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Resumen

In this work we perform a complete analysis of the stability of the steady sta-
tes for a three-dimensional system modeling cell dynamics after bone marrow
transplantation in chronic myeloid leukemia. There are given results for both
chronic and accelerated acute phases of the disease. In addition to the theoretical
results, numerical simulations are performed to visualize the equilibrium points,
one and two-dimensional stable manifolds, and the separation surface between
the basins of attraction of the asymptotically stable equilibria. Our results could
serve as a basis for further research concerning personalized treatment protocols.

Introduction

Chronic Myeloid Leukemia (CML)

Chronic Myeloid Leukemia, also known as chronic granulocytic leukemia, chronic
myelogenous leukemia, and chronic myelocytic leukemia, is a disease of hematopo-
ietic stem cells. Chronic Myeloid Leukemia progresses through three distinct phases.
After a relatively quick rise in the cell count, the system reaches a seemingly steady
state. After several years, this steady state, called the chronic phase, gives rise to
oscillatory instability. This leads to the acute phase which is a sharp, usually fatal,
increase in the cell count (see B. Neiman [2]).

The Mathematical Model

The basic ideas of mathematical modeling of stem cell transplantation appear in
the papers of R. Precup et al. [5, 6, 7]. The idea consists in adding, at time t = 0,
in competition with x0 and y0 (host cells) a new population z0 (donor cells). If the
combativeness of z against x and y (graf versus host and graf versus abnormal) com-
pensates that of the x and y against z (anti graf effect), and if the initial conditions x0
and y0 are small enough as compared with z0, then in time, host cells are eliminated
and they are replaced by donor cells, guaranteeing the elimination of leukemia (a
cancer of the blood).

From a mathematical point of view, this means that a new equation in z is added
to the initial system, in x and y, considered by L.G. Parajdi et al. [3, 4]. This new
three-dimensional mathematical model is modified to incorporate the new competi-
tion between the donor cell population noted by z and normal respectively abnormal
cell populations noted by x respectively y. Supposing that the intrinsic growth ra-
te, bone marrow microenvironment sensitivity, and the death rate of the donor cell
population are those of the normal host cell population, namely, a, b1, b2 and c.

Compared with the initial model considered by R. Precup et al. [6], our mathema-
tical model makes the distinction between the chronic and accelerated acute phases
at transplantation. Starting from the normal-abnormal mathematical model in two
dimensions considered by L.G. Parajdi et al. [4], we consider the following model
for the post-transplant cell evolution

x′ (t) =
ax (t)

1 + b1 (x (t) + z (t)) + b2y (t)

x (t) + y (t)

x (t) + y (t) + gz (t)
− cx (t) ,

y′ (t) =
Ay (t)

1 +B (x (t) + y (t) + z (t))

x (t) + y (t)

x (t) + y (t) +Gz (t)
− Cy (t) ,

z′ (t) =
az (t)

1 + b1 (x (t) + z (t)) + b2y (t)

z (t)

z (t) + h (x (t) + y (t))
− cz (t) ,

(1)

where x, y, z stand for normal host cells, leukemic host cells and donor cells, and the
parameters g,G, h express the intensity of the anti-host, anti-leukemia and anti-graft
effects.

Steady States

We can illustrate the bifurcation analysis of our system (1) in the next Figure 1.

Figure 1: Diagram of the transition from normal hematopoiesis to chronic and accelerated acute phases in chronic mye-
loid leukemia

Steady states for the chronic phase of CML
We consider the system (1) in the chronic phase. Thus

a > c, A > C, b1 > b2 > B and d < D < αd. (2)

The solutions of the algebraic system obtained from (1) in the conditions denoted by
(2) are the admissible points, namely

P0(0, 0, 0); P1(d, 0, 0); P2(0, D, 0); P3(0, 0, d);

P4(x
∗, y∗, 0); P5(x

+, 0, z+); P6(0, y
++, z++) and P7(x

#, y#, z#), (3)

where d and D are given by

d =
1

b1

(a
c
− 1
)
, D =

1

B

(
A

C
− 1

)
and α =

b1
b2
(> 1). (4)

In the Oxy plane, we have the steady state P4 (x
∗, y∗, 0) with the components

x∗ =
b2

b1 − b2
(αd−D) and y∗ =

b1
b1 − b2

(D − d) , (5)

in the Oxz plane, we have the steady state P5 (x
+, 0, y+), with the components

x+ =

a
c(1+
√
gh)
− 1

b1

(
1 +

√
h
g

) and z+ =

√
h

g
x+ (6)

and in the Oyz plane, we have the steady state P6 (0, y
++, z++), with the components

which are given by the following two-dimensional algebraic system{
A

1+B(y+z)
y

y+Gz − C = 0
a

1+b2y+b1z
z

z+hy − c = 0.
(7)

Finally, in Oxyz we have the steady state P7(x
#, y#, z#), with the components

x# =
b1
(
1 +

√
g
h

) (
1 +G

√
h
g

)(
d− 1

b1

√
gh
)
−
(
1 +
√
gh
) (
b1 + b2

√
g
h

) (
D − G

B

√
h
g

)
(b1 − b2)

(
1 +
√
gh
) (

1 +
√

g
h

) (
1 +G

√
h
g

) , (8)

y# =
b1

b1 − b2


(
1 +
√
gh
) (
D − G

B

√
h
g

)
−
(
1 +G

√
h
g

)(
d− 1

b1

√
gh
)

(
1 +G

√
h
g

) (
1 +
√
gh
)

 and z# =
D − G

B

√
h
g(

1 +
√

g
h

) (
1 +G

√
h
g

). (9)

Steady states for the accelerated acute phase of CML
Next we consider the system (1) in the accelerated acute phase. Thus

a > c, A > C, b1 > b2 > B and αd < D. (10)

The solutions of the algebraic system obtained from (1) in the conditions denoted by
(10) are the admissible points, namely

O(0, 0, 0); P1(d, 0, 0); P2(0, D, 0); P3(0, 0, d);

P4(x
+, 0, z+); P5(0, y

++, z++) and P6(x
#, y#, z#). (11)

Note that an solution (or steady state) of (1) is said to be admissible if all its compo-
nents x, y, z are nonnegative.

Results

Local Stability

From the study of local asymptotic stability of the stationary solutions of system
(1), we obtain the following results:

Stability analysis for the chronic phase of CML

Theorem 1. Let a, b1, b2, c, A,B,C, g,G and h be positive parameters such that
a > c, A > C, b1 > b2 > B, d < D < αd. Then system (1), considered for x ≥ 0,
y ≥ 0 and z ≥ 0, has the following steady states:

(a) O(0, 0, 0), P1(d, 0, 0) and P2(0, D, 0) are unstable equilibria;
(b) P3(0, 0, d), and P4 (x

∗, y∗, 0) given by (5), are locally asymptotically stable equi-
libria;



(c) P5 (x
+, 0, z+) given by (6), if gh <

(
a
c − 1

)2
, and

(d) P6 (0, y
++, z++) given by (7), if Gh <

(
A
C − 1

) (
a
c − 1

)
,

both P5 (x
+, 0, z+) and P6 (0, y

++, z++) are hyperbolic unstable equilibria;
(e) P7

(
x#, y#, z#

)
given by (8) and (9), ifGh <

(
A
C − 1

)√
gh <

(
A
C − 1

) (
a
c − 1

)
,

and
1 +
√
gh

1 +G
√

h
g

>
d− 1

b1

√
gh

D − G
B

√
h
g

>

(
1 +
√
gh
) (
b1 + b2

√
g
h

)
b1
(
1 +

√
g
h

) (
1 +G

√
h
g

) (12)

holds. The equilibrium P7

(
x#, y#, z#

)
is locally asymptotically stable if and only

if δ1 > 0, δ3 > 0 and δ1δ2 > δ3, where δ1, δ2, δ3 are given by
δ1 = −J11 − J22 − J33 = −tr(J),
δ2 = J11J22 + J22J33 + J11J33 − J13J31 − J32J23 − J21J12, (13)
δ3 = −J11J22J33 − J21J32J13 − J31J12J23 + J13J22J31 + J23J32J11 +

+ J33J12J21 = − det(J)

and Jij, i, j = 1, 2, 3 are the elements of Jacobian matrix calculated in (x#, y#, z#).

Recall that the equilibrium P5 (x
+, 0, z+) exists if and only if gh <

(
a
c − 1

)2
, and

the equilibrium P6 (0, y
++, z++) exists if and only if Gh <

(
A
C − 1

) (
a
c − 1

)
.

Hence, only one or both P5 (x
+, 0, z+) and P6 (0, y

++, z++) could exist. When they
exist, they are hyperbolic unstable and their local stability on manifolds is specified
by the following proposition.

Proposition 1. Assume that h ≥ 1. Then
(1) If P5 (x

+, 0, z+) exists and P6 (0, y
++, z++) does not, then P5 (x

+, 0, z+) has a two-
dimensional locally stable invariant manifold.
(2) If P6 (0, y

++, z++) exists and P5 (x
+, 0, z+) does not, then P6 (0, y

++, z++) has a
two-dimensional locally stable invariant manifold.
(3) Assume that both P5 (x

+, 0, z+) and P6 (0, y
++, z++) exists. Then

(a) If f (
√

g
h) > 0, then P5 (x

+, 0, z+) has one-dimensional locally stable invariant
manifold, and P6 (0, y

++, z++) has a two-dimensional locally stable invariant mani-
fold.

(b) If f (
√

g
h) < 0 and

(b1 − b2)
√
gh

b1b2(
√
gh + αh)

(
a

c

1

1 +
√
gh
− 1

)
> −f

(√
g

h

)
holds, then P5 (x

+, 0, z+) has one-dimensional locally stable invariant manifold, and
P6 (0, y

++, z++) has one-dimensional locally stable invariant manifold.
(c) If f (

√
g
h) < 0 and

(b1 − b2)
√
gh

b1b2(
√
gh + αh)

(
a

c

1

1 +
√
gh
− 1

)
< −f

(√
g

h

)
holds, then P5 (x

+, 0, z+) has two-dimensional locally stable invariant manifold, and
P6 (0, y

++, z++) has one-dimensional locally stable invariant manifold.

Stability analysis for the accelerated acute phase of CML

Theorem 2. Let a, b1, b2, c, A,B,C, g,G and h be positive parameters such that
a > c, A > C, b1 > b2 > B, αd < D. Then the system (1), considered for x ≥ 0,
y ≥ 0 and z ≥ 0, has the following steady states:

(a) O(0, 0, 0) and P1(d, 0, 0) are unstable equilibria;
(b) P2(0, D, 0) and P3(0, 0, d) are locally asymptotically stable equilibria;
(c) P4 (x

+, 0, z+) given by (6), if gh <
(
a
c − 1

)2
, and

(d) P5 (0, y
++, z++) given by (7), if Gh <

(
A
C − 1

) (
a
c − 1

)
,

both P4 (x
+, 0, z+) and P5 (0, y

++, z++) are hyperbolic unstable equilibria;
(e) P6

(
x#, y#, z#

)
given by (8) and (9), if Gh <

(
A
C − 1

)√
gh <

(
A
C − 1

) (
a
c − 1

)
and (12) holds. The equilibrium P6

(
x#, y#, z#

)
is locally asymptotically stable if

and only if δ1 > 0, δ3 > 0 and δ1δ2 > δ3, where δ1, δ2, δ3 are given by (13).

Remark 1. Notice that the stability on manifolds of the equilibria P4 (x
+, 0, z+) and

P5 (0, y
++, z++) are the same as for the equilibria P5 (x

+, 0, z+) and P6 (0, y
++, z++)

from the chronic case.

Numerical Simulations

Assuming the chronic phase of the disease, we analyze the separation surface bet-
ween the basins of attraction of the asymptotically stable steady states. To verify and
illustrate the theoretical results, we perform numerical simulations in two dimensions
using the Maple package, and in three dimensions, the Matlab package LaguerreEig.
We use the physiological values of parameters from [6]. As shown in [7], the control
of the separation surface between the basins of attraction of the asymptotically stable
equilibria is essential for the correction scenarios after stem cell transplantation.

The values of the parameters are

a = 0,23, b1 = 2,2× 10−8, b2 = 1,1× 10−8, c = 0,01,

A = 0,33, B = 5,5× 10−9, C = 0,03, g = 25, G = 4, h = 20.

Note that the following conditions hold:

a > c, A > C, b1 > b2 > B and d = 109 < D = 1,81× 109 < αd = 2× 109.

Also, the conditions for the existence of the equilibria P4 (x
+, 0, z+) and

P5 (0, y
++, z++) are satisfied, namely

gh = 500 >
(a
c
− 1
)2

= 484 and Gh = 80 <

(
A

C
− 1

)(a
c
− 1
)
= 220,

but the condition for the existence of P6

(
x#, y#, z#

)
does not hold since

1 +
√
gh

1 +G
√

h
g

= 5,10313 >
d− 1

b1

√
gh

D − G
B

√
h
g

= −0,01404 6>
(
1 +
√
gh
) (
b1 + b2

√
g
h

)
b1
(
1 +

√
g
h

) (
1 +G

√
h
g

) = 3,75625.

Hence, for this simulation, we have no P4 (x
+, 0, z+) and P6

(
x#, y#, z#

)
as admissible equilibria, but there exists as admissible the equilibrium
P5

(
0, 1,85935× 107, 3,48656× 107

)
whose corresponding eigenvalues are

−0,541229731006194, 0,347645655600619, 0,756347003900000. Thus P5 (0, y
++, z++)

is an unstable equilibrium.

First, we perform our simulations in the two-dimensional case using the above va-
lues of the parameters. Figure 2(a), shows that the host normal cell population x(t)
(blue dotted line) and abnormal (or leukemic) cell population y(t) (red dashed line)
are eliminated, while the donor cell population z(t) (green solid line) becomes arbi-
trarily close to the normal homeostatic amount d. This case corresponds to a success-
ful transplant. In Figure 2(b), donor cell population z(t) approach 0,while the normal
and abnormal cell populations x(t) and y(t) tend toward x∗ = 1,818181820 × 108

and y∗ = 1,636363636× 109, respectively. This means that in this case the transplant
is unsuccessful.

Figure 2: Behavior of the normal, abnormal and donor cell populations with the initial data: (a) x(0) = 2,932 × 108,
y(0) = 0,896× 108, z(0) = 4,438× 108; (b) x(0) = 2,932× 108, y(0) = 0,896× 108, z(0) = 2,438× 108.

Figure 3 illustrates the numerical simulations in three dimensions. In black,
it is represented the separation surface between the basin of attraction of the
‘goodéquilibrium P3(0, 0, 10

9) and the basin of attraction of the ‘badéquilibrium
P4(1,818181818× 108, 1,636363636× 109, 0). The orbits starting from initial points
located in the ‘good’basin (green orbits in Figure 2) remain entirely in that basin and
in time approach P3. Similarly, the orbits starting from initial points located in the
‘bad’basin (red orbits in Figure 2) remain entirely in that basin and in time approach
P4.

Of course, similar simulations can be performed for the following cases: (b)
P4 (x

+, 0, z+) is admissible and P5 (0, y
++, z++) is not; (c) both P4 (x

+, 0, z+) and
P5 (0, y

++, z++) are admissible.
This mathematically confirms the importance for the transplant success of the initial

concentration of cells at the moment of transplantation.

Figure 3: The separation surface between the ’goodánd the ’bad’basins of attraction.
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