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Abstract The boundary-layer flows of non-Newtonian power-law fluids adjacent to a stretching

plane surface driven by an outer power-law shear in the presence of suction or injection are investi-

gated. The boundary-layer equations are reduced to an ordinary differential equation with algebraical

boundary condition at far field. A number of solutions with algebraical decaying behaviour are cap-

tured numerically. It is found that such solutions are possible if and only if fw ≥ fmin
w for properly

given values of α and β. We further notice that for properly prescribed values of fw and α, solutions

can always be found in the range 0 ≤ β ≤ βmax, where βmax corresponds to lim
η→0

f ′′(η) = 0. Besides,

it is found that in the range −1/2 < α < 0, both the suction and the injection solutions could be

available. While when −1 < α < −1/2, only the solutions of suction type are possible. Furthermore,

it is found that no solution is possible when the wall stretching is applied to the porous wall in the

case of α = −1.

Summary

Here we consider the boundary layer flows of non-Newtonian power-law fluids driven over a
stretching permeable flat surface by a outer power shear, defined by
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where x, y are Cartesian coordinates with the x-axis extending along the length of the wall
and the y-axis in the wall-normal direction, u and v are the velocity components in the x-
and y-directions, ρ and τxy are the density and shear stress, respectively. The shear tensor
is defined by the Ostwald-de Wäle model

τij = 2K(2DklDkl)
(κ−1)/2Dij , (3)
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denotes the rate of stretching tensor, K is the consistency coefficient and κ is the power-law
index. The appropriate boundary conditions are

u = C · xc, v = D · xd at y = 0, u→ β̂yα as y → ∞, (5)

where C, D, c, d, α and β̂ are constants. The shear tensor used here is given by

τxy = −K

(

−
∂u

∂y

)κ

, (6)

where the shear rate ∂u/∂y is assumed to be nonpositive in the whole boundary layer since
the velocity component u decreases monotonically as y enlarges from the stretching surface
to the edge of boundary layer. It is worth mentioning that the flows to be discussed are
strictly the zero pressure gradient flows. These are different in structure from those given
by Andersson and Bech [10], who considered non-Newtonian power-layer flows induced by
a stretching wall with no external power shear being applied.

In search of similarity solutions, we define a function f(η) and its variable η as follows:

ψ(x, y) = A · xa+b
· f(η), η = B · y · x−b, (7)

where ψ(x, y) is the stream function satisfying u = ∂ψ/∂y and v = −∂ψ/∂x, A, B, a and b
are constants to be determined. From Eq.(7), we obtain

u =
∂ψ

∂y
= A ·B · xa−bf ′(η), (8)

v = −
∂ψ

∂x
= ABb y xa−b−1f ′(η)−Aaxa−1f(η). (9)

Here a, b, c and d are given by

a =
1 + α

1 + κ+ α(2− κ)
, b =

1

1 + κ+ α(2 − κ)
,

c = a− b, d = a− 1. (10)

And the constants A and B are determined as
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We then obtain the reduced similarity equation as:

κ(−f ′′)κ−1f ′′′ + aff ′′ − (a− b)f ′2 = 0, (12)

subject to the boundary conditions

f(0) = fw, f ′(0) = 1, f ′(∞) → βηα, (13)

where β = β̂/(C ·Bα) and fw = −D/(A · a) is the suction/injection coefficient.

The shooting technique will be then used here to give the results. An infinity number
of solutions with algebraical decaying behaviour are obtained numerically. We will further
give an analysis on the existence of these solutions for suction/injection parameter fw, as
well as the exponents α and β. Besides, an investigation will be provided for the solutions’
behaviour.
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