Cesaro means in variable dyadic Hardy spaces Kristóf Szarvas

Department of Numerical Analysis, Eötvös Loránd University

kristof@inf.elte.hu

Schipp, Wade, Simon and Pál [2] proved that if $f \in L_p$ $(1 , then <math>\lim_{n\to\infty} s_n f = f$ in the L_p -norm, where $s_n f$ denotes the *n*-th partial sum of the Walsh-Fourier series. Jiao, Zhou, Weisz and Wu [1] generalized this result for $L_{p(\cdot)}$: if $p(\cdot) \in \mathcal{P}(\Omega)$, $1 < p_- := \text{ess inf}_{x\in\Omega}p(x) \leq p_+ := \text{ess sup}_{x\in\Omega} < \infty$ and for all atoms A, the exponent function $p(\cdot)$ satisfies that

$$\mathbb{P}(A)^{p_-(A)-p_+(A)} \le K_{p(\cdot)},\tag{1}$$

then for all $f \in L_{p(\cdot)}$, $\lim_{n\to\infty} s_n f = f$ in the $L_{p(\cdot)}$ -norm. Unfortunately, these results are not true if $p \leq 1$ or if $p_- \leq 1$. Although, for $p \leq 1$, or $p_- \leq 1$, we can prove convergence results with the help of Cesaro means. For $\alpha > 0$ and $n \in \mathbb{N}$, the Cesaro means of the martingale f is defined by

$$\sigma_n^{\alpha} f := \frac{1}{A_{n-1}^{\alpha}} \sum_{k=1}^n A_{n-k}^{\alpha-1} s_k f = \frac{1}{A_{n-1}^{\alpha}} \sum_{k=0}^{n-1} A_{n-k-1}^{\alpha} \widehat{f}(k) w_k$$

where A_k^{α} denotes the binomial coefficient $\binom{k+\alpha}{k}$.

We consider three types of maximal operators $(T^{(\alpha)}, U^{(\alpha)})$ and $V^{(\alpha)})$ and we prove that (under some conditions) each maximal operator is bounded from the classical dyadic martingale Hardy space H_p to the classical Lebesgue space L_p and these maximal operators are bounded on $L_{p(\cdot)}$.

Theorem 1 Let $\alpha \in (0,1]$ and t, r > 0 such that $\alpha t < r/(r-t) < (1+\alpha)t$.

1. If $0 , then for all <math>f \in H_p$,

$$\left\| T^{(\alpha)}f \right\|_p, \left\| U^{(\alpha)}f \right\|_p, \left\| V^{(\alpha)}f \right\|_p \le C_p \left\| f \right\|_{H_p}.$$

2. If $p(\cdot) \in \mathcal{P}(\Omega)$, $1 < p_{-} \leq p_{+} < \infty$ and $p(\cdot)$ satisfies the condition (1), then for all $f \in L_{p(\cdot)}$,

$$\left\| T^{(\alpha)} f \right\|_{p(\cdot)}, \left\| U^{(\alpha)} f \right\|_{p(\cdot)}, \left\| V^{(\alpha)} f \right\|_{p(\cdot)} \le C_{p(\cdot)} \left\| f \right\|_{p(\cdot)}.$$

Using this, we can prove the boundedness of the Cesaro maximal operator from $H_{p(\cdot)}$ to $L_{p(\cdot)}$, where the Cesaro maximal operator is defined by $\sigma_*^{\alpha} f := \sup_{n \in \mathbb{N}} |\sigma_n^{\alpha} f|$.

Theorem 2 Let $0 < \alpha \in (0,1]$, $p(\cdot) \in \mathcal{P}(\Omega)$, $1/(\alpha + 1) < p_{-} < \infty$ and suppose that $p(\cdot)$ satisfies condition (1). Then

$$\|\sigma_*^{\alpha} f\|_{p(\cdot)} \le C \|f\|_{H_{p(\cdot)}} \qquad (f \in H_{p(\cdot)}).$$

As a consequence, we can prove theorems about almost everywhere- and norm convergence.

References

- [1] Y. Jiao, D. Zhou, F. Weisz, and L. Wu. Variable martingale Hardy spaces and their applications in Fourier analysis. *(preprint)*.
- [2] F. Schipp, W. R. Wade, P. Simon, and J. Pál. Walsh Series: An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol, New York, 1990.