = a(A, A) and

f(4,A) =0.
Let us define recursively the set A.

1) First, put s in A.

2) If there is an arc (z,y) such that z € A and y € A and f(z,y) <
a(z,y), then put y in A.

3) If there is an arc (y,z) such that x € A and y € A and f(y,z) > 0,
then put y in A.

70

We claim that by this algorithm ¢ € A. If not, then there exists a
sequence i,Z9,...,T, of vertices such that ;1 = s, £, = t and for each
i=1,2,...r—1

(75, zi41) € E and f(z;, 7541 < oz, Tit1), or

(Tit1,7:) € E and f(zit1,7;) > 0.

Let us denote:

€1 = min al(z;, ¢iv1) — fxi, x;
1 Vi: (l‘z’,l'i+1)EE((73 Z+1) f(iy z+1))

2= (;?:BmeEf(mHl,%)-
And let be: € = min{ey,e2}. We can define a new flow f*:
1) (@i, iv1) = f(2i, wiv1) + € i (23, 7i41) € B
2) [M(@iv1, %) = f(@ipr, i) — € if (Tig1,23) € E
3) f*(z,y) = f(z,y) for arcs out of the sequence z1,z9, ..., z,.

It is easy to verify that this function is a flow with the value v(f*) = v(f)+e,
which is a contradiction, because we have been supposed that f is maximal.
By the definition of the set A we can conclude:

V(z,y) € (A, A): f(z,9) = a(z,y)
V(y,z) € (A,A): f(y,z) =0, which proves the theorem.

An example:

In the above example the capacities are written in brackets, the value of
flow on arcs without brackets. The value of the considered flow is 50, which
is a maximal flow, because there exists a cut A = {1,3,4}, A = {2,5} with
the capacity 50 too. All arcs from A to A: (1,2),(3,5),(4,5) are saturated,
the single arc from A to A: (2,3) has 0 flow on it. O

This theorem is also called the maz-flow min-cut theorem.

71

A max-flow min-cut algorithm (The Ford—Fulkerson algorithm)

Based on the above theorem an algorithm to find the maximal flow is
considered. The algorithm labels step by step the vertices of the network.
A label of the vertex y is (z+, Ay) or (z~, Ay), where 1 means that on the
arc (z,y) the flow can be increased by Ay and =~ means that on the arc
(y,z) the flow can be decreased by Ay.

At first we consider that there is a null flow (0 on each arc).

Let us begin the algorithm by labeling vertex s with (—, c0).

At each step if (z,y) € E, z is labeled, y is not labeled and f(z,y) <
a(z,y), then we label vertex y with (z*, Ay), where Ay = min (Az, a(z,y)—
f ("B ’ y)) '

If (y,x) € E, x is labeled, y is not labeled and f(y,z) > 0, then we label
vertex y with (2, Ay), where Ay = min (Az, f(y,z)).

If we can label vertex ¢, then there exists a semipath from s to ¢ on which
the flow can be modified with the value At, the first element in the label
determines which is the previous vertex and how the flow must be modified.
We continue with the label of the previous vertex, and so on.

If we cannot label vertex ¢, then the flow is maximal, the labeled vertices
are in the set A and the others in A of the minimal cut (4, A).

[3]
~(4
[2] 3]
(4]
[5] (s
The labeling process
The flow is equal to 0 on each arc.
vertex 1 2 4 6

label (—,00) (11,4) (2,3) (4t,4)

72

The flow is changed as follows: f(4,6) = 3, f(2,4) =3, f(1,2) = 3. After
deleting the labels, we will continue.

vertex 1 2 6
label (—,00) (17,1) (2*,1)

The flow is changed as follows: f(2,6) = 1, f(1,2) = 4. After deleting the
labels, we will continue.

vertex 1 3 2 6
label (_a OO) (1+’ 6) (3+7]-) (2+7]-)

The flow is changed as follows: f(2,6) =2, f(3,2) =1, f(1,3) = 1. Con-
tinue, after deleting the labels.

vertex 1 3
label (—,00) (1%,5)

At this moment vertex ¢ cannot be labeled, so the flow is maximal. The
minimal cut is: A = {1,3}, A ={2,4,5,6}. The value of the flow is 5.
The resulted network with the3 maximal flow:

i
o)

73

Analysis of the Ford-Fulkerson algorithm
The semipath on which the Ford-Fulkerson algorithm improves the flow
is the augmenting semipath.

Let us consider the following example:

Using the Ford-Fulkerson algorithm, we can get the solution in two steps.
Starting with the null flow (value 0 on each arc), on the path 1,2,4 we can
increase the flow by 100, and in the same way on the path 1,3,4 two. So
the value of the maximum flow is 200.

But equally the algorithm can use firstly the path 1,3, 2,4 and increases
the flow by 1. After this, using the semipath 1,2,3,4, the flow can be
modified by 1 too.

74

Continuing in this way, the result will be found after 200 steps. So the
complexity of the algorithms depends on the value of the flow. If m = |E(G)|
is the number of arcs of the network, v(f) is the value of the maximum flow,
then the complexity of the algorithm will be O(muv(f)) or O(n?v(f)), if n is
the number of vertices of the network (pseudopolynomial algorithm).

This method can be improved, if we use an implementation in which
always the shortest semipath is used (arcs are considered to have weight
equal to 1). The augmenting semipath is computed by a breadth-first search
algorithm, so it will be a shortest one.

This new version of the Ford-Fulkerson algorithm will be called the Ed-
monds-Karp algorithm. The complexity of this algorithm is O(nm?) or
O(nd).

The residual network. Let N = (V, E,«, s,t) be a network and f a
flow in it. The corresponding residual network is Ny = (V, E',d/, s,t) where
o = a— f and E’ is obtained from E by deleting the arcs with capacity

equal to 0.
For the following network and flow

75

2] 2
(3] 0\@
4] 0
[5] 0 (s
the corresponding residual network is:
2 2 4
S
[2 2]
3 ®
[5] [4]
) [5] (s

If f is a flow in a network, and f' is a flow in the corresponding residual
network to f, then f + f’ is a flow in the original network with the value

v(f) +o(f).

Residual networks can be used to prove the correctness of the Edmonds-
Karp algorithm.

Flow in generalized networks

Generalized network G = (V, E,3,a,s,t), where V, E,s,t have same
meanings as in the case of flow networks. Functions 8 and «, defined on

76

V x V and with nonnegative integer values, are the capacity functions (the
lower and the upper capacity functions): § < « and

1) a(z,y) >0if (z,y) € E

2) a(z,y) =0if (z,y) ¢ E

A generalized flow (compatible flow) in a generalized network is a funtion
f:V xV — Z, with the properties:

1) B(z,y < f(z,y) < afz,y) for z,y € V
2) f(V,z) = f(z,V) for z € V' \ {s, t}.

The value of the generalized flow is v(f) = f(s,V) = f(V,).

We are interested in maximum generalized flow (or sometimes maybe in
minimum generalized flow).

There is a problem: When a generalized flow exists?

In vertex 2 the maximal value of incoming flow can be 2, but the outgoing
flows must be 3 (3+0), so a generalized flow cannot exist.

To answer the question when a generalized flow exists, we shall trace
back the problem to a classical flow network. Let us attach to a generalized
flow network G = (V, E, a, s,t) a flow network G* = (V*, E*, a*, a, z) in the
following way:

V* =V U{a,z}

E*:=EU{(a,z) | N§(z) # 0} U{(z,2) | Ng"(z) #0} U {(t,)}
a*(way) = a(m,y)—ﬁ(:v,y), Viﬂ,yEV

a*(a,z) :== B(V,)

o*(z,2) = pB(z,V)

7

a*(t,s) := oo

Remember that:

BV,z)= Y Bly,z), BV)= > Bz

yEND (z) yeN(z)

An example of a generalized flow network.

The corresponding flow network:

78

The following theorem answer our previous question.

Theorem 28 In the generalized flow network G there exists a generalized
flow if and only if in the attached flow network G* there exists a flow which
saturates all arcs from a.

Proof. I. Let f* be a flow in G* which saturates the arcs from the source
vertex a. But because

a*(a, V) = B(V,V) = oV, 2)

this flow will saturates the arcs to z too.

Let us define f := f* 4 [and let us prove that this is a generalized flow
in the original network.
1. Capacity constraint.

From

0 < f*((z,y) < a*(r,y) = ar,y) — B(z,y) forz,yeV

79

the following results

B(x,y) < flz,y) < alz,y) forz,yeV

2. Conservation constraint.
For z € V'\ {s,t}:

fV,z) = f(2,V) = f*(V,z) + B(V,2) — [*(z,V) = B(=,V)
But
B(V,z) = a*(a,z) = f*(a,z) forz €V \{s,t} (saturation)
Bz,V) = a*(z,2) = f*(z,2) forzeV\{s,t} (saturation)
and because of V* = V U {a, z} we have
[(Viz) + B(V,z) = f*(V,z) + f*(a,z) = f*(V", 2)
[(@, V) + B, V) =z, V) + [(z,2) = f*(z,V7)
Because f* is a flow in G*, we shall obtain:
F(Viz) = f(m, V) = f*(V*,2) — f*(2,V*) =0 forzeV\ {st}

These two prove that f is generalized flow in the original network, so such
a flow there exists.

I1. Conversely, if f there exists, we can prove in the same way that f* is
a flow which saturates the arcs from a. m|

The maximum flow f* in G* is:

80

This flow saturates the arcs from a, so the function f := f*— 8 computed
on the arcs of the network G will be a generalized flow (figure in the left).
The maximum generalized flow, obtained from this, after applying the Ford-
Fulkerson method, if we do not consider the lower capacity, will be the one
in the right figure.

An example when the generalized flow does not exist.

81

The corresponding network and flow.

This flow ia a maximum one. The cutset is A = {a,1,2,4} and A =
{3,z}. Because this flow does not saturates the arcs to z (arc (3, z) is not a
saturating one), there is no generalized flow in the original network.

82

A minimum cost maximum flow

Let us consider a flow network G = (V, E,a, s,t) and a cost function
c:V xV — R, (where Ry is the set of nonnegative real numbers). If f is
a flow in G then the cost of the flow f is defined as:

C(f) =Y elz,y)f(z,y)

T,yeVv

Usually ¢(z,y) = 0 for (z,y) € E, but by our definition this is not important
(because in this case the flow is equal to 0).

We are interesting in minimum cost maximum flow. How can we know
if a given maximum flow is or not of minimum cost? We solve this problem
by attaching to it a weighted digraph in which the absence of a negative
length cycle will correspond to a minimum cost maximum flow.

For a network G = (V, E, a, s,t) a cost function ¢ and a maximum flow
f let us define the following weighted digraph AG with the same vertex set
as in G:

e If on the arc (z,y) in G the flow f(z,y) = 0, then in AG put an arc (z,y)
with the weight

W(z,y) = c(z,y)

e If on the arc (z,y) in G the flow f(z,y) = a(z,y), then in AG put an arc
(y,) with the weight

W(ya .’L') = —C(.T, y)

e If on the arc (z,y) in G the flow 0 < f(z,y) < a(z,y), then in AG put
the both arcs (z,y) and (y, z) with the weights:

W(z,y) := c(z,y) and

W(ya :13) = _C(‘Ta y)

An example:

83

The cost of this flow is C(f) = 3-14+3-14+2-1+1-3+1-2+1-143-4+4-2 = 34.

Theorem 29 (Busacker—Saaty) A mazimum flow in the network G is of
minimum cost if and only if the corresponding weighted graph AG has no
negative length directed cycle.

Proof. 1. Let us prove that if f is a minimum cost flow in G, then in AG
there exists no negative length cycles. This assertion is equivalent to the fol-
lowing: if in AG there exists a negative length cycle, then the corresponding
flow f in G in not of minimum cost.

Let K be a negative length cycle in AG, and let us define the following
function (on arcs only):

Af(z,y) :== f(z,y) +1 if (z,y) is on the cycle K and W(z,y) > 0,

Af(z,y) :== f(z,y) —1 if (y,z) is on the cycle K and W(y, z) < 0,

Af(z,y) := f(z,y) otherwise

Can be proved that this function Af is a flow in G too. Let us use the
following notation:

fe(A) = > clz,y)f(z,y) where ACE
T,y)EA

Can be proved the following:
o ifANB=0 then [f(AUB)=f(A)+ f.(B)

84

o if Af = f+1 then Af.(A) = f.(A)+c(A) where c(4) := Z c(z,y)
(z,y)eA

For simplicity let us denote by K too the set of arcs of the cycle K.
Then E = (E\ K)UK and (E\ K)NK = (. Then
Af(E) = Afe(E\K) + Afe(K) = fo(E\ K) + fo(K) + ¢(K)
= fe(E)+¢(K) < fe(E) becuase ¢(K) < 0 is the length of the cycle K
which is contradiction with the minimality of f.

II. Conversely, can be proved, in the same way, the following: if f is no

a minimum flow, then in AG there exists a negative length cycle.
O

In our example a directed cycle with length -1 exists: 3,4,5,3 wich cor-
respond to two paths in the original network (3,4,5 and 3,5).

This means that the cost of the flow can be descreased by 1, if we increase
the value of the flow on the path 3,4,5 by 1, and descrease on the path 3,5
(here only one edge) by 1.

The new flow and the corresponding weighted graph are the following:

85

The cost of this flow is 33 (the modifications are: +1-1+1-2—1-4).
In this new graph there is no directed cycle with negative length.

To find the negative length cycles, we can use the Floyd—Warshall algo-
rithm. This algorithm doesn’t give us the distance between vertices if there
are negative weights in graph, but we can check if there are or not negative
length cycles. If the result of this algorithm is the matrix D and there exists
a di < 0 for some i, then in the graph there is at least a negative length
cycles.

For our above example the adjacency matrix is:

0 1 o0 oo oo

-1 0 oo o ™

Dy=1] -1 -3 0 1 4
-2 -1 -1 0 2

o oo —4 -2 0

and the result of the Floyd-Warshall algorithm is

0 1 oo oo o0

-1 0 0o o o

D=| -5 —4 -1 0 2
-6 -5 -2 -1 1

-9 -8 -5 —4 -2

Because of the negative values on the main diagonal, in graph there exists
a cycle with negative length.

But we can modify the Floyd-Warshall algorithm to find the shortest
paths even in the case of negative weights and negative length cycles. When
a negative value on the main diagonal appears we will take it 0. In this
case the negative length cycles does not influence any more the length of
the paths.

86

131221)0
cycle := 0
for k:=1tondo
for i :=1ton do
for j:=1tondo
if d;; > di + di; then
dz’j = dy, + dk]’
if dijj <0 and 7 = j then d;; := 0
cycle :=1
endif
endif
endfor
endfor
endfor

For our above example:

0 1 o0 oo ™

-1 0 0o o

D= -5 -4 0 0 3
-6 -5 -2 0 2

-8 -7 —4 -3 0

If at the end of the algorithm cycle > 0, then the graph contains negative
length cycles, and vertex vy is on that cycle.

To find the negative length cycle let use the following algorithm (in which
d0;; is the general element of Dy):

1 := cycle
j= 1I<ni£1 (d0;s + dg;) if j # 4. The arc (v;,v;) is on the cycle.
<s<n
while j # i do
k= 115%217& (d0js + dg;). The arc (vj,vx) is on the cycle.
j=k
endwhile

87

Resuming the flow problems

— flow networks: maximum flow
methods: Ford—Fulkerson O
Edmonds—-Karp O(n®)
preflow (0]

— minimum cost maximum flow
— generalized flow networks: generalized (or compatible) flow

maximum generalized flow
minimum generalized flow

88

10 Matching in bipartite graphs

bipartite graph: G(A, B) with
V=AUB,AnB =10, if {z,y} € E(G), then z € A,y € B.
complete bipartite graph: K, , (all possible edges)

Theorem 30 In a bipartite graph there is no odd length cycle.

Theorem 31 A graph G is a bipartite one if and only if G has no odd
length cycle.

matching: a set of independent edges

complete (or perfect) matching: if every vertices of the graph is incident
to an edge of the matching

mazimum matching: a matching with the maximum number of edges

Theorem 32 (Hall) In a bipartite graph G(A, B) there is a matching which
spans A if and only if for all X C A we have |[N(X)| > | X]|.

Corollary 1 There is a matching in G(A, B) which spans both A and B if
and only if
1) |A] = |B]|
2)VX C A= |[N(X)| > |X].
Methods to find maximum matching in bipartite graphs
1. Alternating paths method
. M bl
a2 bo
as

b3
a4 \' by

bs

89

7.
az ® by

az bs
a4 \ by
bs
@ @ o L o ®
a4 by ai bo a2 by
® o L @ L o
a4 by ai by ag by
. \4 bl
) \2\. :
as @ b3
a4 \ by
bs

2. Flow method

90

3. Independent 1’s method

by | by | b3y | by | b5
ap |17] 1 117010
a9 0 1* 1 0
az| 1101701
as | 110|000
L | L
by | bp | b3 | by | b
a1 1| 0 | 0 |box
az| 0 |[1*]] 0 0 | byx
as 1 1* 0 1 b5*
as 0] o o] o0]bx
ai* | as*x | ag*x | Lx | Lx
b1 | bo | by | by | b5
a1 | 1|11 [0]O0
ag | 0| 110 |1*] 0
a3 | 10101
ag |1*]1 010 |0]O0

maxmatch(G): the number of edges in a maximum matching
mincov(G) : the minimum number of vertices such that every edge of G
is incident to at least one vertex of the considered vertices

Theorem 33 In each graph G: maxmatch(G) < mincov(G)

91

Theorem 34 (Konig) In a bipartite graph G: maxmatch(G) = mincov(G)

A minimum weight maximum matching
a weighted complete bipartite graph
the weight of a matching = the sum of weights in the matching

The Hungarian method
for a weighted complete bipartite graph K, ,

1. Subtraction from rows and columns to have at least one 0 in each row
and column
2. Find a maximum number of independent 0’s.
3. While the number of independent 0’s is not n do
3.1. minimum covering, modification.
3.2. Find a maximum number of independent 0’s.

The complexity is O(n?).

Example.

oo oo
INGIICIENI NN
Wi =] ot
Ao o] oo

Subtract 2 from the first row, 1 from the second row, 3 from the third and
fourth row:

41036
5/6|0]5
310(1]2
211101

Subtract 2 from the first column, 1 from the fourth column:

92

2101315
31604
11011
0117010

Mark by stars a maximum independent set of 0’s. Cover by three lines all
the 0’s.

2100013 5
6 0" 4
1701 |1
0*{1 1010

Modification of the elements (Subtract 1 — the minimum uncovered value
— from all uncovered elements, leave the covered elements by one line un-
modified, add 1 to the double covered elements.) Mark by a star a maximum
independent set of 0’s.

1 1073 |4
6 [0°]3

0|0 |1 |0

0 |2 (1 |0

The value of the maximum matching: 2+ 146 +4 = 13.

If the graph is a K, , with m # n we must transform the matrix to the
one with m = n by adding dummy rows or column (with 0 elements only).

Why doesn’t work the algorithm for m # n? A solution represents a
set of independent values from the matrix with minimum sum. If m > n,
our algorithm gives us a set of independent values from only n rows, and
maybe we can choose what row to be without selected value and initial the
subtracted values were different for these rows.

Example.

93

3171518
613213
315|186
5/8|6|4
65|73

After adding a null column, the problem will be:
3|17/5|18]0
6(3(2|3]0
3/5(8|61]0
5(8(16|41|0
6(5(7]13]0

A possible solution is:
02|15]|0
5 0 |0%| 2 2
00| 4 3 0

21312]1]0"
310131010

To obtain a maximum weight maximum matching, the algorithm can be
transformed as follows:

— subtract all elements of the matrix from the maximum value of the
matrix,

— apply the algorithm for the new matrix

— the minimum weight matching of this matrix will correspond to the
maximum weight matching in the original matrix.

Example.
6(25]|8
6|7]1]|6
6345
51434

After transformation:
2161310
2111712
215143
31454

A minimum weight maximum matching is:

94

216|100
110" 1
0 0] 1
011101

which corresponds in the original matrix to the solution : 8+ 74445 = 24.

Matching in general case: in any graph — an independent set of edges.

A factor of a graph G is a spanning subgraph of G. An r-factor is an
r-regular (all degrees are the same) subgraph.

1-factor = a perfect matching

2-factor = a Hamiltonian cycle

A graph is factorable if there are a set of factors which cover all edges of
the graph. A graph is r-factorable if can be factored in r-factors.

For example K5 can be factored in 2 Hamiltonian cycles.

Theorem 35 The complete graph Koni1 (n > 1) can be factored in n
Hamiltonian cycles.

Proof. In the following the indices of the vertices will be considered modulo
2n + 1. If the vertices are vy, v1,v2, ..., Vo, the corresponding Hamiltonian
cycles are:

H; contains the edges: {v;,v;11} fori=0,1,2,...,2n.
H, contains the edges: {v;,v;12} fori=0,2,4,...,4n.

Hj; contains the edges: {v;,vi;} fori=0,7,24,...,2nj.

H, contains the edges: {v;,v;1n} fori=0,n,2n,...,2n%. O

For K7 the factorization will give us the following factors.

95

25

96

11 Extremal problems in graph theory

The principle of inclusion and exclusion

Let us consider the following problem: In a class there are 30 students.
From their 12 like mathematics, 14 physics, 13 chemistry. There also 5
students who like both mathematics and physics, 4 who like mathematics
and chemistry and 7 who like physics and chemistry. And there are 3 student
who like all these three subjects. How may students are in the class who
don’t like any of these 3 subjects?

6+2+5+1+3+4+5=26

or

30— (12+14+13) — (5+4+7)—3=4

By generalization:

Aisaset, Ay, Ag, ..., A, subsets of A. Let |A| be the number of elements
in A. Then the number of elements of A which are not in the subsets A;
(1=1,2,...,n) is equal to:

n

Al =D 1A+ Do lAin4il—). JANAiN Al +...
i=1 1<i<j<n 1<<i<j<k<n
A (D)MAIN AN N Ay (1)

97

Let us use the following notation:

.GlAi:AlUAQU...UAn.
1=

The following formulas can be proved by induction:

n n n
| U Al = Sl = > Ain 4y +---+(_1)n+1|i01Ai|
N i? 1<i<j<n N
n n
A AT=D01A= 3T AuA e+) O A
=1

1<i<j<n

The proof of (2): By induction. For n = 2 the formula is true.

|A1 UA2| = |A1| + |A2| — |A1 ﬂA2|.

By the hypothesis of induction:

n—1
n—1 n—1
Y Al =)"1Al = > JANA+. L+ (- N Al
= i=1 1<i<j<n—1 =

—1
Let us use the following decomposition: .61 A; = (T.LU1 Ai) U A, and the
1=

1=

formula (4):

-1 -1 -1
| U A = ("U Az) UA, = ‘nu Al + | An] — ‘("u Ai) N A,
=1 =1 =1 =1
ny n—1
=> A=) JAinAl 4.+ (-1)" N Ail+
i=1 1<i<j<n—1 =

—1
+Ag| — ‘(':91 A,-) N Ay

The last expression can be write:
n—1 n—1
('Ul A,) NA, = 'Ul (Az N An),
1= 1=

which after the substition in (5) will give the requested formula.

98

Theorem 36 (Zarankiewicz) If G is a graph of order n, which does not
contain complete subgraphs of orfer k, then for the minimum degree 6 of
vertices we have:

5 < [(k - 2)nJ
kE—1
—2
Proof. Let f = [%J The following formula results:
(k—2)n=f(k—1)+r, where0<r<k-1 (6)
O

Let us consider that the graph G = (V, E) satisfies the condtions in the
theorem, but the degree of each vertex is at least f +1. A contradiction will
arise.

Let z1 € V and z9 € N(z1), then

|N(21) N N(22)| = [N(21)] + [N (z2)| = |N(21) U N(22)| 2

>(f+)+(f+1)—n=2(f+1)—n>0
To prove that 2(f +1) —n > 0 let us consider (6), and we have for n:

For k > 3 we have n < 2(f + 1).
So there is a vertex z3 € N(z1) N N(z2) (so kK > 3). By a similar
computation:

IN(z1) " N(z2) N N(z3)| >3(f+1)—2n>0

The last inequality is from(7) too, for k > 4.
So we shall obtain:

[N(e2) 0o Nl 1) = IN)] + 10, M)l

— ‘N(xl) U (';Q;N(mj))‘ >(f+1)+(k-2)(f+1)—(k—3)n—n=

=k-D(f+)-(k-29n=>GF-1(f+1) - f(k-1)—r=
=k—1—7r>0

99

So z € N(z1) N N(z2)N...N N(xk_1), but these vertices z1,x2,..., Ty are
the vertives of a complete subgraph of order k, which is contradiction, which
proves the theorem.

A k-partite graph is a generalization of the bipartite graph: There are
k sets of independent vertices and edges are only between vertices from
different sets. K, 5,... n, is a complete k-partite graph.

A complete 3-partite graph: Kb 3 o:

Theorem 37 (Turdn) In a graph of order n which does not contain com-
plete subgraphs of order (k + 1) the mazimal number of edges is:

kE—1 n r(r—1)
k 2
where n =hk +1r, 0 <r <k.
The extremal graphs (for which the equality holds) are Ky, n,....n, with
r independent sets of h + 1 vertices each and k — r independent sets with h

vertices each (So from ni,na,...,ng v are equal to h+1 and k—r are equal
to h).

e < (n2 —7‘2)

N =

Example.

Let ben=7,k =3, and because 7=2-3+ 1 we have h =2 and r = 1.
n1 = 3,n+2 = 2,n3 = 2, and the extremal graf is K32 > (which is equivalent
to K2,3,2):

100

Proof. By induction on n. For n = 1,2,...,k the theorem is true and
e < 1k(k —1). Let us consider that the theorem is true for all n’ < n —1,
and let’s consider a graph G of order n. By the theorem of Zarankiewicz

6 = mindeg(y) < [@J

and let z € V for which deg(z) < 6. Delete vertex z and its incident edges
from G to obtain the graph G;. This graph does not contain a K1, and
if its number of edges is not maximal, replace it by a graph of order n — 1
and with maxiaml number of edges. For G, the theorem is true by the
induction hypothesis, so is of the form requested: ak-partite graph with
r' independent sets, each of h' 4+ 1 vertices and k — 7' independent sets,
each of h' vertices, where n —1 = h' - k + r'. If we add to this graph the
deleted vertex z in a set of h' vertices and join it to all vertices in other
independent sets, the resulted graph is with same structure, an extremal
graph. deg(z) =n—1—-h' < [@

This extremal graph can be found by deleting from K, the edges of r
subgraphs Kp1 and the edges of k& — r subgraphs Kj. So in the extremal
graph

()" - en(f) -

(n) —TM—(IV—T)M

J . So this graph has the same structure.

2 2 2
~n(n—=1) h
= 5 2(27"—|—kh k)
but h = — and

_n(n—=1) h _nn—-1) n-r B
e= 5 2(r+n k) = 7 o (r+n—k)=

_ n’k—nk—(n®> —r%) 4+ kn—kr

B 2k

and by adding and subtracting r2k we have

- n’k—r’k+—(n®—r?)+r’k—kr _ k(n®—r?) — (n? —r2)+r2 -r
°- 2k - 2%k 2

n? —r? k—l_{_r(r—l)
2 k 2

101

Extremal problems of Ramsey type

Let R(m,k) be the least number for which any graph of order n >
R(m, k) contains a K, or its complement contains a Kj. Extremal graphs
are those graphs of order n — 1 for which this property is not true.

As we know: R(3,3) = 6. An extremal graph is a cycle of 5 vertices.
It is easy to prove that:

R(1,k) = R(k,1) = 1
R(2,k) = R(k,2) = k

Theorem 38 a) If R(m—1,k) and R(m,k—1) there ezist, then R(m,k)
there exists too, and:

R(m,k) < R(m — 1,k) + R(m,k — 1).
b) If R(m — 1,k) =2p and R(m,k— 1) =2q for p,g € N* then
R(m,k) < R(m — 1,k) + R(m,k — 1).

(N* represents the positive integers)

Proof. a) Let be n = R(m —1,k) + R(m,k —1). Let us color the edges of
the graph K, by red and blue. A vertex r in this graph has degree n — 1,
and it is incident to n; red edges which span a graph G1, and ns blue edges
which span a graph Gs. So

ny+ne+1=R(m—1,k)+ R(m,k—1).

There are two cases:

— If ny > R(m—1, k) then in G; there is a red K,,_1 or a blue Kj. But
the graph K, 1 with the vertex r and red edges incidents to it will form a
red K,,.

- If ny < R(m — 1,k) then ny > R(m,k — 1) must be. The proof is
similar to the previous case.

b) Let us consider a Ko,19,1 with red and blue edges. Each vertex has
degree 2p + 2g — 2. Let r be a vertex of the graph. There three cases:

— Between the edges incidents to r there are at least 2p red edges. In
the graph spanned by these edges there is an a red K,, 1 or a blue K;. The
red K,,_1 with vertex r and its incidents red edges form a red K,,.

102

— Between the edges incidents to r there are at least 2q blues edges. In
the graph spanned by these edges there is an a red K,,, or a blue K;_;. The
blue Ky_1 with vertex r and its incidents red edges form a red Kj.

— There are exactly 2p— 1 red and 2¢ — 1 blue edges which are incidents
to r. But this case cannot happen for all vertices of the graph, because
in this case in the red graph there is an odd number of vertices all of odd
degree. O

The mathematical induction on two variables

Let A(m, k) be a property depending on naturals m and k.

If A(1,k) and A(m,1) are true, and if from A(m—1, k) true and A(m, k—
1) true, we can prove that A(m, k) is true too, then this property is true for
all naturals m and k.

Theorem 39 R(m,k) there ezxists for all m,k € N* and

m+k—2
< .
R(m, k) < (1)
k—2
Proof. Let the property A(m,k) the following: R(m,k) < (m;;_ 1)

1=R(1,k) < (kgl) =1 istrue

m—1

1=R(m,1) < (1) =1 istrue

m—
By induction hypothesis:
m+k— 3)

m — 2

R(m—1,k) < (

m+k—3
-1 <
Rem k-1 < (" FE)

But from the theorem 38

R(m, k) < R(m—1, k)+R(m, k—1) (m+k—3>+(m+k—3> _ <m+k—2).

m — 2 m—1 m—1

O

Some known values:

103

R(3,3) =6, R(3,5) = 14, R(3,6) = 18.
R(k, k) > 2¥/2(Erdés)
Unsolved:

There exists the limit lim R(k, k)\/k?

— 00

Generalization

R(k1+ 1 ko +1,...,k,+1) <

Paul Erdé6s proved that:

T
R(3,3,...,3) < T!Z%H

r times k=0

and he conjectured that the equality always holds.
Known values are: R(3,3) =6, R(3,3,3) = 17 for which the equality holds.

104

