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• Calibration = adjustment parameters for a model 

closer to reality 

• What factors are important in the simulation model? 

– of 390 only 23 were considered major (136 samples) 

– of 400 - only 15 - 

• Examples of factors that can be investigated by 

Sensitivity Analysis: 
– parameter values​​; 

– choice of distributions; 

– system entities; 

– the details of the subsystems; 

– crucial data in the simulation. 
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• Sensitivity Analysis:  
–  Let  I = input,  

–   O = output. 

  Sensitivity is:   

S = dO / dI 

- A great value for S indicates a high sensitivity of O from I. 

- If O is an important result in the simulation and S is high then pay 

attention to this aspect of modeling. 

- If S is small then the model must remain simple. 

• Calibration - Sensitivity Analysis  

􀀁 Sensitivity Analysis will generate an automated report indicating 

the Most Sensitive Parameters from the complete chosen list 

􀀁 Decide upon Most Important Processing Parameters, say the top 3 to 10 of them 

􀀁 Decide upon most Important Calibration Parameters, say the top 3 or 10 of them 

􀀁 These numbers depend upon available computer power 
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• Definition:  

Calibrating is the process of tuning a model to 

fit detailed real data.  
or 

Calibration - a test of the model with known 

input and output information that is used to 

adjust or estimate factors for which data are 

not available. 
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This is a multi-step, often iterative, process in which the 

model’s processes are altered so that the model’s predictions 

come to fit, with reasonable tolerance, a set of detailed real 

data. This approach is generally used for establishing the 

feasibility of the computational model; i.e., for showing that it is 

possible for the model to generate results that match the real 

data. This approach is more often used with emulation than with 

intellective models.  

Calibrating a model may require the researcher to both set 

and reset parameters and to alter the fundamental 

programming, procedures, algorithms, or rules in the 

computational model.  

Calibrating establishes, to an extent the validity of the internal 

workings of the model and its results (at least in a single case). 

The researcher may choose to halt calibration after achieving 

either a parameter or process level of validation. 
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To calibrate a model the researcher begins with the 

uncalibrated model. Then a trace of the model’s predictions and 

the processes that generated them is generated. This 

information is then checked against real data. If the simulated 

predictions of the dependent variable(s) matches the real 

dependent variable the model is considered to be calibrated. 

Otherwise, first the parameters and then the processes are 

checked for accuracy.  

This check may involve going back and talking to experts at 

doing the task the model seeks to simulate or collecting new 

observational detail to fill in details or to check the accuracy of 

the original real data. Once both parameters and processes are 

accurate, if the model predictions are still not matching the real 

data, the modeler typically moves to adding additional lower 

level or auxiliary processes that were originally thought to be 

less important. 
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 Calibration occurs at two levels.  

• At one level, the models predictions are compared against real 

data. This can be characterized as analysis of the dependent 

variable(s).  

• At another level, the processes and parameters within the model 

are compared with data about the processes and parameters that 

produced the behavior of concern. This can be characterized as 

analysis of the independent (and control) variable(s). To calibrate a 

model it is important to have access to detailed data on one or more 

cases. Participant observation or other ethnographic data is often the 

best possible data for calibrating as typically only such data provides 

the level of detail needed by the modeler at both the process and 

outcome level. Calibrating models of subject matter experts typically 

requires interacting with an expert and discussing whether or not the 

model matches in its reasons and its results the behavior of the 

expert, and if not, why not. 
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In calibrating a model, the level of match required between the 

model and the real data depends in part on the research goals. The 

level of match also depends on the quality of the real data and the 

degree to which that data does not represent a pathologic or extreme 

data point. How should the cases for calibrating the computational 

model be chosen? The ideal is to use a set of cases that span the key 

categories across which the model is expected to operate. The next best 

option is to choose two to four cases that represent typical behavior 

and one to two that represent important extremes.  

The basic idea here is that by looking at both the typical and the 

extreme the boundaries on processes, parameters and outcomes can be 

set with some degree of confidence. In practice, however, the 

researcher who wishes to calibrate a model is often lucky to even have 

one case with sufficient detail. 
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C5 That case, moreover, is often more a matter of opportunity than 
plan. Critics of calibration often argue that any model with sufficient 
parameters can always be adjusted so that some combination of 
parameters generates the observed data. Thus, the argument proceeds, 
calibration does not establish the validity of a model in a meaningful 
way. At one level, this criticism has some truth in it for some models. 
In particular, large multiparameter models often run the risk of having 
so many parameters that there is no guarantee that the model is doing 
anything more than curve fitting.  

For many computational models this criticism is less appropriate. In 
particular, for models where the process is represented not by 
parameterized equations but by rules, interactive processes, or a 
combination of procedures and heuristics there are often few if any 
parameters. There is no guarantee that a sufficiently large set of 
procedure and heuristics, that often interact in complex and non-linear 
ways, can be altered so that they will generate the observed data. For 
procedural models, calibration becomes a process of altering ‘‘how 
things are done’’ rather than ‘‘how things are weighted.’’ This 
distinction is critical as it separates process matching from curve 
fitting. 
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Problem: We have real values: 

   r1, r2, ..., rn 

and the simulation values: 

   s1, s2, ..., sm 

What do we mean by, or how do we decide if they 

“match”? 

 

What if we do not have real values?  

(Expert opinions). 
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• Regression 

 y  = f(x1,x2, …, xn) = 

     = c1*x1+ c2*x2 + … + cn*xn  

k samples 

  (c1*x1,i + c2*x2,i + …+ cn*xn,i – yi )
2  = min 

    i=1,k 

• Correlation(y,xi) =? 

• Factorial Analysis n

X
X





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Methods And Techniques for Rigorous Calibration of a Cellular 

Automaton Model of Urban Growth 

Abstract 

Several lessons about the process of calibration were learned during development of 
a self-modifying cellular automaton model to predict urban growth. This model, part 
of a global change research project on human-induced land transformations, was 
used to predict the spatial extent of urban growth 100 years into the future. The 
context of the prediction was to evaluate urban environmental disturbances such as 
land use conversion, urban heat island intensification, and greenhouse gas 
generation. Using data for the San Francisco Bay area as a test case, methods were 
developed, including interactive and statistical versions of the model, animation and 
visualization tools, automated testing methods, and Monte Carlo simulations. This 
presentation will enumerate, analyze, and discuss the lessons learned during the 
extensive process of model calibration. Experience with the methods developed may 
have broader use in assisting the rigorous calibration for other CA models, and 
perhaps those coupled environmental models with an extensive spatial data 
component. These methods are now under test as the project moves to a new data set 
for the Washington, D.C.-Baltimore area.  
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Introduction 

The Urban Transition Model 

Calibration of the Model 

Evaluation of Calibration 

Predictions 

Conclusion 
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THE APPLICATION OF BUILDING ENERGY SIMULATION 

AND CALIBRATION 
IN TWO HIGH-RISE COMMERCIAL BUILDINGS IN SHANGHAI 

 

Yiqun Pan1, Zhizhong Huang2, Gang Wu3, Chen Chen4 

1, 2 Tongji University, Shanghai, China 
    3 East China Architectural Design & Research Institute, Shanghai, China 
    4 Shanghai Real-estate Science Research Institute, Shanghai, China 

ABSTRACT 

The method of calibrated computer simulation is summarized and introduced based on 

related literatures and guidelines, which is used to analyze the energy consumption of two 

high-rise commercial buildings in Shanghai, China. The detailed data of the buildings and 

systems are collected and input to build up models with DOE-2, then the output of 

simulation is compared to the measured energy consumption data to refine and calibrate the 

models. Several energy conservation measures (ECMs) are analyzed based on the calibrated 

models, including using variable speed chilled water pumps instead of constant variable 

speed ones, using free cooling during winter and mild seasons, replacing old low efficiency 

cooling towers with new high efficiency ones, decreasing lighting power densities. Energy 

saving performance is simulated and calculated to find out which ECM is the best option for 

each building. 
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Automatic Preparation, Calibration, and 

Simulation of Deformable Objects 

Dan Morris 

Stanford University Robotics Lab 
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dmorris@cs.stanford.edu 

ABSTRACT 

Many simulation environments – particularly those intended for medical simulation – 

require solid objects to deform at interactive rates, with deformation properties that 

correspond to real materials. Furthermore, new objects may be created frequently (for 

example, each time a new patient’s data is processed), prohibiting manual intervention in 

the model preparation process. This paper provides a pipeline for rapid preparation of 

deformable objects with no manual intervention, specifically focusing on mesh generation 

(preparing solid meshes from surface models), automated calibration of models to finite 

element reference analyses (including a novel approach to reducing the complexity of 

calibrating nonhomogeneous objects), and automated skinning of meshes for interactive 

simulation. 
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An Improved Procedure for Developing a Calibrated Hourly 

Simulation Model of an 

Electrically Heated and Cooled Commercial Building. 
A Thesis by  TAREK EDMOND BOU-SAADA 

 
Submitted to the Office of Graduate Studies of Texas A&M University in partial 

fulfillment of the requirements for the degree of MASTER OF SCIENCE 

ABSTRACT 

With the increased use of building energy simulation programs, calibration of simulated 

data to measured data has been recognized as an important factor in substantiating how 

well the model fits a real building. Model calibration to measured monthly utility data has 

been utilized for many years. Recently, efforts have reported calibrated models at the 

hourly level. Most of the previous methods have relied on very simple comparisons 

including bar charts, monthly percent difference time-series graphs, and x-y scatter plots. A 

few advanced methods have been proposed as well which include carpet plots and 

comparative 3-D time-series plots. Unfortunately, at hourly levels of calibration, many of 

the traditional graphical calibration techniques become overwhelmed with data and suffer 

from data overlap. 
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A Calibration Procedure for Microscopic  

Traffic Simulation 

Lianyu Chu, Henry X. Liu, Jun-Seok Oh, Will Recker 

 
Submitted to 2004 TRB Annual Meeting 

ABSTRACT 

Simulation modeling is an increasingly popular and effective tool for analyzing 

transportation problems that are not amendable to study by other means. For any 

simulation study, model calibration is a crucial step to obtaining any results from analysis. 

This paper presents a systematic, multi-stage procedure for the calibration and validation 

of PARAMCIS simulation models. The procedure is demonstrated in a calibration study 

with a corridor network in the southern California. The model validation results for the 

study network are also summarized.  
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WATERSHED MODEL CALIBRATION AND VALIDATION: 

 THE HSPF EXPERIENCE 

 

 

Abstract 
Model calibration and validation are  necessary and critical steps in any model 
application. For most all watershed models, calibration is an iterative procedure of 
parameter evaluation and refinement, as a result of comparing simulated and 
observed values of interest. Model validation is in reality an extension of the 
calibration process.  Its purpose is to assure that the calibrated model properly 
assesses all the variables and conditions which can affect model results, and 
demonstrate the ability to predict field observations for periods separate from the 
calibration effort. 
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Calibration and validation have been defined by the American 
Society of Testing and Materials, as follows (ASTM, 1984): 
Calibration  - a test of the model with known input and output 
information that is used to adjust or estimate factors for which 
data are not available. 
Validation - comparison of model results with numerical data 
independently derived from experiments or observations of the 
environment. 
 

Model validation is in reality an extension of the calibration 
process.  Its purpose is to assure that the calibrated model 
properly assesses all the variables and conditions which can affect 
model results.  While there are several approaches to validating a 
model, perhaps the most effective procedure is to use only a 
portion of the available record of observed values for calibration; 
once the final parameter values are developed through 
calibration, simulation is performed for the remaining period of 
observed values and goodness-of-fit between recorded and 
simulated values is reassessed.  This type of split-sample 
calibration/validation procedure is commonly used, and 
recommended, for many watershed modeling studies.   Model 
credibility is based on the ability of a single set of parameters to 
represent the entire range of observed data.  If a single 
parameter set can reasonably represent a wide range of events, 
then this is a form of validation. 
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Hydrologic Calibration 

Snow Calibration Calibration of the Model 

Hydraulic Calibration  

Sediment Erosion Calibration  

Instream Sediment Transport Calibration 

Nonpoint Source Loading and Water 

Quality Calibration 
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Model Performance Criteria 

Models are approximations of reality; they can not precisely 

represent natural systems. 

There is no single, accepted statistic or test that determines 

whether or not a model is validated 

Both graphical comparisons and statistical tests are required in 

model calibration and validation. 

Models cannot be expected to be more accurate than the errors 

(confidence intervals) in the input and observed data. 
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Graphical Comparisons: 

 Timeseries plots of observed and simulated values for fluxes (e.g. flow) 

or state variables (e.g. stage, sediment concentration, biomass 

concentration) 

 Observed vs. simulated scatter plots, with a 45o linear regression line 

displayed, for fluxes or state variablesGraphical Comparisons: 

 Timeseries plots of observed and simulated values for fluxes (e.g. flow) 

or state variables (e.g. stage, sediment concentration, biomass 

concentration) 

 Observed vs. simulated scatter plots, with a 45o linear regression line 

displayed, for fluxes or state variables 

 Cumulative frequency distributions of observed and simulated fluxes or 

state variable (e.g. flow duration curves) 

 Cumulative frequency distributions of observed and simulated fluxes or 

state variable (e.g. flow duration curves) 
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Statistical Tests: 

 Error statistics, e.g. mean error, absolute mean 

error, relative error, relative bias, standard error of 

estimate, etc. 

 Correlation tests, e.g. linear correlation coefficient, 

coefficient of model-fit efficiency, etc. 

 Cumulative Distribution tests, e.g. Kolmogorov-

Smirnov (KS) test 
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The values in the table attempt to provide some general 

guidance, in terms of the percent mean errors or differences 

between simulated and observed values, so that users can gage 

what level of agreement or accuracy (i.e. very good, good, fair) 

may be expected from the model application.  

% Difference Between Simulated and Recorded 
Values 

Very Good Good Fair 

Hydrology/Flow < 10 10 - 15 15 - 25 

Sediment < 20 20 - 30 30 - 45 

Water 
Temperature 

< 7 8 - 12 13 - 18 

Water 
Quality/Nutrients 

< 15 15 - 25 25 - 35 

Pesticides/Toxics < 20 20 - 30 30 - 40 
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The Connecticut Watershed Model (CTWM), based on HSPF, was 

developed to evaluate nutrient sources and loadings within each of 

six nutrient management zones that lie primarily within the state 

of Connecticut, and assess their delivery efficiency to Long Island 

Sound (LIS).  The CTWM evolved by first performing calibration 

and validation on three small test basins across the state (Norwalk, 

Quinnipiac, and Salmon) representing a range of land uses, 

including urban, forest, and agricultural.  The model was then 

extended to three major river calibration basins (Farmington, 

Housatonic, and Quinebaug) and subsequently expanded to a 

statewide model by using the most spatially applicable set of 

calibrated watershed parameters in non-calibrated areas.  

R and R2 Value Ranges for Model Performance : 
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Summary of CTWM hydrologic calibration/validation - annual flow and correlation coefficients 

Calibration Period  (1991-1995) Validation Period  (1986-1990) 

Station Name 

St
ati
on 
N
u
m
be
r 

Mean Observed 
Annual Flow 

(inches)  

Mean Simulated 
Annual Flow 

(inches)  

R  

Avera
ge 

Daily 

R  

Averag
e 

Monthl
y 

Mean Observed 
Annual Flow 

(inches)  

Mean Simulated 
Annual Flow 

(inches)  

R  

Avera
ge 

Daily 

R  

Averag
e 

Monthl
y 

Test 
Watershed 
Gages 

Salmon River 
nr East 
Hampton 

01
19
35
00 

23.6 24.4 0.83 0.92 26.3 25.8 0.79 0.92 

Quinnipiac 
River at 
Wallingford 

01
19
65
00 

26.3 26.4 0.82 0.94 29.0 28.3 0.71 0.91 

Norwalk 
River at 
South Wilton 

01
20
97
00 

21.4 21.7 0.84 0.93 25.9 25.2 0.75 0.91 

Major Basin 
Gages 

Quinebaug 
River at 
Jewett City 

01
12
70
00 

23.8 23.6 0.82 0.93 27.2 24.7 0.86 0.95 

Farmington 
River at 
Tariffville 

01
18
99
95 

26.2 26.0 0.85 0.92 26.2 29.1 0.87 0.94 

Housatonic 
River at 
Stevenson 

01
20
55
00 

31.7 31.9 0.88 0.98 34.6 31.5 0.87 0.96 
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Annual Simulated and Observed Runoff (inches) 

Unnamed Watershed 

Precipitatio
n 

Simulated 
Flow 

Observed 
Flow 

Percent 
Error 

1990 58.9 35.1 35.6 -1.4% 

1991 47.0 23.3 22.8 2.1% 

1992 45.7 23.7 20.1 15.2% 

1993 47.6 27.6 26.0 5.8% 

1994 46.3 25.9 25.5 1.5% 

1995 44.0 20.7 21.0 -1.4% 

1996 62.0 39.4 41.5 -5.3% 

1997 42.2 21.4 23.2 -8.4% 

1998 42.2 22 23.9 -8.6% 

1999 46.9 21.6 24.8 -14.8% 

Total 482.7 260.7 264.4 -1.4% 

Average 48.3 26.1 26.4 -1.4% 
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Sensitivity analysis (SA) is “ the study of how 

the variation in the output of a model (numerical or 

otherwise) can be apportioned, qualitatively or 

quantitatively, to different sources of variation”.[1] 

However, when the assumptions are uncertain, 

and/or there are alternative sets of assumptions to 

chose from, the inference will also be also 

uncertain. Investigating the uncertainty in the 

inference (regardless of its source) goes under the 

name of Uncertainty analysis.  

http://en.wikipedia.org/wiki/Sensitivity_analysis
http://en.wikipedia.org/wiki/Sensitivity_analysis
http://en.wikipedia.org/wiki/Sensitivity_analysis
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Sensitivity Analysis tries to identify those 

assumptions which weight the most in determining 

the uncertainty in the inference ('screening' 

sensitivity analysis). 'Quantitative' sensitivity 

analysis tries not only to identify but also to 

quantify the relative importance the influential 

assumptions. In the preceding discussion the term 

'factor' if often used instead of 'assumption' - 

implying that assumptions have been translated 

into factors entering the model, e.g. with defined 

numerical values possibly drawn from factor-value 

distributions - while 'model output' can be used 

instead of inference. 
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• A mathematical model is defined by a series of 

equations, input factors, parameters, and variables 

aimed to characterize the process being 

investigated. 

• Input is subject to many sources of uncertainty 

including errors of measurement, absence of 

information and poor or partial understanding of 

the driving forces and mechanisms. This 

uncertainty imposes a limit on our confidence in 

the response or output of the model. Further, 

models may have to cope with the natural intrinsic 

variability of the system, such as the occurrence of 

stochastic events. 

Overview 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Equations
http://en.wikipedia.org/wiki/Process
http://en.wikipedia.org/wiki/Measurement
http://en.wikipedia.org/wiki/Confidence
http://en.wikipedia.org/wiki/Stochastic
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• Good modeling practice requires that the modeler 
provides an evaluation of the confidence in the model, 
possibly assessing the uncertainties associated with 
the modeling process and with the outcome of the 
model itself. Uncertainty and Sensitivity Analysis offer 
valid tools for characterizing the uncertainty associated 
with a model. 

• In models involving many input variables sensitivity 
analysis is an essential ingredient of model building 
and quality assurance. National and international 
agencies involved in impact assessment studies have 
included section devoted to sensitivity analysis in their 
guidelines. Examples are the European Commission, 
the White House Office for Budget and Management, 
the Intergovernmental Panel on Climate Change and 
the US Environmental Protection Agency. 

… Overview 

http://en.wikipedia.org/wiki/Uncertainty
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• There are several possible procedures to 

perform uncertainty (UA) and sensitivity analysis 

(SA). The most common sensitivity analysis is 

sampling-based. A sampling-based sensitivity is 

one in which the model is executed repeatedly for 

combinations of values sampled from the 

distribution (assumed known) of the input factors. 

Sampling based methods can also be used to 

decompose the variance of the model output (see 

references).  

Methodology 

http://en.wikipedia.org/wiki/Sampling_(statistics)
http://en.wikipedia.org/wiki/Probability_distribution
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•   In general, UA and SA are performed jointly by 
executing the model repeatedly for combination of 
factor values sampled with some probability 
distribution. The following steps can be listed: 

1. Specify the target function and select the input of 
interest 

2. Assign a distribution function to the selected 
factors 

3. Generate a matrix of inputs with that distribution(s) 
through an appropriate design 

4. Evaluate the model and compute the distribution of 
the target function 

5. Select a method for assessing the influence or 
relative importance of each input factor on the target 
function. 

… Methodology 
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• Sensitivity Analysis can be used to determine: 

1. The model resemblance with the process under study  

2. The quality of model definition  

3. Factors that mostly contribute to the output variability  

4. The region in the space of input factors for which the 

model variation is maximum  

5. Optimal - or instability - regions within the space of 

factors for use in a subsequent calibration study  

6. Interactions between factors  

Applications 

Sensitivity Analysis is popular in financial applications, 

risk analysis, signal processing, neural networks and any 

area where models are developed. SA can also be used in 

model-based policy assessment studies see e.g. [1].  

http://en.wikipedia.org/wiki/Quality
http://en.wikipedia.org/wiki/Definition
http://en.wikipedia.org/wiki/Output
http://en.wikipedia.org/wiki/Space
http://en.wikipedia.org/wiki/Input
http://en.wikipedia.org/wiki/Variation
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Calibration
http://en.wikipedia.org/wiki/Financial
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Neural_networks
http://en.wikipedia.org/wiki/Neural_networks
http://en.wikipedia.org/wiki/Neural_networks
http://www.modeling.uga.edu/tauc/background_material/Washington-Main.pdf
http://www.modeling.uga.edu/tauc/background_material/Washington-Main.pdf
http://www.modeling.uga.edu/tauc/background_material/Washington-Main.pdf
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• Computer environmental models are increasingly 

used in a wide variety of studies and applications. 

For example global climate model are used for both 

short term weather forecasts and long term climate 

change. 

• Moreover, computer models are increasingly used 

for environmental decision making at a local scale, 

for example for assessing the impact of a waste 

water treatment plant on a river flow, or for 

assessing the behavior and life length of bio-filters 

for contaminated waste water. 

• Environmental 
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• In both cases sensitivity analysis may help 

understanding the contribution of the various 

sources of uncertainty to the model output 

uncertainty and system performance in general.  In 

these cases, depending on model complexity, 

different sampling strategies may be advisable and 

traditional sensitivity indexes have to be 

generalized to cover multivariate sensitivity 

analysis, heteroskedastic effects and correlated 

inputs. 

… Environmental 
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• In a decision problem, the analyst may want to 

identify cost drivers as well as other quantities for 

which we need to acquire better knowledge in order 

to make an informed decision. On the other hand, 

some quantities have no influence on the 

predictions, so that we can save resources at no 

loss in accuracy by relaxing some of the conditions. 

See Corporate finance: Quantifying uncertainty.  

• Business 

http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
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Sensitivity analysis can help in a variety of other 

circumstances which can be handled by the settings 

illustrated below: 

• to identify critical assumptions or compare 

alternative model structures  

• guide future data collections  

• detect important criteria  

• optimize the tolerance of manufactured parts in 

terms of the uncertainty in the parameters  

• optimize resources allocation  

• model simplification or model lumping, etc.  

… Business 
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However there are also some problems associated 
with sensitivity analysis in the business context: 

• Variables are often interdependent, which makes 
examining them each individually unrealistic, e.g.: 
changing one factor such as sales volume, will most 
likely affect other factors such as the selling price.  

• Often the assumptions upon which the analysis is 
based are made by using past experience/data which 
may not hold in the future.  

• Assigning a maximum and minimum (or optimistic and 
pessimistic) value is open to subjective interpretation. 
For instance one persons 'optimistic' forecast may be 
more conservative than that of another person 
performing a different part of the analysis. This sort of 
subjectivity can adversely affect the accuracy and 
overall objectivity of the analysis.  

… Business 
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To start with, we propose the following material : 

• Cookbook 

• Tutorial 1 

• Tutorial 2 

• Tutorial 3 

• Book on Sensitivity Analysis (Preface)  

              

A REAL TEST CASE  

We also suggest some bibliographic material, where the 
reader will find the grater part of sensitivity analysis studies, 
together with applications and reviews: 

• Sensitivity Analysis for Chemical Models  

• Composite Indicators  

• Archer, G.; Saltelli, A.; Sobol’, I. M. Journal of Statistical Computation 
and Simulation 1997, 58, 99  

Tutorial on Sensitivity Analysis  

http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Cookbook_7.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Saltelli_tutorial.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/RiskAnalysis.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/RESS_Tutorial.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/WU082-FM.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/LevelE.asp
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/cr040659d.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/saisana_saltelli_tarantola.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Archer_1997.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Archer_1997.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Archer_1997.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Archer_1997.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Archer_1997.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Archer_1997.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Archer_1997.pdf
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/Archer_1997.pdf
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Lemonade Stand 

In the first exploration, let’s look at a lemonade stand located on a 

college campus. 

As usual, we are particularly interested in the behavior of the stock, 

the number of cups of 

lemonade that are ready to be sold to customers. The stand is open 

eight hours every day. 

Howard, the owner, is the only person working in the stand. 
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Epidemics 

In the second exploration we look at an 

epidemics model. The model was already 

used in a previous chapter in Road Maps, so it is 

possible that you have already built it. 
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Coffeehouse 
We now return to Howard, the owner of the lemonade 

stand on a college campus. 

Howard realized that it could be more profitable for him 
to sell coffee because students 

tend to drink more coffee than lemonade, and they drink 
it at any time of the day and 

night. Therefore, he closed his lemonade stand and 
opened a 24-hour Coffeehouse. 

Howard bases the Coffeehouse model on the model he 
used in his lemonade stand to 

model the number of cups of “Coffee ready.” We will run 
the simulation over a period of 

two days, or 48 hours. 
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Specific parameter values can change the appearance of the graphs 

representing the behavior of the system. But significant changes in 

behavior do not occur for all parameters. System dynamics models are in 

general insensitive to many parameter changes. It is the structure of the 

system, and not the parameter values, that has most influence on the 

behavior of the system. 

Sensitivity analysis is an important tool in the model building process. 

By showing that the system does not react greatly to a change in a 

parameter value, it reduces the modeler’s uncertainty in the behavior. In 

addition, it gives an opportunity for a better understanding of the dynamic 

behavior of the system. 

We encourage you to experiment with the three models from this paper 

(as well as any other models that you have built) on your own. For 

example, try to change several parameters at the same time, observe the 

behavior produced, and compare it to the conclusions in this paper. Can 

you suggest any parameter values that would produce the “optimal,” or 

most desirable behavior? The use of sensitivity analysis in such policy 

analysis will be explored in a later paper in this series. 
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Sensitivity analysis 

Sensitivity analysis (SA) is the study of how the variation (uncertainty) in the output of 
a mathematical model can be apportioned, qualitatively or quantitatively, to different 
sources of variation in the input of a model [1]. Put another way, it is a technique for 
systematically changing parameters in a model to determine the effects of such changes. 

In more general terms uncertainty and sensitivity analyses investigate the robustness of a 
study when the study includes some form ofmathematical modelling. Sensitivity analysis 
can be useful to computer modellers for a range of purposes[2], including: 

• support decision making or the development of recommendations for decision makers (e.g. 
testing the robustness of a result); 

• enhancing communication from modellers to decision makers (e.g. by making 
recommendations more credible, understandable, compelling or persuasive); 

• increased understanding or quantification of the system (e.g. understanding relationships 
between input and output variables); and 

• model development (e.g. searching for errors in the model). 

While uncertainty analysis studies the overall uncertainty in the conclusions of the study, 
sensitivity analysis tries to identify what source of uncertainty weights more on the study's 
conclusions. For example, several guidelines for modelling (see e.g. one from the US 
EPA) or forimpact assessment (see one from the European Commission) prescribe 
sensitivity analysis as a tool to ensure the quality of the modelling/assessment. 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_modelling
http://en.wikipedia.org/wiki/Mathematical_modelling
http://en.wikipedia.org/wiki/Mathematical_modelling
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http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
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http://en.wikipedia.org/wiki/Impact_assessment
http://en.wikipedia.org/wiki/Impact_assessment
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http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
http://ec.europa.eu/governance/impact/docs/SEC2005_791_IA guidelines_annexes.pdf
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The problem setting in sensitivity analysis has strong similarities with design of 
experiments. In design of experiments one studies the effect of some process or intervention 
(the 'treatment') on some objects (the 'experimental units'). In sensitivity analysis one looks 
at the effect of varying the inputs of a mathematical model on the output of the model itself. 
In both disciplines one strives to obtain information from the system with a minimum of 
physical or numerical experiments. 

In uncertainty and sensitivity analysis there is a crucial trade off between how scrupulous 
an analyst is in exploring the input assumptions and how wide the resulting inference may 
be. The point is well illustrated by the econometrician Edward E. Leamer (1990) [3]: 

I have proposed a form of organized sensitivity analysis that I call ‘global sensitivity 
analysis’ in which a neighborhood of alternative assumptions is selected and the 
corresponding interval of inferences is identified. Conclusions are judged to be sturdy only 
if the neighborhood of assumptions is wide enough to be credible and the corresponding 
interval of inferences is narrow enough to be useful. 

Note Leamer’s emphasis is on the need for 'credibility' in the selection of assumptions. The 
easiest way to invalidate a model is to demonstrate that it is fragile with respect to the 
uncertainty in the assumptions or to show that its assumptions have not been taken 'wide 
enough'. The same concept is expressed by Jerome R. Ravetz, for whom bad modeling is 
when uncertainties in inputs must be suppressed lest outputs become indeterminate.[4] 

In modern econometrics the use of sensitivity analysis to anticipate criticism is the subject 
of one of the ten commandments of applied econometrics (from Kennedy, 2007[5] ): 

http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Assumptions
http://en.wikipedia.org/wiki/Inference
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Thou shall confess in the presence of sensitivity. Corollary: Thou shall anticipate criticism 

[···] When reporting a sensitivity analysis, researchers should explain fully their 

specification search so that the readers can judge for themselves how the results may have 

been affected. This is basically an ‘honesty is the best policy’ approach, advocated by 

Leamer, (1978[6]). 

The use of mathematical modelling can be the subject of controversies, see Nassim 

Nicholas Taleb[7] in Economics, and Orrin H. Pilkey and Linda Pilkey Jarvis[8] in 

Environmental Sciences. As noted by the latter Authors, this increases the relevance of 

sensitivity analysis in today's modelling practice[1] . 

Mathematical problems met in social, economic or natural sciences may entail the use of 

mathematical models, which generally do not lend themselves to a straightforward 

understanding of the relationship between input factors (what goes into the model) and 

output (the model’s dependent variables). Such an appreciation, i.e. the understanding of 

how the model behaves in response to changes in its inputs, is of fundamental importance to 

ensure a correct use of the models. 

• A mathematical model is defined by a series of equations, input factors, parameters, and 

variables aimed to characterize the process being investigated. 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Equations
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Ideal scheme of a possibly sampling-based sensitivity analysis. Uncertainty arising from 

different sources — errors in the data, parameter estimation procedure, alternative model 

structures — are propagated through the model for uncertainty analysis and their relative 

importance is quantified via sensitivity analysis.  
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Errors 

In sensitivity analysis Type I error is assessing as important a non important factor, and 

Type II error assessing as non important an important factor. Type III error corresponds to 

analyzing the wrong problem, e.g. via an incorrect specification of the input uncertainties. 

Possible pitfalls in sensitivity analysis are: 

•Unclear purpose of the analysis. Different statistical tests and measures are applied to the 

problem and different factors rankings are obtained. The test should instead be tailored to 

the purpose of the analysis, e.g. one uses Monte Carlo filtering if one is interested in 

which factors are most responsible for generating high/low values of the output. 

•Too many model outputs are considered. This may be acceptable for quality assurance of 

sub-models but should be avoided when presenting the results of the overall analysis. 

•Piecewise sensitivity. This is when one performs sensitivity analysis on one sub-model at 

a time. This approach is non conservative as it might overlook interactions among factors 

in different sub-models (Type II error). 
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Applications 
Sensitivity analysis can be used 

• To simplify models 

• To investigate the robustness of the model predictions 

• To play what-if analysis exploring the impact of varying input assumptions and scenarios 

• As an element of quality assurance (unexpected factors sensitivities may be associated to 
coding errors or misspecifications). 

It provides as well information on: 

• Factors that mostly contribute to the output variability 

• The region in the space of input factors for which the model output is either maximum or 
minimum or within pre-defined bounds (see Monte Carlo filtering above) 

• Optimal — or instability — regions within the space of factors for use in a 
subsequent calibration study 

• Interaction between factors 

Sensitivity Analysis is common in physics and chemistry[26], in financial applications, risk 

analysis, signal processing, neural networks and any area where models are developed. 

Sensitivity analysis can also be used in model-based policy assessment studies . 

Sensitivity analysis can be used to assess the robustness of composite indicators [27], also 

known as indices, such as the Environmental Pressure Index. 

http://en.wikipedia.org/wiki/Output
http://en.wikipedia.org/wiki/Space
http://en.wikipedia.org/wiki/Input
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Calibration
http://en.wikipedia.org/wiki/Interaction_(statistics)
http://en.wikipedia.org/wiki/Financial
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Neural_networks
http://www.modeling.uga.edu/tauc/background_material/Washington-Main.pdf
http://composite-indicators.jrc.ec.europa.eu/
http://epi.yale.edu/Home
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Environmental 

Computer environmental models are increasingly used in a wide variety of studies and 

applications. For example global climate model are used for both short term weather 

forecasts and long term climate change. 

Moreover, computer models are increasingly used for environmental decision making at a 

local scale, for example for assessing the impact of a waste water treatment plant on a 

river flow, or for assessing the behavior and life length of bio-filters for contaminated 

waste water. 

In both cases sensitivity analysis may help understanding the contribution of the various 

sources of uncertainty to the model output uncertainty and system performance in general. 

In these cases, depending on model complexity, different sampling strategies may be 

advisable and traditional sensitivity indexes have to be generalized to cover multivariate 

sensitivity analysis, heteroskedastic effects and correlated inputs. 

http://en.wikipedia.org/wiki/Global_climate_model
http://en.wikipedia.org/wiki/Global_climate_model
http://en.wikipedia.org/wiki/Global_climate_model
http://en.wikipedia.org/wiki/Global_climate_model
http://en.wikipedia.org/wiki/Global_climate_model
http://en.wikipedia.org/wiki/Weather_forecasts
http://en.wikipedia.org/wiki/Weather_forecasts
http://en.wikipedia.org/wiki/Weather_forecasts
http://en.wikipedia.org/wiki/Climate_change
http://en.wikipedia.org/wiki/Climate_change
http://en.wikipedia.org/wiki/Climate_change
http://www.iemss.org/iemss2006/papers/s7/268_Fasso_0.pdf
http://www.iemss.org/iemss2006/papers/s7/268_Fasso_0.pdf
http://www.iemss.org/iemss2006/papers/s7/268_Fasso_0.pdf
http://www.iemss.org/iemss2006/papers/s7/268_Fasso_0.pdf
http://www.iemss.org/iemss2006/papers/s7/268_Fasso_0.pdf
http://en.wikipedia.org/wiki/Heteroskedastic
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Business 
In a decision problem, the analyst may want to identify cost drivers as well as other quantities 

for which we need to acquire better knowledge in order to make an informed decision. On 
the other hand, some quantities have no influence on the predictions, so that we can save 
resources at no loss in accuracy by relaxing some of the conditions. See Corporate finance: 
Quantifying uncertainty. Sensitivity analysis can help in a variety of other circumstances 
which can be handled by the settings illustrated below: 

• to identify critical assumptions or compare alternative model structures 

• guide future data collections 

• detect important criteria 

• optimize the tolerance of manufactured parts in terms of the uncertainty in the parameters 

• optimize resources allocation 

• model simplification or model lumping, etc. 

However there are also some problems associated with sensitivity analysis in the business 
context: 

• Variables are often interdependent, which makes examining them each individually 
unrealistic, e.g.: changing one factor such as sales volume, will most likely affect other 
factors such as the selling price. 

• Often the assumptions upon which the analysis is based are made by using past 
experience/data which may not hold in the future. 

• Assigning a maximum and minimum (or optimistic and pessimistic) value is open to 
subjective interpretation. For instance one persons 'optimistic' forecast may be more 
conservative than that of another person performing a different part of the analysis. This 
sort of subjectivity can adversely affect the accuracy and overall objectivity of the analysis. 

http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
http://en.wikipedia.org/wiki/Corporate_finance
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  What Does Sensitivity Analysis Mean? 
A technique used to determine how different values of an independent variable 
will impact a particular dependent variable under a given set of assumptions. 
This technique is used within specific boundaries that will depend on one or 
more input variables, such as the effect that changes in interest rates will have 
on a bond's price. 
 
Sensitivity analysis is a way to predict the outcome of a decision if a situation 
turns out to be different compared to the key prediction(s). 

 

  Investopedia explains Sensitivity Analysis 
Sensitivity analysis is very useful when attempting to determine the impact the 
actual outcome of a particular variable will have if it differs from what was 
previously assumed. By creating a given set of scenarios, the analyst can 
determine how changes in one variable(s) will impact the target variable.  
 
For example, an analyst might create a financial model that will value a 
company's equity (the dependent variable) given the amount of earnings per 
share (an independent variable) the company reports at the end of the year and 
the company's price-to-earnings multiple (another independent variable) at that 
time. The analyst can create a table of predicted price-to-earnings multiples and 
a corresponding value of the company's equity based on different values for 
each of the independent variables. 
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  What Does Sensitivity Mean? 

The magnitude of a financial instrument's reaction to changes in 

underlying factors. Financial instruments, such as stocks and bonds, are 

constantly impacted by many factors. Sensitivity accounts for all factors that 

impact a given instrument in a negative or positive way in an attempt to learn 

how much a certain factor will impact the value of a particular instrument. 

  

  Investopedia explains Sensitivity 

Interest rates are one of the most important underlying factors in the movement 

of bond prices and are closely watched by bond investors. These investors get a 

better idea of how their bonds will be affected by interest rate movements by 

incorporating sensitivity into their analyses. 
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Spreadsheet Sensitivity Analysis 

Spreadsheets and the Case Projects 

The Dynamic Strategic Planning workbook is accompanied by a number of 
spreadsheet-based tools for data analysis. We have supplied these tools so that the users 
of this workbook can concentrate upon the use and implementation of decision analysis 
and strategic planning, rather than focusing upon the mechanics of the mathematics 
underlying their use. 

The current form of the spreadsheets is a consequence of a combination of factors: 
academic research, pedagogical design, and in-class experiences. Based upon new 
developments, they are being routinely improved. 

However, no amount of care in tool design can substitute for expertise on the part of 
the user. 

The case projects have been designed assuming that these tools will be used 
effectively. The purpose of this document is to assure that you, the user of these tools, 
are prepared to exploit them to their fullest - specifically, that you are able to make use 
of spreadsheet sensitivity analysis tools. 

http://msl1.mit.edu/rdn/d_table.pdf  

http://msl1.mit.edu/rdn/d_table.pdf


78/82 

C5 

Sensitivity Analysis Using Excel 
The main goal of sensitivity analysis is to gain insight into which assumptions are 

critical, i.e., which assumptions affect choice. The process involves various ways of 
changing input values of the model to see the effect on the output value. In some 
decision situations you can use a single model to investigate several alternatives. In 
other cases, you may use a separate spreadsheet model for each alternative. 

MANUAL WHAT-IF ANALYSIS 

Using this approach, you enter values into cells C4:C6 and see what the effect is on 
net cash flow. 

http://www.treeplan.com/chapters/02_decan_20071029_1042.pdf  

For example, with the predetermined 
price of $29, you may think that Units 
Sold will be in the range between 500 and 
900 units. Keeping other input 
assumptions at base case, the 
corresponding Net Cash Flows are $–
1,500 and $6,900. When we vary a single 
input assumption, keeping all other input 
assumptions at their base case values, we 
say we are doing "one at a time" or 
"singlefactor“ sensitivity analysis. 

http://www.treeplan.com/chapters/02_decan_20071029_1042.pdf
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Chapter 6: Sensitivity Analysis 

http://www.sce.carleton.ca/faculty/chinneck/po/Chapter6.pdf  

http://www.sce.carleton.ca/faculty/chinneck/po/Chapter6.pdf
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Sensitivity Analysis 

Global Sensitivity AnalysisThe Primer 
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D. 
Saisana, M., and Tarantola, S., 2008, John Wiley & Sons (ISBN: 978-0-470-
05997-5)Who needs Sensitivity Analysis 
 
Tutorial on Sensitivity Analysis 
 
SimLab Software for Sensitivity Analysis 

What's  New 

•Sixth International Conferenceon Sensitivity 

Analysis of Model Output, Bocconi University of 

Milan, 19-22 July 2010 

  

•Sixth Summer School onSensitivity Analysis of 

Model Output, Villa La Stella, Fiesole - 

Florence, 14-17 September 2010 

http://sensitivity-analysis.jrc.ec.europa.eu/  

http://farmweb.jrc.ec.europa.eu/ESAF/Publications/Books/Global SA The Primer 2008.htm
http://sensitivity-analysis.jrc.ec.europa.eu/docs/who needs SA.htm
http://sensitivity-analysis.jrc.ec.europa.eu/docs/who needs SA.htm
http://sensitivity-analysis.jrc.ec.europa.eu/tutorial/index.asp
http://simlab.jrc.ec.europa.eu/
http://samo2010.unibocconi.it/
http://samo2010.unibocconi.it/
http://sensitivity-analysis.jrc.ec.europa.eu/Events/SAMO2010_Fiesole/index.htm
http://sensitivity-analysis.jrc.ec.europa.eu/Events/SAMO2010_Fiesole/index.htm
http://sensitivity-analysis.jrc.ec.europa.eu/
http://sensitivity-analysis.jrc.ec.europa.eu/
http://sensitivity-analysis.jrc.ec.europa.eu/
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Sensitivity Analysis 

 

 

Multi-disciplinary Design Optimization 

 

 

 

Centre for Aerospace Systems Design & Engineering 

Department of Aerospace Engineering 

Indian Institute of Technology 

Mumbai 400 076 

sensitivity.ppt (67 slides) 
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Sensitivity Analysis – Other References 

• Supporting Financial Statements - The Handbook of Business Planning ~ 
http://www.jian.com/software/business-plan/sensitivity-analysis.pdf  

• Sensitivity analysis: strategies, methods, concepts, examples, David J. Pannell, School of 
Agricultural and Resource Economics, University of Western Australia, Crawley 6009, 
Australia ~ 

• SENSITIVITY AND RISK ANALYSES ~ 
http://www.adb.org/documents/handbooks/water_supply_projects/Chap7-r6.PDF  

• Sensitivity Analysis of LP ~ http://www.youtube.com/watch?v=rACFwIt2szk  

• What is sensitivity analysis ~ 
http://www.medicine.ox.ac.uk/bandolier/painres/download/whatis/What_is_sens_analy.pdf 

• Sensitivity Analysis ~ http://web.mit.edu/15.053/www/AMP-Chapter-03.pdf  

• Tutorial_09_Sensitivity_Analysis ~ 
http://www.rocscience.com/downloads/slide/webhelp/pdf_files/tutorials/Tutorial_09_Sensitivity_Anal

ysis.pdf  

• Cash Flow Sensitivity Analysis ~ 
www.jaxworks.com/Cash%20Flow%20Sensitivity%20Analysis.xls  

http://www.jian.com/software/business-plan/sensitivity-analysis.pdf
http://www.jian.com/software/business-plan/sensitivity-analysis.pdf
http://www.jian.com/software/business-plan/sensitivity-analysis.pdf
http://www.jian.com/software/business-plan/sensitivity-analysis.pdf
http://www.jian.com/software/business-plan/sensitivity-analysis.pdf
http://cyllene.uwa.edu.au/~dpannell/welcome.html
http://www.adb.org/documents/handbooks/water_supply_projects/Chap7-r6.PDF
http://www.adb.org/documents/handbooks/water_supply_projects/Chap7-r6.PDF
http://www.adb.org/documents/handbooks/water_supply_projects/Chap7-r6.PDF
http://www.youtube.com/watch?v=rACFwIt2szk
http://www.medicine.ox.ac.uk/bandolier/painres/download/whatis/What_is_sens_analy.pdf
http://web.mit.edu/15.053/www/AMP-Chapter-03.pdf
http://web.mit.edu/15.053/www/AMP-Chapter-03.pdf
http://web.mit.edu/15.053/www/AMP-Chapter-03.pdf
http://web.mit.edu/15.053/www/AMP-Chapter-03.pdf
http://web.mit.edu/15.053/www/AMP-Chapter-03.pdf
http://www.rocscience.com/downloads/slide/webhelp/pdf_files/tutorials/Tutorial_09_Sensitivity_Analysis.pdf
http://www.rocscience.com/downloads/slide/webhelp/pdf_files/tutorials/Tutorial_09_Sensitivity_Analysis.pdf
http://www.jaxworks.com/Cash Flow Sensitivity Analysis.xls

