
Analysis of Some Mathematical Models of Cell
Dynamics in Hematology

Asist. Dr. Lorand Gabriel Parajdi
Joint work with my Ph.D. supervisor, Prof. Dr. Radu Precup
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Mathematical Modeling of Chronic Myeloid Leukemia The Chronic Myeloid Leukemia

The Chronic Myeloid Leukemia

Figure: There are three distinct phases of CML.
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Mathematical Modeling of Chronic Myeloid Leukemia Introduction

Introduction

Starting from the paper of Dingli and Michor (2006), a mathematical
model given by a two – dimensional differential system is introduced to
understand the transition process from normal hematopoiesis to chronic
and accelerated-acute stages in myeloid leukemia.

We assume that at each time t, the stem cell population divides into
two:

the normal stem cell population x(t),

the abnormal stem cell population y(t).
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Mathematical Modeling of Chronic Myeloid Leukemia The basic mathematical model

The basic mathematical model

We study the following mathematical model:{
dx
dt = a

1+b1x+b2y
x − cx

dy
dt = A

1+B(x+y)y − Cy .
(1)

Here the model parameters:

a and A are the nonrestrictive growth rates of normal and abnormal
stem cells;

b1, b2, and B are the bone marrow microenvironment sensitivities;

c and C are the death rates of normal and abnormal stem cells.

The terms 1
1+b1x+b2y

and 1
1+B(x+y) model the crowding effect in the

bone marrow microenvironment, introduce competition between
normal and abnormal stem cells and guarantee the homeostasis at the
level of cell population.
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Mathematical Modeling of Chronic Myeloid Leukemia The basic mathematical model

We assume that for both cell populations, the growth rate is greater than
the death rate, that is

a > c and A > C .

In order to reflect the advantage of the abnormal cells of being less
sensitive to the bone marrow microenvironment, we assume that

b1 ≥ b2 > B.

An alternative model for normal-abnormal dynamics can be found in the
paper of Neiman (2000), A Mathematical Model of Chronic Myelogenous
Leukemia.

CSDCU-MIF 22-24 Oct. 2020 8 / 57



Mathematical Modeling of Chronic Myeloid Leukemia The basic mathematical model

The case b1 = b2 was considered by Dingli and Michor (2006) and
Cucuianu and Precup (2010). In this case, there are only two
non-zero steady states

(d , 0) and (0,D)

where d and D represent the homeostatic amounts of normal and
abnormal stem cells and are given by

d :=
1

b1

(a
c
− 1
)

and D :=
1

B

(
A

C
− 1

)
(2)

In our case, for system (1), we assume that b1 > b2. As we shall see,
besides the non-zero steady states (d , 0) and (0,D) there could also
exist a third steady state

(x∗, y∗)

where x∗ > 0 and y∗ > 0.
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Mathematical Modeling of Chronic Myeloid Leukemia Existence and uniqueness of solutions

Existence, uniqueness, continuous dependence on
data and boundedness of solutions

Theorem: (Existence and uniqueness)

For any t0 ≥ 0 and u0 = (x0, y0) ∈ (0,+∞)2 , there is a unique saturated
solution u = u (·, t0, u0) = (x , y) of system (1) which is defined on the
whole semiline [t0,+∞), is of class C∞, with x > 0 and y > 0 on
[t0,+∞), and satisfies the initial condition

u (t0) = u0.

Theorem: (Boundedness of solutions)

The solution u = u (·, t0, u0) is bounded on [t0,+∞) for every t0 ≥ 0 and
u0 ∈ (0,+∞)2 .
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Mathematical Modeling of Chronic Myeloid Leukemia Continuous dependence on data

Continuous dependence on data

Let u = (x , y) be the unique saturated solution of (1) satisfying the initial
condition u (t0) = u0, where t0 ≥ 0 and u0 = (x0, y0) ∈ (0,+∞)2 , and let
v = (x , y) be any solution of a Cauchy problem of the form{

v ′ = g (t, v)
v (t0) = v0,

(3)

where v0 = (x0, y0) ∈ R2
+, g = (g1, g2) ∈ C

(
[t0, t0 + h]× R2

+;R2
+

)
, and

it is assumed that v exists on the interval [t0, t0 + h] .
We are interested to estimate the functions x − x and y − y in terms of
the differences x0 − x0, y0 − y0, f1 − g1 and f2 − g2, where

f1 (x , y) =
ax

1 + b1x + b2y
− cx ,

f2 (x , y) =
Ay

1 + B (x + y)
− Cy .
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Mathematical Modeling of Chronic Myeloid Leukemia Continuous dependence on data

By direct computation, we can show that f1, f2 satisfy the Lipschitz
conditions

|f1 (w1,w2)− f1 (w1,w2)| ≤ l11 |w1 − w1|+ l12 |w2 − w2| ,
|f2 (w1,w2)− f2 (w1,w2)| ≤ l21 |w1 − w1|+ l22 |w2 − w2| ,

with
l11 = max {a− c , c} , l12 = ab2

4b1

l21 = A
4 , l22 = max {A− C ,C}

Denote
l = max{l11, l12}+ max{l21, l22}.

CSDCU-MIF 22-24 Oct. 2020 12 / 57



Mathematical Modeling of Chronic Myeloid Leukemia Continuous dependence on data

Theorem:

Assume that

|f1(w1,w2)− g1(t,w1,w2)| ≤ η1

|f2(w1,w2)− g2(t,w1,w2)| ≤ η2

for all w1,w2 ∈ R+, t ∈ [t0, t0 + h] , and some numbers η1, η2 ≥ 0. Then

|x(t)− x(t)|+ |y(t)− y(t)| ≤ [|x0 − x0|+ |y0 − y0|+ (η1 + η2) h] ehl

for all t ∈ [t0, t0 + h] .

Remark:

Component-wise estimates are also possible using the method based on
vector-valued norms and matrices.
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Mathematical Modeling of Chronic Myeloid Leukemia Steady states

Steady states

A steady state, an equilibrium, or a stationary solution of system (1), is a
constant solution, i.e., a solution for which dx/dt = dy/dt = 0. Thus, the
steady states of (1) are obtained by solving the algebraic system

ax

1 + b1x + b2y
− cx = 0, (4a)

Ay

1 + B(x + y)
− Cy = 0. (4b)

The solutions of the system (4a)-(4b) are the couples

(0, 0), (d , 0), (0,D) and (x∗, y∗),

where d , D are given by (2),

x∗ = −b2c(A− C )− BC (a− c)

BCc(b1 − b2)
and y∗ =

b1c(A− C )− BC (a− c)

BCc(b1 − b2)
.
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Mathematical Modeling of Chronic Myeloid Leukemia Local stability of steady states

Local stability of steady states

Theorem: (Local stability of steady states)

(a) If D < d , then (d , 0) is the only one steady state which is locally
asymptotically stable.
(b) If b1 > b2 and d < D < (b1/b2)d , then (x∗, y∗) is the only one steady
state which is locally asymptotically stable.
(c) If D > (b1/b2)d , then (0,D) is the only one steady state which is
locally asymptotically stable.

Remark:

In all of the three cases of the previous theorem, the steady state (0, 0) is
unstable as can be shown based on the assumptions a > c and A > C .
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Mathematical Modeling of Chronic Myeloid Leukemia Global stability of steady states

Global stability

Theorem: (Global asymptotic stability of steady states)

For any positive saturated solution u = (x , y) of system (1), one has:

(i) u (t) → (d , 0) as t → +∞, in case D < d ;

(ii) u (t) → (x∗, y∗) as t → +∞, in case d < D < (b1/b2) d ;

(iii) u (t) → (0,D) as t → +∞, in case (b1/b2) d < D.
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Mathematical Modeling of Chronic Myeloid Leukemia Numerical simulations

Numerical simulation of the model
Parameter estimations

We can find a parameter estimation in the paper of Dingli and Michor
(2006), where it is estimated that the total number of stem cells in a
healthy adult body is approximately

d = 2× 104.

The stem cells divide every 200 days and die every 500 days. Therefore,
the growth and death rates of normal stem cells (per capita per day) are

a =
1

200
= 0.005 and c =

1

500
= 0.002.

We can determine the bone marrow microenvironment sensitivity of
normal stem cells from the following relationships

b1 =
a
c − 1

d
= 0.75× 10−4 and b2 =

b1

2
≈ 0.38× 10−4.

Parameters A, B and C vary from patient to patient, and so D.
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Mathematical Modeling of Chronic Myeloid Leukemia Numerical simulations

Case when a < A, b1 > b2 > B and c < C .

Figure: Behavior of the normal and leukemic stem cell populations in Case I, for the
following values: a = 0.005, b1 = 0.75× 10−4, b2 = 0.38× 10−4, c = 0.002, A = 0.01,
B = 0.19× 10−4, C = 0.009, with initial conditions: x(0) = 1.5× 104 and y(0) =
5× 103.

In the normal hematopoietic state (D < d), in time (T = 3000 days), the normal
stem cell population x(t) (blue solid line) tends to the value d while the leukemic
stem cell population y(t) (red broken line) tends towards 0.
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Mathematical Modeling of Chronic Myeloid Leukemia Numerical simulations

Figure: Behavior of the normal and leukemic stem cell populations in Case I, for the
following values: a = 0.005, b1 = 0.75× 10−4, b2 = 0.38× 10−4, c = 0.002, A = 0.01,
B = 0.19× 10−4, C = 0.007, with initial conditions: x(0) = 2× 104 and y(0) = 1× 103.

In the CP-CML state, (d < D < b1

b2
d), in time (T = 25000 days), the normal and

leukemic stem cell populations, denoted by: x(t) and y(t) tend toward x∗ and
y∗, respectively.
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Mathematical Modeling of Chronic Myeloid Leukemia Numerical simulations

Figure: Behavior of the normal and leukemic stem cell populations in Case I, for the
following values: a = 0.005, b1 = 0.75× 10−4, b2 = 0.38× 10−4, c = 0.002, A = 0.01,
B = 0.19× 10−4, C = 0.004, with initial conditions: x(0) = 2× 104 and y(0) = 1.

In the AAP-CML state, ( b1

b2
d < D), in time (T = 8000 days), the normal stem

cell population x(t) (blue solid line) tends towards 0 while the leukemic stem cell
population y(t) (red broken line) tends to the value D.
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Mathematical Modeling of Chronic Myeloid Leukemia The extended model to terminally differentiated cells

The extended model to terminally differentiated
cells

Working at the level of primitive stem cells, there is not a common
way to determine the size of the two (normal and abnormal) cell
populations.

This idea first appears in F. Michor et al. (2005), and applied to our
mathematical model yields the extended system of eight equations

x ′1(t) = a1x1
1+b1x1+b2y1

− c1x1 (NSC) y ′1(t) = A1y1
1+B(x1+y1)

− C1y1 (ASC)

x ′2(t) = a2x1 − c2x2 (NPC) y ′2(t) = A2y1 − C2y2 (APC)

x ′3(t) = a3x2 − c3x3 (NDC) y ′3(t) = A3y2 − C3y3 (ADC)

x ′4(t) = a4x3 − c4x4 (NTC) y ′4(t) = A4y3 − C4y4 (ATC).

Here x2 (t) , y2 (t) stand for the normal (N) and abnormal (A) progenitor
cell (PC) populations; x3 (t) , y3 (t) stand for the normal and abnormal
differentiated cell (DC) populations; and x4 (t) , y4 (t) stand for the normal
and abnormal terminally differentiated cell (TC) populations, respectively.
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Mathematical Modeling of Chronic Myeloid Leukemia The extended model to terminally differentiated cells

In the equilibrium state, assuming that in a healthy adult the number
of stem cells is d = x∗1 = 2× 105, the number of progenitor cells is
x∗2 = 1× 108, the number of differentiated cells is x∗3 = 1× 1010 and the
number of terminally differentiated cells is x∗4 = 1× 1012 (see F. Michor et
al. (2005)).
Note that if

(x1E , y1E )

is any equilibrium (E) of the initial system (1), then

(x1E , y1E , a2x1E/c2, A2y1E/C2, a2a3x1E/c2c3, A2A3y1E/C2C3,

a2a3a4x1E/c2c3c4, A2A3A4y1E/C2C3C4)

is an equilibrium of the extended system, and the two equilibria have the
same stability property.
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Mathematical Modeling of Chronic Myeloid Leukemia The extended model to terminally differentiated cells

(a) Stem cell populations (b) Progenitor cell populations

(c) Differentiated cell popula-

tions

(d) Terminally differentiated

cell populations

Figure: Behavior of (a) stem cell populations, (b) progenitor cell populations, (c) differentiated
cell populations and (d) terminally differentiated cell populations for the parameter values:
a1 = 0.005, a2 = 4, a3 = 5, a4 = 100, b1 = 0.75× 10−5, b2 = 0.38× 10−5, c1 = 0.002,
c2 = 0.008, c3 = 0.05, c4 = 1, A1 = 0.01, A2 = 8, A3 = 10, A4 = 100, B = 0.19× 10−5,
C1 = 0.004, C2 = c2, C3 = c3, C4 = c4, and initial conditions: x1(0) = 2× 105,
x2(0) = 1× 108, x3(0) = 1× 1010, x4(0) = 1× 1012, y1(0) = y2(0) = y3(0) = y4(0) = 1.
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Chapter 3: Optimization Problems in
Chronic Myeloid Leukemia
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Optimization Problems in Chronic Myeloid Leukemia The optimization problem

The optimization problem

Although model (1), has been built to describe the dynamics in the
compartment of stem cells, it can be equally used for any other class of
hematopoiesis, either of progenitor or precursor cells. Of course, the
”death” rates include the transition rates to the next layer, while the
growth rates depend on the cell proliferation in the previous compartment.
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Optimization Problems in Chronic Myeloid Leukemia The optimization problem

We shall perform the analysis under the assumption of chronic leukemia
state (CML state):

d < D < d
s ,

where s = b2
b1

and we have a third equilibrium [x∗, y∗] where:

x∗ = ( 1
s − 1)−1(ds − D) and y∗ = (1− s)−1(D − d). (5)

Next we consider the ration y∗

x∗ , from (5) we have:

y∗

x∗ = 1
s
D−d
d
s
−D . (6)

Alternatively, one may consider the ratio:

β = y∗

2x∗+y∗ . (7)

which may be put into connection with routine laboratory assays (such as
the BCR-ABL percentage).
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Optimization Problems in Chronic Myeloid Leukemia The optimization problem

From (2) we know that:

d = 1
b1

( ac − 1) and D = 1
B (A

C − 1).

Any therapy directed at tumor cells should decrease D and this happens by
increasing the death and sensitivity parameters C and B and by decreasing
the growth rate A.

We apply the same idea for normal cells, and we obtained the
following formulas:

Dm = 1
v2B

(
v1

A
C − 1

)
, dm = 1

v4b1

(
v3

a
c − 1

)
and sm = v5s

where
v1, v4 ≤ 1, v2, v3 ≥ 1 and v5 <

1
s .
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Optimization Problems in Chronic Myeloid Leukemia The optimization problem

We assume that a drug S which modifies all the kinetic parameters is
available, and assume that the total dose/toxicity/cost associated to the
therapy is given by the formula:

J = p1

(
1
v1
− 1
)θ1

+ p2 (v2 − 1)θ2 + p3 (v3 − 1)θ3 + p4

(
1
v4
− 1
)θ4

+ p5 (v5 − 1)θ5 .

(8)

Here the exponents θ1, θ2, θ3, θ4, θ5 ∈ R+ give the rapidity of the growth
of J as 1

v1
, v2, v3,

1
v4
, v5 increase to infinity and the parameters p1, p2, p3, p4

and p5 are proportionality factors of dosage/toxicity/cost.
In particular, we can consider the expression

J = p1

(
1
v1
− 1
)

+ p2 (v2 − 1) + p3 (v3 − 1) + p4

(
1
v4
− 1
)

+ p5 (v5 − 1), (9)

or its quadratic version. The problem is to find the factors v1, ..., v5 such
that the total dose/toxicity/cost is minimal and the patient state is
under a desired value.
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Optimization Problems in Chronic Myeloid Leukemia Optimal personalized dosing of a selective drug

Optimal personalized dosing of a selective drug

According to the chosen estimation indicator, we consider three different
optimal problems:

(1) Optimal personalized dosing of a selective drug:
From the mathematical expression (7) of the BCR-ABL percentage β, the
ration y∗

x∗ = 2β
1−β . Next, using (6), where s is assumed to be s < 1 (for

example we choose s to be 1/2), one obtains the value of D:

D = (1 + β)d ,

and we consider a drug which acts only on the proliferation rate A. The
expression of D, where B is known, gives patient’s relativ proliferation rate
ρ = A/C ,

ρ = 1 + (1 + β)Bd .
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Optimization Problems in Chronic Myeloid Leukemia Optimal personalized dosing of a selective drug

After diagnosis, the patient is treated with a standard dose J0 and the
response is assessed T months later by the new BCR-ABL β0, which as
above, gives after-treatment relative proliferation rate

ρ0 = 1 + (1 + β0)Bd .

Thus, after treatment, the patient’s relative proliferation rate ρ has been
modified by the factor v0 = ρ0

ρ .
Now from the expression of one drug dose given by:

J = p
(

1
v − 1

)θ
where θ ∈ R+,

we can find the proportionality dosage factor p, namely:

p = J0(
1
v0
−1
)θ = J0

(
1+(1+β0)Bd

(β−β0)Bd

)θ
.

At this stage, we are able to prescribe the personalized dose of the drug for
a given target β∗ = 0.05%, at T months after reaching a new equilibrium:
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Optimization Problems in Chronic Myeloid Leukemia Optimal personalized dosing of a selective drug

J1 = J0

(
(β−β∗)(1+(1+β0)Bd)
(β−β0)(1+(1+β∗)Bd)

)θ
.

It remains to make a choice for the exponent θ. If a maximal dose Jmax is
prescribed in the case of an admissible response to the standard dose J0

equal to (β∗ + β)/2, where it is consider that the drug is inefficient and
thus it has to be replaced if the response is up to (β∗ + β)/2.

With Jmax instead of J1 and (β∗ + β)/2 in the place of β0 and taking
the logarithm, we obtain

θ = ln(Jmax/J0)
ln γ

where
γ = 2+(2+β∗+β)Bd

1+(1+β∗)Bd
.
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Optimization Problems in Chronic Myeloid Leukemia Non-specific drug optimization problems

Non-specific drug optimization problems

(2) First non-specific drug optimization problem:
In this first non-specific drug problem we consider that the ratio between
the modified and the initial leukemic homeostatic values Dm and D is
under a chosen number q < 1, and the ratio between the modified and the
initial normal homeostatic values dm and d is larger than some given
number r > 1, that is:

Dm ≤ qD and dm ≥ rd .

We assume that no modification is given to the relative sensitivity
parameter s, hence v5 = 1, which guarantees the condition Dm ≤ s−1dm.
For the first non-specific drug scenario, the toxicity/dose function is:

J = p1( 1
v1
− 1) + p2(v2 − 1) + p3(v3 − 1) + p4( 1

v4
− 1),

and finding the parameters v1, v2, v3 and v4 means to solve the constrained
convex optimization problem:
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Optimization Problems in Chronic Myeloid Leukemia Non-specific drug optimization problems

Minimize J
Subject to ϕi (ν) ≤ 0, i = 1, .., 6,

where ν = (v1, v2, v3, v4) ∈ R+
4,

ϕ1(ν) = v1 − 1, ϕ2(ν) = 1− v2,

ϕ3(ν) = v1
A

BC
− v2q

(
A

BC
− 1

B

)
− 1

B
,

ϕ4(ν) = 1− v3, ϕ5(ν) = v4 − 1,

ϕ6(ν) = −v3
a

b1c
+ v4r

(
a

b1c
− 1

b1

)
+

1

b1
.

To solve the problem, we use the Kuhn-Tucker Theorem. Let L(ν, u) be
the Lagrangian associated to the convex optimization problem:

L(ν, u) = J(ν) + 〈u, ϕ(ν)〉,
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Optimization Problems in Chronic Myeloid Leukemia Non-specific drug optimization problems

where u ∈ R6
+, ϕ(ν) = (ϕ1(ν), ..., ϕ6(ν)) and

〈u, ϕ(ν)〉 = u1ϕ1(ν) + ...+ u6ϕ6(ν).
Then a solution of the optimization problem is a point ν ∈ R4

+ for
which there is u ∈ R6

+ such that the couple u, ν is a saddle point of the
Lagrangian, that is a solution of the following system:

∇νL(ν, u) ≥ 0, (10)

〈ν,∇ν(ν, u)〉 = 0, (11)

∇uL(ν, u) ≤ 0, (12)

〈u,∇u(ν, u)〉 = 0. (13)

Assume that νi 6= 1 for i = 1, ..., 4, meaning that the first four parameters
are all effectively altered. Since

∇uL(ν, u) = (v1 − 1, 1− v2, v1
A
BC − v2q( A

BC −
1
B )− 1

B ,
1− v3, v4 − 1, −v3

a
b1c

+ v4r( a
b1c
− 1

b1
) + 1

b1
),
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Optimization Problems in Chronic Myeloid Leukemia Non-specific drug optimization problems

from (12) and (13), we find

u1 = u2 = u4 = u5 = 0,

while from the first two conditions (10) and (11) we obtained,

−p1

v2
1

+ u3
A

BC
= 0,

p2 − u3q

(
A

BC
− 1

B

)
= 0,

p3 − u6
a

b1c
= 0,

−p4

v2
4

+ u6r

(
a

b1c
− 1

b1

)
= 0.

Solving yields

u3 = p2BC
q(A−C) , u6 = p3b1c

a , v1 =
(
p1q(A−C)

p2A

) 1
2
, v4 =

(
ap4

p3r(a−c)

) 1
2
.
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Optimization Problems in Chronic Myeloid Leukemia Non-specific drug optimization problems

Finally, since u3 6= 0 and u6 6= 0, using again the first two conditions (10)
and (11), we obtain the optimal solution:

v1 =
(
p1q(A−C)

p2A

) 1
2
, v2 =

(
p1qA(A−C)

p2

) 1
2−C

q(A−C) ,

v3 =

(
p4ra(a−c)

p3

) 1
2 +c

a , v4 =
(

ap4

p3r(a−c)

) 1
2
.

Despite the above analytical solution, a numerical one is possible and easy
to obtain by using Matlab, Maple, or Mathematica computer software.
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Optimization Problems in Chronic Myeloid Leukemia Non-specific drug optimization problems

(3) Second non-specific drug optimization problem:
This second multi-parameterd scenario uses a similar approach to the
previous one, but this time the response is evaluated interms of y∗/x∗

which is controllably decreased, more exactly

y∗m
x∗m
≤ k y∗

x∗ and Dm < dm
sm
,

where y∗

x∗ and y∗m
x∗m

are the indicators before and after treatment,
respectively, and k < 1 is a target coefficient.
To this aim one has to minimize the functional J given by (9) under the
constraints

v1 ≤ 1, v2 ≥ 1, v3 ≥ 1, v4 ≤ 1 and v5 <
b1
b2
.
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Numerical simulations for the objective function (9):

Looking at the column giving the minimal toxicity/dose/cost Jmin, we note
an increase of toxicity/dose/cost when as we decrease the number of
kinetic parameters targeted by the drug.
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Optimal personalized dosing of a selective drug
based on the extended model to terminally
differentiated cells

We consider the following extended mathematical model:

x ′1(t) = a1x1
1+b1x1+b2y1

− c1x1 (NSC) y ′1(t) = A1y1
1+B(x1+y1)

− C1y1 (ASC)

x ′2(t) = a2x1 − c2x2 (NPC) y ′2(t) = v0A2y1 − C2y2 (APC)

x ′3(t) = a3x2 − c3x3 (NDC) y ′3(t) = v1A3y2 − C3y3 (ADC)

x ′4(t) = a4x3 − c4x4 (NTC) y ′4(t) = A4y3 − C4y4 (ATC).

we assume that the drug acts over the parameters A2 and A3 (see F.
Michor et al. (2005)). Note that the effect over other parameters of
Imatinib and of other used drugs, is not clarified in the literature.
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Simulation of the optimal personalized dose formula:

BCR-ABL
of untreated

patient

BCR-ABL
after standard

dose
[0.01%− 0.1%]

BCR-ABL
the target

value
< 0.01%

Jmax

maximum
dose

J0

initial standard
dose

J1

optimal
dose

β = 99% β0 = 0.09% β∗ = 0.005% 800 mg 400 mg 518.78 mg
β = 96% β0 = 0.05% β∗ = 0.005% 800 mg 400 mg 492.00 mg
β = 99% β0 = 0.04% β∗ = 0.005% 800 mg 400 mg 482.27 mg
β = 98% β0 = 0.03% β∗ = 0.005% 800 mg 400 mg 469.93 mg
β = 97% β0 = 0.09% β∗ = 0.005% 800 mg 400 mg 518.74 mg

Conclusion:

The same results are obtained in case that the drug acts only on A2 which is the rate at
which APC are produced from ASC. If we consider for one drug dose, the following
expression:

J = p

(
1

v
− 1

)θ

,

where v can be equal with the product of v0 and v1 (v = v0v1).
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The mathematical model

Based on system (1), we consider the following mathematical model
for the post-transplant cell evolution

x ′ (t) = ax(t)
1+b1(x(t)+z(t))+b2y(t)

x(t)+y(t)
x(t)+y(t)+gz(t)

− cx (t)

y ′ (t) = Ay(t)
1+B(x(t)+y(t)+z(t))

x(t)+y(t)
x(t)+y(t)+Gz(t)

− Cy (t)

z ′ (t) = az(t)
1+b1(x(t)+z(t))+b2y(t)

z(t)
z(t)+h(x(t)+y(t))

− cz (t) ,

(14)

where x(t), y(t) and z(t) stand for normal host cells, abnormal host cells,
and donor cells. The growth inhibitory factors

1

1 + g z
x+y

,
1

1 + G z
x+y

and
1

1 + h x+y
z

take into consideration the cell-cell interactions, quantitatively by the
ratio z/(x + y) and (x + y)/z and qualitatively by parameters h, g and G
which represents the intensity of the anti-host, anti-leukemia and
anti-graft effects.
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Existence, uniqueness and boundedness of solutions

Theorem: (Existence and uniqueness)

For any t0 ≥ 0 and u0 = (x0, y0, z0) ∈ (0,+∞)3 , there is a unique
saturated solution u = u (·, t0, u0) = (x , y , z) of system (14) which is
defined on the whole semiline [t0,+∞), is of class C∞, with x > 0, y > 0
and z > 0 on [t0,+∞), and satisfies the initial condition

u (t0) = u0.

Theorem: (Boundedness of solutions)

The solution u = u (·, t0, u0) is bounded on [t0,+∞) for every t0 ≥ 0 and
u0 ∈ (0,+∞)3 .
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Steady states

The steady states of system (14) are obtained by solving the algebraic
system

ax

1 + b1x + b2y + b1z

x + y

x + y + gz
− cx = 0 (15a)

Ay

1 + B (x + y + z)

x + y

x + y + Gz
− Cy = 0 (15b)

az

1 + b1x + b2y + b1z

z

z + h (x + y)
− cz = 0 (15c)

The solutions of the system (15a)-(15c) are the points

P1(d , 0, 0); P2(0,D, 0); P3(0, 0, d); P4(x∗, y∗, 0);

P5(x+, 0, z+); P6(0, y++, z++) and P7(x#, y#, z#). (16)

Here
x∗ =

b2

b1 − b2
(αd − D) , y∗ =

b1

b1 − b2
(D − d) , (17)
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x+ =

a
c(1+
√
gh)
− 1

b1

(
1 +

√
h
g

) , z+ =

√
h

g
x+, (18)

x# =
b1

(
1 +

√
g
h

) (
1 + G

√
h
g

)(
d − 1

b1

√
gh
)
−
(
1 +
√
gh
) (

b1 + b2

√
g
h

) (
D − G

B

√
h
g

)
(b1 − b2)

(
1 +
√
gh
) (

1 +
√

g
h

) (
1 + G

√
h
g

) ,

(19)

y# =
b1

b1 − b2

(1 +
√
gh
) (

D − G
B

√
h
g

)
−
(

1 + G
√

h
g

)(
d − 1

b1

√
gh
)

(
1 + G

√
h
g

) (
1 +
√
gh
)

 (20)

and

z# =
D − G

B

√
h
g(

1 +
√

g
h

) (
1 + G

√
h
g

) , (21)

while (y++, z++) represents the solution of the two-dimensional algebraic system{
A

1+B(y+z)
y

y+Gz
− C = 0

a
1+b2y+b1z

z
z+hy
− c = 0.

(22)
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We are only interested in solutions with non-negative components.

Admissible steady states in the chronic case:
We consider the system (14) in the chronic case. Hence

a > c , A > C , b1 > b2 > B and d < D < αd . (23)

See Theorem: (Admissible steady states in the chronic case).

Admissible steady states in the accelerated-acute case:
Let system (14) be in the accelerated-acute case, that is

a > c , A > C , b1 > b2 > B and αd < D. (24)

In this case we have the same conclusions like in the chronic case, except
the point P4(x∗, y∗, 0) which is not admissible since x∗ < 0, in view of the
condition αd < D.
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Theorem: (Admissible steady states in the chronic case)

Let the assumptions (23) hold.
(i) The steady states P1(d , 0, 0), P2(0,D, 0), P3(0, 0, d), and P4(x∗, y∗, 0) are
admissible.
(ii) The steady state P5(x+, 0, z+) is admissible if and only if

gh <
( a
c
− 1
)2
.

(iii) The steady state P6(0, y++, z++) is admissible if and only if

Gh <

(
A

C
− 1

)( a
c
− 1
)
.

(iv) The steady state P7(x#, y#, z#) is admissible if and only if

Gh <

(
A

C
− 1

)√
gh <

(
A

C
− 1

)( a
c
− 1
)
,

and

1 +
√
gh

1 + G
√

h
g

>
d − 1

b1

√
gh

D − G
B

√
h
g

>

(
1 +
√
gh
) (

b1 + b2

√
g
h

)
b1

(
1 +

√
g
h

)(
1 + G

√
h
g

) .
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Local stability of steady states

Theorem: (Stability analysis for the chronic phase of CML)

Let a, b1, b2, c,A,B,C , g ,G , h be positive parameters such that (23) holds. Then:
(a) P1(d , 0, 0) and P2(0,D, 0) are unstable equilibria;
(b) P3(0, 0, d) and P4 (x∗, y∗, 0) given by (17), are locally asymptotically stable

equilibria;
(c) When P5

(
x+, 0, z+

)
given by (18) and P6

(
0, y++, z++

)
given by (22) are

admissible, they are unstable equilibria;
(d) When P7

(
x#, y#, z#

)
given by (19), (20) and (21) is admissible, it is locally

asymptotically stable if and only if

δ1 > 0, δ3 > 0 and δ1δ2 > δ3,

where δ1, δ2, δ3 are given by

δ1 = −J11 − J22 − J33 = −tr(J), δ2 = J11J22 + J22J33 + J11J33 − J13J31 − J32J23 − J21J12,

δ3 = −J11J22J33 − J21J32J13 − J31J12J23 + J13J22J31 + J23J32J11 + J33J12J21 = − det(J)

and Jij , i , j = 1, 2, 3 are the elements of the Jacobian matrix calculated at (x#, y#, z#).
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Recall that the equilibrium P5 (x+, 0, z+) is admissible if and only if

gh <
( a
c
− 1
)2

,

and the equilibrium P6 (0, y++, z++) is admissible if and only if

Gh <

(
A

C
− 1

)( a
c
− 1
)
.

Hence, only one or both P5 (x+, 0, z+) and P6 (0, y++, z++) could be
admissible. When they are admissible, they are unstable and their local
stability on manifolds is specified by the following proposition.

Proposition: (Local stability on manifolds)

Assume that h ≥ 1. Then
(1) If P5

(
x+, 0, z+

)
is admissible and P6

(
0, y++, z++

)
is not, then P5

(
x+, 0, z+

)
has a

two-dimensional locally stable invariant manifold.
(2) If P6

(
0, y++, z++

)
is admissible and P5

(
x+, 0, z+

)
is not, then P6

(
0, y++, z++

)
has

a two-dimensional locally stable invariant manifold.
(3) Assume that both P5

(
x+, 0, z+

)
and P6

(
0, y++, z++

)
are admissible.
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Then
(a) If f (

√
g
h

) > 0, where

f

(√
g

h

)
=

A

BC

√
gh

√
gh + Gh

−
a

b2c

√
gh + h

√
gh + αh

1

1 +
√
gh
−

1

B
+

1

b2

√
gh + h

√
gh + αh

,

then P5

(
x+, 0, z+

)
has a one-dimensional locally stable invariant manifold, and

P6

(
0, y++, z++

)
has a two-dimensional locally stable invariant manifold.

(b) If f (
√

g
h

) < 0 and

(b1 − b2)
√
gh

b1b2(
√
gh + αh)

(
a

c

1

1 +
√
gh
− 1

)
> −f

(√
g

h

)
,

then P5

(
x+, 0, z+

)
has a one-dimensional locally stable invariant manifold, and

P6

(
0, y++, z++

)
has a one-dimensional locally stable invariant manifold.

(c) If f (
√

g
h

) < 0 and

(b1 − b2)
√
gh

b1b2(
√
gh + αh)

(
a

c

1

1 +
√
gh
− 1

)
< −f

(√
g

h

)
,

then P5

(
x+, 0, z+

)
has a two-dimensional locally stable invariant manifold, and

P6

(
0, y++, z++

)
has a one-dimensional locally stable invariant manifold.
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Numerical simulations of the model

Numerical simulations in the chronic case:
Case (a): Assume that P5 (x+, 0, z+) is not admissible and
P6 (0, y++, z++) is admissible. Consider the following values of the
parameters:

a = 0.23, b1 = 2.2× 10−8, b2 = 1.1× 10−8, c = 0.01,

A = 0.33, B = 5.5× 10−9, C = 0.03,

g = 25, G = 4, h = 20,

for which

d = 109, D = 1.81× 109, αd = 2× 109,

and the following conditions hold

a > c, A > C , b1 > b2 > B and d < D < αd (chronic case).

Also, the computations

gh = 500 >
( a
c
− 1
)2

= 484 and Gh = 80 <

(
A

C
− 1

)( a
c
− 1
)

= 220,
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confirm that P5 (x+, 0, z+) is not admissible and P6 (0, y++, z++) is
admissible. In addition, the condition for the admissibility of
P7

(
x#, y#, z#

)
does not hold since

1 +
√
gh

1 + G
√

h
g

= 5.10313 >
d − 1

b1

√
gh

D − G
B

√
h
g

= −0.01404

6>
(
1 +
√
gh
) (

b1 + b2

√
g
h

)
b1

(
1 +

√
g
h

) (
1 + G

√
h
g

) = 3.75625.

Hence, for this simulation, we have no P5 (x+, 0, z+) and P7

(
x#, y#, z#

)
as admissible equilibria, but there exists the admissible equilibrium
P6

(
0, 1.85935× 107, 3.48656× 107

)
for which the eigenvalues of the

corresponding Jacobian matrix are

−0.005412297301854, 0.034764565551854, −0.007563470039000.

Thus P6 (0, y++, z++) is an unstable equilibrium.
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The next figure illustrates the phase portrait of system (14).

Figure: Phase portrait of system (14). In black it is represented the separation surface

between the basin of attraction of the ’good’ equilibrium P3(0, 0, 109) and the basin of

attraction of the ’bad’ equilibrium P4(1.818181818× 108, 1.636363636× 109, 0).

(Matlab code source can be found in Appendix)
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Numerical simulations in the accelerated-acute case:
Case (a): Assume that P4 (x+, 0, z+) is not admissible and
P5 (0, y++, z++) is admissible. The phase portrait of system (14).

Figure: In black it is represented the separation surface between the basin of attraction

of the ‘good’ equilibrium P3(0, 0, 109) and the basin of attraction of the ‘bad’

equilibrium P2(0, 2.424242423× 109, 0).
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Thank you for your attention !
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