10th Joint Conf. on Math. and Comp. Sci., May 22-25, 2014, Cluj, Romania 1

Modeling Dynamic Type Systems in Statically Typed
Languages

Andras Németh, Melinda Té6th

Faculty of Informatics, E6tvos Lordand University

{neataai, tothmelinda}@caesar.elte.hu

Each general-purpose programming language has its unique properties which make some of
them more favorable compared to others in the respect of solving specific problems. We often write
big programs using one general-purpose programming language that is good enough for the most
of our intentions, but often might not be the best choice on a few but essential areas. To overcome
such complications, we can piece our program together using components written in different
programming languages, resulting in a mixed construction that can be an optimal solution for that
problem domain.

In this paper, we choose two programming languages: Erlang [2] and C++ [3]. On one hand,
Erlang is a good choice to achieve greater productivity and easy cluster communication, or to
write soft real-time applications. On the other hand, with C++, one can produce more efficient
programs, since the emitted machine code is much more optimized and performs better than
interpreted and platform-independent bytecode. Putting these languages together can be a good
choice if the computation-intensive parts of a distributed application is written in C++ while the
rest in Erlang. However there is one fundamental difference between the two languages: these have
completely different type systems [1]; while Erlang is dynamically typed, C++ is statically typed.
In order to implement parts of our program in C++4, modeling the type system of Erlang is required
since the algorithms implemented with both languages have to operate on the same data. In order
to ensure seamless transitions from one to the other and vice versa, we should be able to specify
the type of data even when we do not know in advance what the data is.

Here, a definition of a dynamic type system is presented that preserves strong typing rules
in respect of its semantics along with the programming techniques needed to achieve the same
runtime behavior that it has in its original language environment. A reference implementation is
also introduced using the language constructs of the statically typed language to demonstrate the
feasibility of the results presented by our research.

References

[1] Benjamin C. Pierce: Types and Programming Languages. MIT Press, 2002.
ISBN 0-262-16209-1.

[2] Joe Armstrong: Programming Erlang: Software for a Concurrent World, Pragmatic Bookshelf,
2007. ISBN: 978-1934356005.

[3] Bjarne Stroustrup: The C++ Programming Language. Addison-Wesley, ISBN 978-0321563842,
May 2013, 4th edition.

[4] Andrds Németh: Data Access Optimization. On the 31*" National Scientific Students Associa-
tions Conference, Budapest, Hungary, 2013.

[6] Andrds Németh: Processable Erlang Data in C++. Talk at the Middle-European Conference
on Applied Theoretical Computer Science. Koper, Slovenia, 2013.



