
1. Write a bash script that counts all the C files from a given directory and all of its subdirectories.

#!/bin/bash

if [$# -lt 1]; then
 echo "Insufficient arguments"
 exit 1
fi

find $1 -type f | grep -E -c "\.c$"

2. Write a bash script that counts all the lines of code in the C files from the directory given as
command-line argument, excluding lines that are empty or contain only spaces.

#!/bin/bash
if [-z "$1"]; then
 echo "No parameters given"
 exit 1
fi
if [! -d "$1"]; then
 echo "Parameter is not a folder"
 exit 1
fi
total=0
for f in $(ls "$1" | grep -E "\.c$"); do
 if test -f "$1/$f"; then
 nr_lines=$(grep -E -c -v "^[[:space:]]*$" "$1/$f")
 echo "$f: $nr_lines"
 total=$((total+nr_lines))
fi
done
echo "Total lines: $total"

3. Write a bash script that counts all the lines of code in the C files from the directory given as
command-line argument and all its subdirectories, excluding lines that are empty or contain
only spaces.

#!/bin/bash
if [-z "$1"]; then
 echo "No parameters given"
 exit 1
fi
if [! -d "$1"]; then
 echo "Parameter is not a folder"
 exit 1

fi
total=0
for f in $(find "$1" -type f | grep -E "\.c$"); do

nr_lines=$(grep -E -c -v "^[[:space:]]*$" $f)
echo "$f - $nr_lines"
total=$((total+nr_lines))

done
echo "Total lines: $total"

4. Write a bash script that receives any number of command line arguments and prints on the
screen, for each argument, if it is a file, a directory, a number or something else.

#!/bin/bash
while [! $# -eq 0]; do
 arg=$1
 if test -f $arg; then
 echo "$arg is a regular file"
 elif [-d $arg]; then
 echo "$arg is a directory"

elif echo $arg | grep -E -q "^[0-9]+$"; then
 echo "$arg is an integer number"
 else
 echo "$arg is something else"
 fi

shift
done

5. Write a bash script that keeps reading strings from the keyboard until the name of a readable
regular file is given.

#!/bin/bash
fname=""
while [! -f "$fname"]; do
 read -p "Enter a string: " fname
done

6. Write a bash script that sorts the file given as command line arguments in ascending order
according to their file size in bytes.

#!/bin/bash
for f in $@; do
 if test -f $f; then
 du -b $f
 fi
done | sort -n

7. Write a bash script that calculates the sum of the sizes (in bytes) of all regular files in a folder

given as a parameter.(use test to check if the folder exists and if a given file is a regular file)

#!/bin/bash

if [$# -eq 0]; then
 echo "Please provide one directory"
 exit 1
fi

if [! -d $1]; then
 echo "The argument given is not a directory"
 exit 1
fi

sum=0
for f in $(ls $1); do
 if [-f "$1/$f"]; then
 size=$(du -b "$1/$f" | awk '{print $1}')
 echo "File: $f - Size: $size"
 sum=$((sum+size))
 fi
done
echo "Total size of regular files from folder $1 is $sum"

8. Write a script that reads filenames until the word "stop" is entered. For each filename, check if
it is a text file and if it is, print the number of words on the first line.(Hint: test command to
check if regular file; file command to check if text file)

#!/bin/bash

while true; do
 read -p "Enter filename or stop: " file
 if ["$file" = "stop"]; then
 echo "Done"
 exit 0
 elif [-f "$file"]; then
 if file $file | grep -E -q "text"; then
 echo "File: $file - Words on first line: $(head -1 $file |
wc -w)"
 fi
 fi
done

9. Write a script that receives as command line arguments pairs consisting of a filename and a
word. For each pair, check if the given word appears at least 3 times in the file and print a
corresponding message.

#!/bin/bash

if [$# -lt 2]; then
 echo "Please provide at least 2 arguments"
 exit 1
fi

if [$(($# % 2)) -eq 1]; then
 echo "You must provide an even number of arguments"
 exit 1
fi

while [$# -gt 1]; do
 file=$1
 word=$2

 if [! -f "$file"]; then
 echo "Name $file is not a file"
 else
 count=$(grep -E -o "\<$word\>" "$file" | wc -l)
 if [$count -ge 3]; then
 echo "Word $word appears $count times in file $file"
 fi
 fi
 shift 2
done

if [$# -eq 1]; then
 echo "Warning: final pair is incomplete"
fi

10. Write a bash script that sorts all files given as command line arguments descending by size.
(first check if an argument is a file)

11. Write a script that extracts from all the C source files given as command line arguments the

included libraries and saves them in a file. (use the file command to check if a file is a C source
file)

12. Write a script that monitors the state of a given folder and prints a message when something

changes.

13. Find recursively in a given directory all the symbolic links, and report those that point to
files/directories that no longer exist. Use option -L to test if a path is a symbolic link, and option
-e to test if it exists (will return false if the target to which the link points does not exist)

#!/bin/bash

for link in $(find "$1" -type l); do
 if [! -e "$link"]; then
 echo "Link $link is not valid"
 fi
done

14. Write a bash script that receives a folder name as an argument. Find recursively in the folder
the number of times each file name is repeated.

#!/bin/bash

if [-z "$1"]; then
 echo "Please provide one argument"
 exit 1
fi

if [! -d "$1"]; then
 echo "Argument must be a directory"
 exit 1
fi

find "$1" -type f | awk -F/ '{print $NF}' | sort | uniq -c

15. Calculate the average of all process ids in the system per user.

#!/bin/bash
Solution w/o arrays

prev_user=""
count=0
sum=0
for user_pid in $(ps -ef | awk 'NR > 1{print $1","$2}' | sort); do
 curr_user=$(echo "$user_pid" | cut -d, -f1)
 pid=$(echo "$user_pid" | cut -d, -f2)
 if ["$curr_user" != "$prev_user"]; then
 if [$count -gt 0]; then
 echo "Avg for $prev_user is "$((sum/count))
 fi
 prev_user=$curr_user
 sum=0

 count=0
 fi
 sum=$((sum+pid))
 count=$((count+1))
done

16. Write a script that receives program/process names as command line arguments. The script
will monitor all the processes in the system, and whenever a program with one of those names
is run, the script will kill it and display a message. (see commands ps, kill, killall).

#!/bin/bash

if [$# -eq 0]; then
 echo "Provide at least one name"
 exit 1
fi

while true; do
 for process in $@; do
 PIDs=""
 PIDs=$(ps -ef | awk '{print $8" "$2}' | grep -E "\<$process " | awk
'{print $2}')
 if [-n "$PIDs"]; then
 kill -9 $PIDs
 fi
 done
 sleep 3
done

17. Write a script that receives a directory as a command line argument. The script will delete all
the C source files from the directory and will display all other text files sorted alphabetically.

18. Write a script that finds recursively in the current folder and displays all the regular files that

have write permissions for everybody (owner, group, other). Then the script removes the write
permissions from everybody. Hint: use chmod's symbolic permissions mode (see the manual).

19. Consider a file containing a username on each line. Generate a comma-separated string with

email addresses of the users that exist. The email address will be obtained by appending
"@scs.ubbcluj.ro" at the end of each username. Make sure the generated string does NOT
end in a comma.

#!/bin/bash
if [-z "$1"]; then
 echo "Please provide one input file"
 exit 1

fi

if [! -f "$1"]; then
 echo "The given argument is not a file"
 exit 1
fi

result=""
for u in $(cat "$1"); do
 result="$u@scs.ubbcluj.ro,$result"
done

result=$(echo $result | sed -E "s/,$//")

echo $result

20. Write a shell script that receives any number of words as command line arguments, and
continuously reads from the keyboard one file name at a time. The program ends when all
words received as parameters have been found at least once across the given files.
Example:

Assume that
file1.txt contains word1 and word2
file2.txt does not contain any of the 3 words
file3.txt contains word2 and word 3

./script.sh word1 word2 word3
We input the following:
file1.txt
file2.txt
file3.txt

The program stops after reading file3.txt because
word1 has been found in file1.txt
word2 has been found in file1.txt and file3.txt
word3 has been found in file3.txt

Solution 1:

#!/bin/bash

if [$# -eq 0]; then
 echo "Please provide at least one argument"
 exit 1
fi

declare -A words

for word in $@; do
 words[$word]=0
done

found_all=false
while ! ${found_all}; do
 to_find=""
 for word in ${!words[@]}; do
 if [${words[$word]} -eq 0]; then
 to_find="$to_find $word"
 fi
 done
 echo "Left to find:$to_find"
 read -p "Please input a filename: " file
 if [-z "$file"]; then
 echo "Please input a non empty string"
 elif [! -f "$file"]; then
 echo "$file is not a file"
 else
 found_all=true
 for word in $@; do
 if grep -E -q "\<$word\>" "$file"; then
 echo "Found $word in $file"
 words[$word]=1
 fi
 if [${words[$word]} -eq 0]; then
 found_all=false
 fi
 done
 fi
done

echo "All done"

--
Solution 2:

#!/bin/bash

if [$# -eq 0]; then
 echo "Please provide at least one argument"
 exit 1
fi

found_all=false
all_files=""
while ! ${found_all}; do
 read -p "Please input a filename: " file
 if [-z "$file"]; then
 echo "Please input a non empty string"
 elif [! -f "$file"]; then
 echo "$file is not a file"
 else
 all_files="$all_files $file"
 found_all=true
 for word in $@; do
 if grep -E -q "\<$word\>" $all_files; then
 echo "Found word $word"
 else
 found_all=false
 fi
 done
 fi
done

echo "All done"

21. Write a shell script that, for all the users in /etc/passwd, creates a file with the same name as
the username and writes in it all the ip addresses from which that user has logged in. (hint: use
the last command to find the ip addresses)

#!/bin/bash

destination="./results"
if [! -d $destination]; then
 if [! -e $destination]; then
 mkdir $destination
 else
 echo "The file $destination already exists and it is not a directory.
Exiting."
 exit 1
 fi
fi

users=$(awk -F: '{print $1}' /etc/passwd)

for user in $users; do
 ips=$(last $user | head -n -2 | awk '{print $3}' | sort | uniq)
 if test -n "$ips"; then
 echo "$ips" > $destination/$user

 fi
done

22. Create a bash script that displays every second the process count per user sorted descending
by process count for all users specified as command line arguments. If no arguments are
given, the script will display the process count per user for all users.

#!/bin/bash

users="-e"
if [$# -gt 0]; then
 users=""
 for user in $@; do
 users="$users -u $user"
 done
fi

while true; do
 clear
 ps -f $users | awk 'NR > 1{print $1}' | sort | uniq -c | sort -n -r
-k1,1
 sleep 1
done

23. Create a bash script that finds all the text files in a specified folder (the current folder if there is
no specified folder). For all such files, the script will report the filesize, permissions, and
number of unique lines.

#!/bin/bash

dir=${1:-"."}

if [-d "$dir"]; then
 for f in $(find "$dir" -type f); do
 if file $f | grep -E -q "text"; then
 size=$(du -b $f | cut -f1)
 perm=$(ls -l $f | cut -d' ' -f1)
 lines=$(sort $f | uniq | wc -l)
 echo "Filename: $f - size: $size - permissions: $perm - unique
lines: $lines"
 fi
 done
fi

24. Write a bash script that receives as command line arguments pairs of arguments A and B. For
each pair, if argument A contains argument B, display a message.

#!/bin/bash
while [$# -ge 2]; do
 a=$1
 b=$2
 if echo $a | grep -E -q $b; then
 echo "String $b is found in string $a"
 fi
 shift 2
done

if test $# -gt 0; then
 echo "Incomplete pair: $1 - $2"
fi

25. Write a bash script that receives as command line arguments the names of either files or
directories.

- If the argument is a regular file, then display the first 10 lines from that file.
- If the argument is a directory, create a file in that directory with the same name as the

directory + ".info", and store the output of the ls -l in that file.
- If the argument is neither a regular file or a directory, display a message.

while test $# -ge 1; do
 if test -f $1; then
 # head -n 10 $1
 awk 'NR < 11 {print $0}' $1
 elif test -d $1; then
 # get the basename of the directory,

in case we have an entire path: /dir1/dir2/dir3 -> the
basename of the directory we are working with is dir3

d_name=`basename $1`
 d_name=`echo "$1" | awk -F/ '{print $NF}'`
 f_name="${1}/${d_name}.info"
 ls -l $1 > ${f_name}
 else
 echo "The argument $1 is neither a regular file nor a directory"
 fi
 shift
done

26. Write a bash script that receives any number of command-line arguments. For each argument
that is a directory, find in it recursively and display:

- all the subdirectories that are empty or contain only hidden files.
- all the files that are empty or contain only whitespaces (in their content, not in their

name).
Note: hidden files always have a name that starts with "."

#!/bin/bash
for x in $@; do
 if [-d $x]; then
 for y in $(find $x); do
 if [-d $y]; then
 # option 1:
 # ls, by default, omits entries beginning with .
 dir_content=$(ls $y | head -1)
 if [-z "$dir_content"]; then
 echo "Empty dir: $y"
 fi
 # option 2:
 # the first grep removes the directory itself from the
printed values and the second grep looks for at least one entry that does
not begin with .
 # if ! find $y | grep -E "$y/" | grep -E -v -q "^$y/\.";
then
 # echo "Empty dir: $y"
 # fi
 elif [-f $y]; then
 # option 1 (the very weird way of doing it):
 # replace all whitespaces with nothing, then filter only
the lines that still contain at least one character, then count the
caracters; if count > 0, the file must contain something other than
whitespaces
 # character_count=$(sed -E "s/\s//g" $y | grep -E "." | wc
-c)
 # if [$character_count -eq 0]; then
 # echo "Empty file: $y"
 # fi
 # option 2:
 if ! grep -E -q -v "^\s*$" $y; then
 echo "Empty file: $y"
 fi
 # there are more ways to do the same thing, but 2 very
different approaches are enough for now
 fi
 done
 else

 echo "Whatever you gave me here: $1, is not a directory and,
sincerely, you should be ashamed of yourself."
 fi
done

27. Write a bash script that receives any number of command-line arguments. For each argument
that is a directory, find recursively in it and display:

- all the subdirectories that contain at least one non-hidden file
- all the files that contain at least 10 non-empty lines

Note: hidden files always have a name that starts with "."

#!/bin/bash
for x in $@; do
 if [-d $x]; then
 for y in $(find $x); do
 if [-d $y]; then
 # option 1:
 dir_content=$(ls $y | head -1)
 if [-n "$dir_content"]; then
 echo "Non empty dir: $y"
 fi
 # option 2:
 # the first grep removes the directory itself from the
printed values and the second grep looks for at least one entry that does
not begin with .
 # if find $y | grep -E "$y/" | grep -E -v -q "^$y/\.";
then
 # echo "Non empty dir: $y"
 # fi
 elif [-f $y]; then
 count=`grep -E -c "." $y`
 if [$count -gt 10]; then
 echo "File with more than 10 non empty lines: $y"
 fi
 fi
 done
 else

 echo "Why is this thing: $1, a not-directory, in my arguments?"
 fi
done

