
Transactional Lock-Free Execution of Lock-Based Programs

Ravi Rajwar and James R. Goodman
Computer Sciences Department
University of Wisconsin-Madison

Madison, Wl 53706 USA
{rajwar, goodman} @ cs.wisc.edu

Abstract
This paper is motivated by the difficulty in writing correct

high-performance programs. Writing shared-memory multi-
threaded programs imposes a complex trade-off between pro-
gramming ease and performance, largely due to subtleties in
coordinating access to shared data. To ensure correctness pro-
grammers often rely on conservative locking at the expense of
performance. The resulting serialization of threads is a perfor-
mance bottleneck. Locks also interact poorly with thread schedul-
ing and faults, resulting in poor system performance.

We seek to improve multithreaded programming trade-offs by
providing architectural support for optimistic lock-free execution.
In a lock-free execution, shared objects are never locked when
accessed by various threads. We propose Transactional Lock
Removal (TLR) and show how a program that uses lock-based
synchronization can be executed by the hardware in a lock-free
manner, even in the presence of conflicts, without programmer
support or software changes. TLR uses timestamps for conflict
resolution, modest hardware, and features already present in
many modem computer systems.

TLR's benefits include improved programmability, stability,
and performance. Programmers can obtain benefits of lock-free
data structures, such as non-blocking behavior and wait-freedom,
while using lock-protected critical sections for writing programs.

1 Introduction
Programming complexity is a significant problem in writing

shared-memory multithreaded applications. Although threads
simplify the conceptual design of programs, care and expea:tise
are required to ensure correct interaction among threads. Errors in
reasoning about appropriate synchronization among threads while
accessing shared data objects result in incorrect program execu-
tion, and may be extremely subtle.

Transactions serve as an intuitive model for coordinating
access to shared data. A transaction [7] comprises a series of read
and write operations that provide the following properties: fail-
ure-atomicity, consistency, and durability. Failure-atomicity states
a transaction must either execute to completion, or in the presence
of failures, must appear not to have executed at all. Consistency
requires the transaction to follow a protocol that provides threads
with a consistent view of the data object. Serializability is an intu-

Permission to make digitat or hard copies of all or part of this work for
personal or classroom use is granted wi thout fee provided that copies
are not made or distr ibuted for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASPLOS X, 10/02, San Jose, CA, USA.
Copyr ight 2002 ACM ISBN 1 -58113 -574 -2 -02 /0010 ... $5.00

itive and popular consistency criterion for transactions. Serializ-
ability requires the result of executions of concurrent transactions
to be as i f there were some global order in which these transac-
tions had executed serially [7]. Durability states that once a trans-
action is committed, it cannot be undone.

While the concept of transactions is simple and convenient
for programmers to reason with [10], processors today provide
only restricted support for such transactions in their instruction
sets. Examples are the atomic read-modify-write operations on a
single word. The restricted size for these operations and limita-
tions placed on their use render them ineffective in providing
functionality of general transactions.

A lack of general transaction support in processors has led to
programmers often relying on critical sections to achieve some of
the functionality of transactions. Critical sections are software
constructs that enforce mutually exclusive access among threads
to shared objects and thus trivially satisfy serializability. Failure-
atomicity is difficult to achim, e with critical sections because it
requires support for logging modifications performed in the criti-
cal section and then making these modifications visible instanta-
neously using an atomic operation. Critical sections therefore do
not provide failure-atomicity. Critical sections are most com-
monly implemented using a software construct known as a lock.
A lock is associated with a shared object and determines whether
the shared object is currently available. Nearly all architectures
support instructions for implementing lock operations. Locks
have become the synchronization mechanism of choice for pro-
grammers and are extensively used in various software such as
operating systems, database servers, and web servers.

Motivat ion. Two key limitations of lock-based critical sections
motivate the work in this paper: 1) Complex trade-off between
programmability and performance, and 2) Problems of stability
(i.e., behavior in the presence of unexpected conditions) of the
application.

Performance/programmability limitation of locks. The com-
plex trade-off between programmability and performance exists
because programmers have to reason about data sharing during
code development using static information rather than dynamic
run-time information. Programmers often use conservative syn-
chronization to easily write correct code. While such use may
guarantee correctness, provides stable software, and leads to
faster code development, it also inhibits parallelism because
th~eads are m~aecessarily serialized. Fine-grain locks (e.g., one
lock per node in a data structure) may help performance but make
code difficult to write and error prone. Coarse-grain locks (e.g.,
one lock per data structure) help in writing correct code and
reducing errors but hurt performance. Additionally, locks can
contr ibute to significant overhead, serial ize execut ion, and
degrade overall system performance [16]. Exploiting dynamic
concurrency is also often a non-trivial task [13].

Stability limitation of locks. If some thread owns a lock, and
has marked it held, other threads requiring that lock have to wait
for the lock to become free. Such wait can negatively impact sys-
tem behavior. If the lock owner is de-scheduled by the operating
system, other threads waiting for the lock cannot proceed because
the lock is not free. In high concurrency environments, all threads
may wait until the de-scheduled thread runs again. Non-blocking
primitives guarantee some thread will execute an operation in a
finite number of steps despite individual halting failures or delays
[11]. Further, if the lock owner aborts, other threads waiting for
the lock never complete as the lock is never free again.The shared
structures updated by the aborted thread are left in an inconsistent
state as critical sections lack failure-atomicity. A wait-free primi-
tive guarantees any process completes any operation in a finite
number of steps [11]. Wait-freedom adds starvation freedom to
the non-blocking property. Conventional locks are neither non-
blocking nor wait-free.

In spite of the limitations of locks, a lack of competitive alter-
natives and the intuitive appeal of critical sections has led to a
nearly universal use of lock-based critical sections for synchro-
nizing thread accesses. Even in environments where transactions
are supported in software, they are implemented using lock-based
critical sections. The limitations outlined above are becoming
important and solutions must be found to enable programmers to
exploit hardware thread parallelism efficiently and easily. A desir-
able approach therefore is to provide transparent transactional
execution behavior for critical sections while maintaining the
familiar paradigm of critical sections. Doing so enables the pow-
erful concept of a transaction to be transparently reflected in com-
mon mul t i threaded programs and al lows p rogrammers the
continued use of the lock-based critical section paradigm.

To address the problems outlined above, this paper proposes
Transactional Lock Removal (TLR). TLR uses modest hardware
to convert lock-based critical sections transparently and dynami-
cally into lock-free optimistic transactions and uses timestamp-
based fair conflict resolution to provide transactional semantics
and starvation freedom.

TLR uses Speculative Lock Elision (SLE) [30] as an enabling
mechanism. SLE is a recent hardware proposal for eliding lock
acquires from a dynamic execution stream, thus breaking a criti-
cal performance barrier by allowing non-conflicting critical sec-
tions to execute and commit concurrently. SLE showed how lock-
based critical sections can be executed speculatively and commit-
ted atomically without acquiring locks if no data conflicts were
observed among critical sections. A data conflict occurs if, of all
threads accessing a given memory location simultaneously, at
least one thread is writing to the location. While SLE provided
concurrent completion for critical sections accessing disjoint data
sets, data conflicts result in threads restarting and acquiring the
lock serially. Thus, when data conflicts occur, SLE suffers from
the key problems of locks due to lock acquisitions.

TLR elides locks using SLE to construct an optimistic trans-
action but in addition also uses a timestamp-based conflict resolu-
tion scheme to provide lock-free execution even in the presence
of data conflicts. A single, globally unique, timestamp is assigned
to all memory requests generated for data within the optimistic
lock-free critical section. Existing cache coherence protocols are
used to detect data conflicts. On a conflict, some threads may
restart (employing hardware misspeculation recovery mecha-
nisms) but the same timestamp determined at the beginning of the
optimistic lock-free critical section is used for subsequent re-exe-
cutions until the critical section is successfully executed. A time-
stamp update occurs only after a successful execution. Doing so
guarantees each thread will eventually win any conflict by virtue

of having the earliest timestamp in the system and I~hus will suc-
ceed in executing its optimistic lock-free critical section. If the
speculative data can be locally buffered, all non-conflicting trans-
actions proceed and complete concurrently without serialization
or dependence on the lock. Transactions experiencing data con-
flicts are ordered without interfering with non-conflicting transac-
tions and without lock acquisitions.

P a p e r c o n t r i b u t i o n . TLR is the first hardware technique for
transparent lock-free execution of lock-based programs while
providing transactional behavior (serializability and failure-atom-
icity) and starvation freedom. TLR has three primary benefits.

1. T L R improves programmabil i ty. TLR, rather than change
the programming model to obtain transactional semantics,
changes the hardware implementation to transparently provide
such semantics. By allowing programmers to continue using
the familiar lock-protected critical section interface, program-
mers do not have to learn new ways to write programs. TLR
does not require software support and existing legacy code
using critical sections can directly benefit from TLR.

2. T L R improves performance. TLR extracts and exploits fine-
grain parallelism inherent in the program independent of the
locking granularity employed by the programmer. Serialization
of data accesses occurs based on data conflicts and only when
such serialization is necessary for correctness.

3. T L R improves stability. TLR does not suffer from limitations
of locks because it uses timestamps to obtain a lock-free exe-
cution in the presence of conflicts. As locks are not acquired,
the software wait for a lock variable is eliminated and a non-
blocking execution is achieved along with failure-atomicity.
Further, the conflict resolution scheme guarantees all threads
eventually succeed in a finite number of steps, thus providing a
wait-free behavior subject only to resource constraints.

Section 2 presents the TLR algorithm and Section 3 discusses
its implementation. Stability aspects of TLR are discussed in
Section 4 and we evaluate TLR's performance in :Section 5 and
Section 6. We show that, for test&test&set locks, hardware with
TLR outperforms hardware without TLR and, on the average per-
forms better than MCS locks for fine-grain locks for our applica-
tions. We also show that using coarse-grain locks 'with TLR can
outperform fine-grain locks because of improved memory system
behavior. Finally we discuss related work (Section 7) and con-
elude (Section 8).

2 Transactional Lock Removal
TLR aims to achieve a serial&able schedule of critical sec-

tions where all memory operations within a critical section are
atomically inserted into some global order. This is illustrated in
Figure 1. In this paper, the term transaction is used to mean a
lock-free critical section satisfying the serializability condition.

Serializability requires the result of executions of concurrent
transactions to be as if these transactions executed in some serial
order. In the absence of data conflicts, serial izabil i ty can be
ensured using a technique such as SLE but the presence of data
conflicts among concurrently executing threads requires addi-
tional mechanisms provided by TLR.

The basic idea behind TLR is as follows: a) Treat locks as
defining scope of a transaction, b) Speculat ively execute the
transaction without requesting or acquiring the lock, c) Use a con-
flict resolution scheme to order conflicting transactions, and d)
Use a technique to give the appearance of an atomic commit of
the transaction, such as is provided by SLE [30].

Global memory order

Figure 1. While critical

O normal memory operation
• atomic critical section

(set of memory operations)
section executions (without lock

acquires) overlap in physical time (with or without data con-
flicts), each critical section logically appears to be inserted
atomically and instantly in a global ordering.

TLR performs active concurrency control to ensure correct
coordinated access to the data experiencing conflicting access by
using the data itself rather than locks. Unlike TLR, SLE only
identifies situations where lock-based concurrency control is not
n e c e s s a r y - - n a m e l y the absence of data conf l i c t s among
threads--and relies on the default lock-based concurrency control
mechanisms if data conflicts occur.

We discuss achieving serializability in the presence of data
conflicts in Section 2.1. In that section, we also discuss the use of
timestamps as a conflict resolution mechanism. We then present
the TLR algor i thm for ensuring a serial izable execut ion in
Section 2.2. Section 2.3 gives an example of the TLR algorithm.

2.1 Problem: Achieving serializability
An execution of an optimistic lock-free transaction can be

made serializable if the data speculatively modified by any trans-
action are not exposed until after the transaction commits and no
other transaction writes to speculatively read data. A serializable
execution can be achieved trivially by acquiring exclusive owner-
ship of all required resources. If the thread executing the transac-
tion does so for all required resources, the thread can operate
upon the resources and then commit the updates atomically and
instantly, thus achieving serializability.

In cache-coherent shared-memory multiprocessors the above
requires: 1) Acquiring all required cache blocks (that are accessed
within the transaction) in an appropriate ownership state, 2)
Retaining such ownership until the end of the transaction, 3) Exe-
cuting the sequence of instructions forming the transaction, 4)
Speculatively operating upon the cache blocks if necessary, and
5) Making all updates visible atomically to other threads at the
end of the transaction. However, as we shall see next, the pres-
ence of conflicts may prevent resources from being retained thus
preventing successful execution of the lock-free transaction.

2.1.1. Necessity for conflict resolution
Livelock can occur if processors executing critical sections

speculatively and in a lock-free manner repeatedly experience
conflicts (as with SLE, the lock can always be acquired and for-
ward progress is guaranteed but we require a solution that does
not rely on lock acquisitions). Consider Figure 2 with two proces-
sors, PI and P2. Assume both P1 and P2 have elided the lock
(using SLE) and are in optimistic lock-free transaction execution
mode. Both processors are accessing (and writing) shared mem-
ory locations A and B in the critical sections. The two processors
write the two locations in reverse order of each other--P1 writes
A first and then B while P2 writes B first and then A. Messages
and state transitions for the corresponding blocks are shown.
Time ins tances are labeled t i where i denotes progress ing

g:I 1

A:P [

P1 ~sta~s

Processor 1

PI restarts

B:M ~

Processor 2

I I A:P
t2 ~ B:M

t 3 P2 restarts
I I A:P
I I B:l

A:M

1 I B:P
P2 restarts

Figure 2. In this example, both processors repeatedly restart. A
and B are memory locations. Coherence states: modified (M),
pending (P), invalid (1). l~me progresses down.

instances. Time progresses down. PI has speculatively accessed
block A and cached it in exclusive state (M). P2 also has specula-
tively accessed block B and cached it in the M state.

At tl, P1 issues a request for exclusive ownership (rd_X) for
block B (Pl ' s write to B) and at t 2, P2 issues an r d _ X block A
(P2's write to A). The respective cache blocks transition into a
transient (pending) state. At t 4, Pl receives P2's r d _ X request for
block A. P1 detects the request as a data conflict (block A, specu-
latively written to by P1, is accessed by another thread before P1
has completed its lock-free critical section). P1 triggers a mis-
speculation and restarts its lock-free critical section. Similarly, P2
receives P l ' s rd_X for B at t 3 and P2 restarts execution. Both P1
and P2 respond with the valid non-speculative data. The above
sequence may occur indefinitely with no processor making for-
ward progress because each processor repeatedly restarts the
other processor.

Livelock occurs because neither processor obtains ownership
of both cache blocks simultaneously. To ensure livelock freedom,
among competing processors one processor must win the conflict
and retain ownership. TLR assigns priorities to the lock-free
transactions and employs the following key idea:

Transactions with higher priority never wait for transac-
tions with lower priority. In the event of a conflict, the
lower priority transaction is restarted or forced to walt.

Consider two transactions T 1 and T 2 executing speculatively.
Suppose T 2 issues a request that causes a data conflict with a
request previously made by T 1, and T t receives T2's conflicting
request. The conflict is resolved as follows: if T2's priority is
lesser than T l's priority, then T 2 waits for T~ to complete (T 1 wins
the conflict), else T 1 is restarted (T 2 wins the conflict). The "wait"
mechanism may either involve an explicit negative acknowledge-
ment or a delayed processing of the request. There are conceptual
similarities to the wound-wait proposal by Rosenkrantz et at. [32]
for distributed concurrency control [29].

For starvation freedom the resolution mechanism must guar-
antee all contenders eventually succeed and become winners. We
use timestamps for conflict resolution and we discuss them next.

2.1.2. Timestamps for fair conflict resolution
We use timestamps for resolving conflicts to decide a conflict

winner--earlier timestamp implies higher priority. Thus, the con-
tender with the earlier timestamp wins the conflict.

The timestamps we use have two components: a local logical
clock and processor ID. The logical clock is a way of assigning a

number to an event and the number is thought of as the time at
which the event occurred. An event in our case is a successful
execution of a TLR instance. The local logical clock value is
increased by 1 or higher on a successful TLR execution and cap-
tures time in units of successful TLR executions on a given pro-
cessor. Since these logical clocks are local, the logical clocks on
different processors may have the same value. Such ties are bro-
ken by using the processor ID. Thus the timestamp comprising of
the local logical clock and the processor ID are globally unique.

All requests generated from within a given transaction on a
processor are assigned the same timestamp---namely the value of
the timestamp at the start of the transaction. On a successful TLR
execution, the processor increments its local logical clock to a
value higher than the previous value (typically by 1) or to a value
higher than the highest of all incoming confl ict ing requests
received from other processors, whichever is larger. Doing so
keeps the local logical clocks on the various processors loosely
synchronized whenever a conflict is detected.

Our use of timestamps is similar to that proposed by Lamport
[22]. Lamport used timestamps derived from logical clocks to
implement distributed mutual exclusion with a starvation freedom
guarantee. However, we only require timestamps for conflict reso-
lution while Lamport used timestamps for explicitly ordering the
execution of mutual exclusion regions among different proces-
sors. Thus with TLR, transactions that conflict in their data sets
but do not actually observe any detected conflicts during their
execution can execute in any order independent of the timestamps
of the transactions. Since TLR does not require synchronized
clocks, real-time systems clock could also be used.

Starvation freedom is achieved by retaining and reusing time-
stamps in the event of a misspeculation and restart under TLR. By
reusing timestamps, processors retain their position. By updating
timestamps as above, a processor will eventually have the earliest
timestamp in the system and thus will eventually win all conflicts.
TLR uses timestamps solely for the purpose of comparing priori-
ties of two conflicting threads to determine which has a higher
priority. Thus timestamp roll-over due to fixed size timestamps is
easily handled without loss of TLR properties [29].

2.2 Solution: TLR algorithm
We assume a processor with support for SLE. All operations

executed by a processor while performing TLR (i.e., the proces-
sor is considered to be in TLR mode) are part of the optimistic
transaction and are speculative. Conventional cache coherence
protocols are used to allow processors to retain ownership of
cache blocks. In an invalidation-based cache coherence protocol,
a processor with an exclusively-owned cache block receives and
must respond to subsequent requests for the block. The processor
controls the block and can appropriately respond. Figure 3 shows
the TLR algorithm. In the discussion below, we use the term
deferred to imply the processor retains ownership.

The first step is calculating the globally unique local time-
stamp as discussed in Section 2.1.2.

The second step is identifying start of a transaction. We use
SLE to identify the start and end of transactions. SLE does so by
exploiting silent store-pairs: a pair of store operations where the
second store undoes the effects of the first store and the interven-
ing operations appear to execute atomically [30] 1. SLE thus
avoids writing (and even requesting exclusive permissions for)
the lock variable. The first store of the pair corresponds to the
start of the transaction and the second store of the pair corre-
sponds to the transaction end. Once the start is identified, the lock

1. Calculate local timestamp

2. Identify transaction start:

a) Initiate TLR mode (use SLE to elide locks)
b) Execute transaction speculatively.

3. During transactional speculative execution
• Locally buffer speculative updates
• Append timestamp to all outgoing requests
• If incoming request conflicts with retainable block and

has later timestamp, retain ownership and force
requestor to wait

• If incoming request conflicts with retainable block and
has earlier timestamp, service request and restart from
step 2b if necessary. Give up any retained ownerships.

• If insufficient resources, acquire lock.
• No buffer space
• Operation cannot be undone (e.g., I/O)

4. Identify transaction end:

a) If all blocks available in local cache in appropriate
coherence state, atomically commit memory updates
from local buffer into cache (write to cache using SLE).

b) Commit transaction register (processor) state.
c) Service waiters if any
d) Update local timestamp

Figure 3. TLR algorithm. A mechanism for retaining owner-
ship of cache blocks is assumed to be present. A retainable
cache block is defined as a block in an exclusively owned
coherence state. Requests are forwarded to the cache with the
writable copy of the block. Data conflict is defined in
Section I.

is elided thus leaving the lock free. The processor register state is
saved for recovery in the event of a misspeculation.

The third step comprises actions that may occur concurrently
during speculative execution. A cache miss generated for data
within the speculative execution carries with it the processors
timestamp. Requests from other processors that result in a data
conflict (for data accessed within the transaction) are checked for
priority. If the incoming request has a later timestamp than the
local processor, the incoming request's response is deferred. If the
incoming request has an earlier timestamp, the local processor
loses the conflict. It must service earlier deferred requests in-
order and then service the conflicting incoming request. Doing so
maintains coherence ordering in the protocol for that block. The
execution may restart but the local clock is not updated.

During speculative execution, if any resource c.onstraints, or
operations that cannot be undone, are encountered, TLR cannot
be applied. The processor requests the lock by exposing the
elided writes and exits speculative mode. Since the lock is kept in
shared state under TLR, any write to the lock triggers invalida-
tions thus automatically informing other participating processors
of the violation of the silent store-pair elision under TLR. During
speculative execution, data modified is buffered in the write

l. SLE identifies regions for atomic execution without any semantic infor-
mation from the software and is a purely hardware technique that only
observes the dynamic instruction stream. The notion of silent store-
pairs employed by SLE for doing so is an example of the notion of
Temporal Silence investigated by Lepak and Lipasti [23].

Processor 1, TS 1 Processor 2, TS2

A:M tl
B:P
request is deferred-.i~

A:M 4

B:P I I t 5

A:M

B:M

PI completes
critical section t 7

deferred request serviced

A:I [- - I
B:M

d - "

- - I A:P

t2 ~ B:M

t 3 P2 restarts

I] A:P

I 18:I

I [A:P

I IB:P
t6

t8 ~ A:M

I I B:P

Figure 4. A conflict resolution scheme ts employed allowing
processor I to retain exclusive ownership of both cache blocks
A and B. TS1 and TS2 are timestamps and TS1 < TS2. By
deferring a response, conflicts are masked and a serializable
execution is achieved. Coherence states: modified (M), pend-
ing (P), invalid (I). lime progresses down.

buffer and exclusive requests for the cache block are issued to the
memory system.

Finally, when a transaction end is identified, the transaction is
committed. If all appropriate blocks have been brought into the
cache in appropriate state (exclusive or shared), then the buffered
data in the write-buffer is atomically committed into the cache- -
all required lines are already in writable state in the cache. If not,
then speculative execution can proceed until the blocks corre-
sponding to the write-buffer are available in appropriate state.
After the speculative data has been committed into the cache,
deferred requests from before are then serviced in order. The local
logical clock update is performed as per the rules of Section 2.1.2.

Up to now, we have focused on interaction among time-
stamped requests- - requests that are part of critical sections.
However, in some programs, the data protected by locks may be
accessed from outside a critical section and hence without locks,
and may conflict with timestamped requests. While this is a data
race, it may be acceptable for the program. Such situations may
be correctly handled in various ways. One approach is to trigger a
misspeculation when an un-timestamped request is received.
Thus, if any thread performs a conflicting access from outside a
critical section, then TLR cannot be applied because a data race
exists. Another approach is to treat un-timestamped requests as
deferrable. Such a request is assumed to have the latest timestamp
in the system (and thus the lowest priority) and the un-time-
stamped request is atomically ordered after the current critical
section. Since a data response is not sent until after the critical
section, the requestor cannot consume the data and hence is
ordered with the correct value.

2.3 TLR algorithm example
We revisit the example of Figure 2 using the algorithm out-

lined in Figure 3. Consider Figure 4. Two processors, PI and P2,
execute a lock-free critical section and both write shared memory
locations A and B in the critical section. Both the processors have
a unique t imes tamp--TSl for PI and TS2 for P2 where TS1 <

TS2 (processor P1 has higher priority than processor P2 and wins
all conflicts). Assume that now both processors have the addi-
tional ability to buffer and delay responding to incoming requests.
As in the earlier example, the two processors write the two loca-
tions, A and B, in reverse order of each other. Both P1 and P2
have elided the lock and are executing in TLR mode.

At t 1, P1 issues a rd_X for block B (PI 's write.to B) and at t 2,
P2 issues a r d X for block A (P2's write to A). The respective
cache blocks transition into a transient (pending P) state. All
memory operations within the transaction are assigned the same
timestamp. Therefore P l ' s r d x for B has TS1 appended and
P 2 ' s r d X f o r A h a s T S 2 a p p e n d e d . At t 3 , P 2 r e c e i v e s P l ' s
request and compares the incoming request timestamp TS1 with
its local timestamp TS2. Since the incoming request has an earlier
timestamp than P2, P2 services the request and responds with the
data for block B (non-speculative value). On applying the incom-
ing request, a data conflict is triggered at P2 and P2 restarts exe-
cution of its transaction. At t 4, P1 receives P2's r d X request for
block A. Since TS1 < TS2, P1 wins the conflict and defers the
request by buffering it. The cache block state for A remains M. At
t 5 P1 receives data for block B from P2. P1 has acquired and
retained permissions on both cache blocks A and B and can suc-
cessfully execute and atomically commit the transaction. At t 7, P1
completes its transaction, architecturally commits its speculative
state and services P2's deferred request. P1 responds with the lat-
est architecturally correct data. Meanwhile, P2 has restarted and
is re-execut ing its transaction. The key difference be tween
Figure 2 and Figure 4 is P l ' s ability to retain exclusive permis-
sions in the latter example.

3 A TLR implementation
We discuss how TLR is implemented. The algorithm outlined

earlier in Figure 3 relies on the ability of a processor to retain
ownership of a cache block. Two policies to retain exclusive own-
ership of cache blocks are NACK-based and deferral-based. With
NACK-based techniques, a processor refuses to process an
incoming request (and thus retains ownership) by sending a nega-
tive acknowledgement (NACK) to the requestor. Doing so forces
the requestor to retry at a future time. With deferral-based tech-
niques, a processor defers processing an incoming request by
buffering the request and masking any conflict. NACK-based and
deferral-based techniques are contrasted elsewhere [29].

In this paper, we use a deferral-based scheme because it does
not require coherence protocol support (such as NACKs). With
deferrals, the confl ict-winning processor with an exclusively
owned cache block delays processing the incoming request for a
hounded time (preferably until the processor has completed its
transaction) and thus defers the request. The coherence transitions
(and state transitions as seen by the "outside world") are assumed
to have occurred but the processor does not locally apply the
incoming request. Request deferral and delayed responses works
in split-coherence-transaction systems where the address request
processing is split into two sub-coherence-transactions--request
and response. The response (often the data) may appear an arbi-
trary time later and any number of other requests and responses
may occur between the two sub-coherence-transactions.

We now discuss a deferral-based implementation of the algo-
rithm. Figure 5 shows a shared-memory multiprocessor where
every processor has a local cache hierarchy and they are con-
nected together via an interconnection network. We make no
assumptions regarding the memory consistency model or coher-
ence protocol. The protocol may be broadcast snooping or direc-
tory-based and interconnect may be ordered or un-ordered. The

Processor with SLE suppo. ' I
~ [Processor

l
'

i
Support (1 bit per block) to ' R
track data accessed within ~ L I cache [
t ion ~ ",, ~ ~ • • •

L n cache [
Hardware queue for
buffeting deferred
requests ~ ~ ~

[nterconnection Network I

Figure 5. A TLR implementation. Additional hardware sup-
port is shown shaded. Processor supports SLE.

processor is assumed to have SLE capability: support for predict-
ing regions as transaction, local speculative buffering, mechanism
to track data accessed within transactions (an access bit per cache
block tracks data accessed during the transaction), and ability to
detect data conflicts [30, 29].

TLR support is required at the coherence controller where
decisions for deferrals are made. We do not require changes to the
coherence protocol state transitions. The TLR concurrency con-
trol algorithm runs in parallel and along with the coherence proto-
col and only performs deadlock-free concurrency control.

Misses generated within a transaction carry a timestamp. An
additional deferred coherence input queue is present to buffer
incoming requests that have been deferred by the local processor.
Two messages sent only wi th in the local cache h ierarchy
(start_defer and end_defer) from the processor to the cache con-
troller are needed. The startdefer is sent when the processor
transit ions into speculat ive lock-f ree transaction mode and
end_defer is sent on exiting such a mode. The end_defer message
may clear the access bits in the local cache hierarchy if necessary.
These messages are ordered with respect to each other and multi-
ple pairs of messages may be present in the local hierarchy.

In Section 3.1, we discuss coherence protocol interactions
with TLR. We base our discussion around a modern broadcast
snooping protocol, the Sun Gigaplane [35]. This choice does not
take away from the generality of our discussion. Timestamp-
based conflict resolution is necessary only if deadlock dangers
exist. Section 3.2 discusses a situation where timestamp-based
conflict resolution can be relaxed if deadlock is guaranteed to not
occur. Section 3.3 discusses the resource constraints for TLR.

3.1 An implementation of the deferral algorithm
Up to now, we have assumed the requests get forwarded to the

appropriate cache that exclusively owns the cache block and has
the data. We now briefly outline the problem of deadlock that may
occur due to interactions between the TLR concurrency control
algorithm and a general coherence protocol. This deadlock is not
in the TLR algorithm but may result because of how the underly-
ing coherence protocol may be implemented, in Section 3.1.1. we
discuss how such a deadlock can be prevented without coherence
protocol changes. We then discuss TLR interaction with cache
blocks in the shared state in Section 3.1.2.

3.1.1. Propagating priority information
On a cache miss, the cache block performs a transition from

invalid to a pending state and it stays in a pending state between

1 : rd_X:A

3 : rd_X:B ~ 2 :rd_X:B

priorities: PI > P2 > P3

Figure 6. Unlike the earlier example with 2 processors, the
presence of an additional processor complicates issues
because now all requests are distributed in the system and all
processors are not guaranteed to observe all other requests

the request initiation and completion. At some time between the
two phases, the request gets ordered by the cohere, nce protocol
and the cache may become the owner of the cache block accord-
ing to the coherence protocol, even though data is unavailable.
This request-response decoupling introduces a complicat ion
because even though a processor may lose a conflict under TLR,
it does not have data to provide. Consider Figure 6 where three
processors P0, P1, and P2 are shown executing transactions. The
arc labelling "1 : r d _ x : A" means a read for exclusive ownership
(r d X) request for block A was issued at time t 1. Assume priority
ordering is: P0 > P1 > P2 where P0 has the highest priority. P0
has cache block A in exclusive owned (M) state and PI has cache
block B in M state.

At time t 1, P1 issues a r d _ X request for A. Since P0 owns
the block A, P l ' s request is forwarded to P0. P0 receives P l ' s
request, wins the conflict, buffers P l ' s r d _ X request for A, and
defers a response. Now P1 exclusively owns block A because P l ' s
request has been ordered by the protocol but the data (and hence
the write permissions to the block) are with P0. P1 is waiting for
POfor cache block A. At time t 2, P2 issues a r d _ X request for B.
P1 owns the cache block and thus P2's request is forwarded to P1.
P1 receives P2's request, wins the conflict, buffers E.~'s r d X for
B request and delays a response. Now P2 exclusively owns the
block B because P2's request was ordered by the protocol but the
write permissions to the block are still with P1. P2 is waiting for
P l for cache block B. At time t 3, P0 issues a r d _ X request for B.
P2 owns the cache block (even though the data is still with P1)
and thus P0's request is forwarded to P2. P2 compares its local
priority with P0's incoming message and loses the conflict. P2
must service P0's request by responding with data. However, P2
cannot do so because P2 is waiting for P1 to release cache block
B. P1 will not release the cache block B because PI won the con-
flict but P1 is itself waiting for P0 for cache block A.

P2 is waiting for P1 (for cache block A) which is waiting for
P0 (for cache block B) which is waiting for P2 (for cache block
B). If such a wait is uncontrolled, deadlock occurs. The waiting
processors are unaware of other waiting processors and inadvert-
ently form a cyclic wait.

The key idea for implementing a deferral-based concurrency
control mechanism is to propagate information about processor
priorities along the coherence protocol chains to prevent cyclic
waits. On a miss, a processor allocates a pending buffer, a miss
status handling register (MSHR) and tracks the request. If the
processor receives a request (an intervention) from another pro-
cessor for the outstanding block, an intervention buffer or the
MSHR tracks the incoming request. When the processor receives
data for the block, the processor operates upon the data and sends
it to the requestor based on the information stored in the local
MSHR. In Figure 6, for the chain for block A, P0 is aware of PI
but PI is not aware of P0. Similarly, for block B, P1 is aware of
P2 but not vice versa and P2 is aware of P0 but not vice versa. P0
can send information to P1 (regarding deadlock-free, concurrency

I0

control) but P1 cannot send information to P0 because P1 is
unaware of P0.

P0 must inform P1 that P0 has higher priority and must not be
forced to. wait for block B. The presence of P2 in the chain pre-
vents P1 from observing P0's request. Mechanisms can be added
to propagate such information along the chain. The conflicting
requests must propagate along the coherence chain towards the
root (i.e., the stable block) to "restart" lower priority requests. We
use special messages, we call marker messages, for doing so.

Marker messages are directed messages sent in response to a
request for a block under conflict for which data is not provided
immediately. The delay may be because either the processor is
forcing the request to wait or the processor does not have the data
for the block in question but is considered to be the owner of the
block. The idea behind marker messages is to make processors
aware of their immediate neighbors in a chain. These messages
have no coherence interactions. The marker messages are only
required when the processor is doing TLR and receives a conflict-
ing request for a exclusively owned block. We have a mechanism
to propagate timestamps requests upstream (probes) to the cache
that has the block with valid data. Probes are only used to propa-
gate a conflict request upstream in a cache coherence protocol
chain. Thus, when P2 receives P0's request for B, P2 forwards the
probe (with P0's timestamp) to P1 since P2 received a marker
message from P1. PI receives P0's forwarded probe (via P2) and
loses the conflict because P0 has higher priority than P1. P1
releases ownership of block B and the cyclic wait is broken.

3.1.2. Handling the protocol shared state
Often, within a critical section, a processor may read a shared

location, operate upon the value and write a new value to the
same location. The read operation brings the corresponding cache
block locally into shared state and the subsequent write results in
an upgrade operation where the processor requests exclusive
ownership of the cache block so that the processor can update the
block. External invalidation requests to shared blocks typically
cannot be deferred because no processor exclusively owns the
block (upgrades in some protocols may not expect an acknowl-
edgement). These requests must be serviced without delay and
may trigger a misspeculation (violation in atomicity of the trans-
action). To reduce the probability of such upgrade-induced mis-
speculation, we employ instruction-based prediction to reduce the
necessity of requiring upgrades following misspeculation.

The basic idea behind the predictor is as follows. Load opera-
tions within a critical section are recorded and any store opera-
tions within the critical section to the same address results in the
predictor update occurring corresponding to the appropriate load
operation. For out-of-order processors, the predictor update must
occur at instruction commit because only then does the processor
know for certain if the memory operation occurred within the
transaction (out-of-order processors issue memory operations
without regard to program order but instruction retirement is in
program order). The predictor is indexed by instruction address.
Predictors for optimizing patterns as above have been proposed
earlier [17]. We show in our results section that the use of the sim-
ple read-modify-write predictor substantially improves perfor-
mance of the base system without TLR as well as with TLR.

Cache blocks that are only read within critical sections are
brought into the cache in a shared state. If repeated upgrade-
induced violat ions occur, the processor can issue exclusive
requests for the blocks, obtain the blocks in owned state and defer
external requests to such blocks. Doing so guarantees a successful
TLR execution even without the above optimization.

3.2 Selectively relaxing timestamp order
Deadlock is not possible if only one cache block is under con-

flict within the transaction because a cyclic wait is impossible (the
head node of the coherence chain is always a stable state and does
not wait for anyone else). Timestamps serve two functions: pro-
viding starvation freedom and deadlock-freedom. In protocols
such as the Sun Gigaplane (which are non-nacking protocols), a
queue of requests is automatically formed for a given block if
multiple processors issue ownership requests while the block
states are pending and the deferred queue is serviced in a serial
order. In such situations, strict timestamp order can be relaxed.
Thus, a timestamp-induced restart can be temporarily avoided if
only a single cache block is contended for. However, if an addi-
tional cache block is accessed that may deadlock (i.e., generates a
cache miss), then the timestamp order must be enforced.

3.3 Resource constraints
TLR has resource limitations similar to SLE. If the cache is

used to track the lock and data accesses for a critical section, the
finite size of the cache restricts the data set size that can be
tracked speculatively. The associativity of the cache also places a
limit because conflict misses force evictions of cache blocks. Well
known and well understood techniques, such as victim caches
[15], for handling such situations exist. Victim caches are small,
fast, fully associative structures that buffer cache lines evicted
from the main cache due to conflict and capacity misses. The vic-
tim cache can be extended with a speculative access bit per entry
to achieve the same functionality as a regular cache.

Since the write buffer buffers speculative memory updates, its
size restricts the number of static block addresses that can be writ-
ten to within a critical section. Since writes are merged in the
write buffer and memory locations can be re-written within the
write buffer (because atomicity is guaranteed), the number of
unique cache lines written to within the critical section deter-
mines the size of the write buffer.

In addition, for the implementation we provide, TLR also
requires sufficient buffering for deferred requests. The size of
buffering can be calculated a priori and is a function of the sys-
tem size and victim cache size. In any case, TLR like SLE can
guarantee correctness under all circumstances and in the presence
of unexpected conditions can always acquire the lock. Another
resource constraint is the operating systems scheduling quan-
t u m - i t must be possible to execute the critical section within a
single quantum.

4 TLR Stability Properties
We have discussed TLR's performance and programmability

aspects. We now discuss the implications of TLR on stability of
mult i threaded programs. In the TLR algori thm described in
Section 2.2, three key invariants must hold: a) the timestamp is
retained and re-used following a conflict-induced misspeculation,
b) timestamps are updated in a strictly monotonic order following
a successful TLR execution, and c) the earlier timestamp request
never loses a resource conflict and thus succeeds in obtaining
ownership of the resource. If TLR is applied, these invariants col-
lectively provide two guarantees:

1. A processor eventually has the earliest timestarnp in the sys-
tem, and

2. A processor with the earliest timestamp eventually has a suc-
cessful lock-free transactional execution.

The two properties above result in the following observation:
"In a finite number of steps, a node will eventually have the earli-

11

est timestamp for all blocks it accesses and operates upon within
its optimistic transaction and is thus guaranteed to have a success-
ful starvation-free lock-free execution."

However, the guarantees are true only if TLR can be applied.
In the presence of constraints, such as resource limitations and
un-cacheable requests, these guarantees cannot be provided.
These limitations make the guarantee of stability properties con-
ditional. Such a guarantee can be constructed using the size of the
victim cache and the scheduling quanta. Some of these parame-
ters can be architecturally specified. For example, if the system
has a 16 entry victim cache and a 4-way data cache, the program-
mer can be sure any transaction accessing 20 cache lines or less is
ensured a lock-free execution. A programmer expecting guaran-
teed behavior will need to be aware of precise specifications. For
a critical section to be executed in a wait-free manner, the lock
must be posit ively identified. TLR uses SLE, which must be
implemented to identify all locks that satisfy a certain idiom. The
spin-wait loop of the lock acquire will only be reached if TLR has
failed thus giving the programmer a method of detecting when
wait-freedom has not been achieved. This is an area of future
work.

Multiple nested locks can also be elided if hardware for track-
ing these elisions is sufficient. If some inner lock cannot be elided
due to an inability to track multiple elisions, the inner lock is
treated as data. This does not change TLR's properties: the execu-
tion is still lock-free and lower priority threads will be deferred by
higher priority threads temporarily. The outermost lock controls
whether TLR's properties are met [29].

TLR provides support for restartable critical sections because
failure atomicity is provided by TLR. Sometimes operating sys-
tem may want to restart certain threads---e.g., if threads are dead-
locked. Locks makes such termination difficult because the thread
might be in a critical section and may have modified shared mem-
ory. TLR provides hardware support for buffering speculative
updates within critical sections and exposes these values only at
the time the critical section execution is committed. Thus, if a
thread is terminated during TLR execution, the speculat ive
updates are discarded. Restartable critical section are a useful
functionality for operating systems to exploit.

Restartable critical sections allow the underlying blocking
synchronization primitive to be made non-blocking. Non-block-
ing synchronization primitives allow a system as a whole makes
progress despite individual halting failures or delays. TLR makes
the critical section execution non-blocking because TLR provides
a lock-free execution. If a process is de-scheduled, a misspecula-
tion is triggered and the lock is left free with all speculative
updates within the critical section discarded. Other threads sched-
uled continue to operate on the protected data. The wait-free
behavior follows from the non-blocking behavior discussed above
but subject to a stronger guarantee of starvation freedom.

5 Evaluation Methodology
We evaluate TLR using microbenchmarks and applications.

We evaluate four con f igu ra t i ons - - l) BASE: base system, 2)
B A S E + S L E : base sys tem with SLE op t imiza t ion [30], 3)
BASE+SLE+TLR: base system with SLE and TLR optimizations
(this paper), and 4) MCS: system with MCS locks [26]. MCS
locks are scalable software-queue locks that perform well under
contention. For convenience we will refer to these four schemes
in text as BASE, SLE, TLR, and MCS respectively. BASE, SLE,
and TLR use the same benchmark executable employing the
test&test&set lock.

5.1 Microbenchmarks
The three microbenchmarks capture three different locking

and critical section data conflict behaviors--coarse-grain/no-con-
flicts, fine-grain/high-conflicts, and fine-grain/dynamic conflicts.

Coarse-grain~no-conflicts. The m u l t i p l e - - c o u n t e r
microbenchmark consists of n counters protected by a single lock.
Each processor uniquely updates only one of n counters 224/n
times. While a single lock protects the counters, there is no
dependence across the various critical sections for the data itself
and hence no conflicts.

Fine-grain~high-conflicts. The s i n g l e - c o u n t e r
microbenchmark corresponds to critical sections operating on a
single cache line. One counter is protected by a lock and n proces-
sors increment the counter 216/n times. No inherent exploitable
parallelism exists as all processors operate upon the same data
(and cache line).

Fine-grain~dynamic-conflicts. The d o u b l y - 1 i n k e d 1 i s t
microbenchmark consists of a doubly-linked list with H e a d and
T a i 1 pointers protected by one lock. Each processor dequeues
an i tem by removing the i tem pointed to by H e a d , and then
enqueues it by adding it to T a i l . A process that removes the last
i tem sets both H e a d and T a i l to NULL, and a process that
inserts an item into an empty list sets both H e a d and T a i l to
point to the new item. The benchmark finishes when 216/n
enqueue and dequeue operations have completed. A non-empty
queue can support concurrent enqueue and dequeue operations.
When the queue is non-empty, each transaction modifies H e a d or
T a i 1, but not both, so enqueuers can execute without interfer-
ence from dequeuers, and vice versa. Transactions must modify
both pointers for an empty queue. This concurrency is difficult to
exploit in any simple way using locks, since an enque.uer does not
know if it must lock the tail pointer until after it has locked the
head pointer, and vice-versa for dequeuers [13, 33]. The critical
sections are non-trivial involving pointer manipulations and mul-
tiple cache line accesses.

Processors execute critical sections in a loop for a fixed num-
ber of iterations. Special care was taken in designing these
microbenchmarks. We use a methodology similar to that used by
Kumar et al. [19]. To ensure fairness, we introduce delays after a
lock release operations. After releasing the lock, the processor
waits a minimum random interval before proceeding to ensure
another processor has an opportunity to acquire the lock before a
successive local lock re-acquire, thus reducing unfairness.

5.2 Applications
We use barnes, cholesky, and mp3d from SPLASH [34]

and radiosity, water-nsq, ocean-cont, and ray-
trace from SPLASH2 [39]. A locking version ofmp3d is used
to study the impact of TLR on a lock-intensive benchmark [16].
This version of mp3d does frequent synchronization to largely
uncontended locks and lock access latencies cannot be hidden by
a large reorder buffer. Table 1 presents details. These applications
have been selected for their fine-grain locking and critical section
behavior. Barnes, cholesky, radiosity, raytrace, and
ocean-cont have lock contention. Water-nsq and mp3d do
not have lock contention but perform frequent synchronization.
These benchmarks are optimized for sharing, employ fine-grain
locks, and have little communication in most cases. Where appro-
priate, the data structures are padded to eliminate false sharing.

5.3 System configuration
The target system configuration is shown in Table 2. It is a

chip-multiprocessor configuration with snooping LI caches inter-

12

Application

Barnes N-Body
Cholesky Matrix factoring
Mp3D Rarefied field flow
Radiosity 3-D rendering
Water-nsq Water molecules
Ocean-cont Hydrodynamics
Raytrace Image rendering

Type of Simulation Inputs i Type of Critical Sections

4K bodies
tkl5.O
24000 tools, 25 iter.
-room, batch mode
512 mols, 3 iter.
128x128, 2 days
c a r

: tree node locks
task queue & col. locks
cell locks
task queue & buffer locks
global structure locks
counter locks
work list & counter locks

Table 1. Benchmarks

connected together. All coherence traffic occurs between the Lls.
The L2 cache is shared. The system is a MOESI broadcast snoop-
ing system modeled after the Sun Gigaplane [35]. The broadcast
is performed over an ordered network supporting high bandwidth
snooping. The PC-indexed predictor for optimizing read-modify-
write sequences is used for all experiments (BASE, SLE, TLR,
and MCS).

We use SimpleMP, an execution-driven simulator for running
multithreaded binaries. The simulator accurately models out-of-
order processors and a detailed memory hierarchy in a multipro-
cessor configuration. To model coherency and memory consis-
tency events accurately, the processors operate (read and write)
on data in caches and write-buffers. Contention is modeled in the
memory system. To ensure correct simulation, a funct ional
checker simulator executes behind the detailed timing simulator
only for checking correctness. The functional simulator works in
its own memory and register space and can validate total store
ordering (TSO) implementations. Care must be taken in evaluat-
ing multithreaded workloads because of non-deterministic execu-
tions. Random latency per turbat ions are in t roduced in the
simulator (similar to [1]).

6 Results
In Section 6.1 we provide an intuition behind why TLR may

improve performance. We present microbenchmark results in
Section 6.2 and application results in Section 6.3.

6.1 Performance intuition
With TLR, processors request data without acquiring locks

and the data request is appropriately queued using the coherence
protocol and a t imestamp-based conflict resolution scheme.
Figure 7 shows four processors P0, PI, P2, and P3 requesting the
same cache line A thus exhibiting true data conflict. For simplic-
ity, assume the conflict resolution scheme orders priorities as fol-
lows: P0, PI, P2, and P3 (P0 has highest priority). P0 is currently
executing its optimistic lock-free transaction and has accessed
cache line A (in modified state M). P0 receives, defers (and buff-
ers) P l ' s request for A. P2's request is buffered by PI and P2's
request is buffered by P3. P0 operates on A, complete its critical

@ ® ® ®

Figure 7. Queue maintenance and data transfer.

section and then responds to P l ' s request with the latest data for
A. Subsequently, PI operates upon the data, execute its own trans-
action, and on completion, respond to P2's request with the latest
data for A, and so on. Thus, while processors execute transactions
conflicting on data accessed, they are ordered on the data request.
i tself and no explicit lock requests are generated. This direct
transfer of data, coupled with the absence of lock requests and
overhead, provides the intuition for high-performance in the pres-
ence of data conflicts. No transaction requires to restart in the
above example. Further, while P0 is operating on A, other proces-
sors wait for the latest copy rather than introduce contention in
the system by repeatedly requesting locks and data. The behavior
is similar to hardware queue locks [9] but now the queue is con-
structed using the data itself and no lock requests are generated.
TLR, by removing explicit lock requests and locking overhead
under contention, reduces network contention and latency.

If the order of timestamps is different from the order in which
the respective requests are ordered by the coherence protocol,
additional latency may be introduced due to misspeculat ion--a
processor may have to restart and service a higher priority request
making the performance sub-optimal. Processors in TLR mode
restart only if the order of requests processed by the coherence
protocol are different from the timestamp order. Such situations
can be addressed if coherence protocol support was added. In the
TLR algorithm in this paper, no coherence protocol state transi-
tion changes are made or special protocol support is required. As
we see later TLR always outperforms the base system.

6.2 Microbenehmarks
Figure 8, Figure 9, and Figure 10 present microbenchmark

results. The y-axis shows wall-clock time for completing the par-
allel execution of the microbenchmarks. The x-axis shows pro-
cessor counts. Each data point in the graphs represents the same
amount of work. Thus, in a 16-processor system, each processor
does lesser work than in a 8-processor system but the total work
done in the system is the same.

Figure 8 shows results for m u l t i p l e - c o u n t e r s . T h e
scheme degrades performance as more threads run concurrently
because of severe contention for the lock. MCS. as expected is
scalable under high contention but experiences a fixed software
overhead. TLR and SLE behave ident ical ly because of the
absence of any data conflicts and both outperform BASE and

lProcessor

L1 caches

1 G Hz (I n s clock), 128 entry reorder buffer, 64 entry load/store queue, 16 entry instruction fetch queue, 3-cycle branch mispredict redirection
penalty, out-of-order issue/execution and commit of 8 inst. per cycle, issue loads as early as possible, 8-K entry combining predictor, 8-K entry
4-way BTB, 64 entry return address stack. Pipelined functional units, 8 alus, 2 multipliers, 4 floating point units, 3 memory ports. Write-buffer:
64-entry (64 byte wide). 128-entry PC indexed predictor for collapsing read-modify-write sequences within critical sections into single request.
Synchronization primitive: load-linked/store-conditional. Memory Model: Total Store Ordering (aggressive implementation [8]).
Instruction cache: 64-KByte, 2-way, 1 cycle access, 16 pending misses.
Data cache: 128-KByte. 4-way associative, write-back, l-cycle access, 16 pending misses. Line size of 64 bytes.

j TLR parameters 64 entry silent store-pair predictor table, support for upto 8 store-pair elisions at any time (-lock nesting depth of 8)
I
i Coherence Sun Gigaplane-type MOESI protocol between L1 s, split transaction. Address bus: broadcast network, snoop latency of 20 cycles, 120 outstand-
]protocol ing transactions. L2 cache: 4MB 12 cycle access. Memory access: 70 cycles. Data network: point-to-point, pipelined, latency: 20 cycles.

Table 2. Simulated machine parameters.

13

800-

N
600-

~ -

~ 2oo-

- - ÷ - BASE ~
-~---MCS / / / ~
--O-- BASE+SLE / ¢
--~- BASE+SLE+TLR / /

/
/

!
/

/
/ J

/ /

/ /

2 4 6 8 10 12 14 16
processor count

Figure 8. Multiple counter results."
coarse-grain~no-conflicts.

25

~ 20

~ t5

t0-

---I-- BASE 35

- ~ - . MCS . ~
- - ~ - BASE+SLE . ~ / 3 0

B AS E+SLE+TLR-strict-t~,..,.~ ~ /
- - ~ - BASE+SLE+TLR .~./" ~ 25 -

20-

~ 5-

0 0

- - + - BASE .~
- ..i.- - MCS ..~
--'O-- BASE+SLE
- - & - BASE+SLE+TLR ~ . /~ ;~ ¢ ~ - /

j ~

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
processor count processor count

Figure 9. Single counter results: fine- Figure 10. Doubly-linked list results:
grain/high-conflict fine-grain~dynamic-conflicts

MCS. They experience no lock overhead and true concurrency is
exploited. Perfect scalability is achieved.

Figure 9 shows results for s i n g l e - c o u n t e r . BASE per-
formance degrades with increasing threads because of severe con-
tention for the lock and data. SLE behaves similar to BASE
because SLE detects frequent data conflicts, tums off speculation,
and falls back to the BASE scheme. MCS is scalable but experi-
ences a fixed software overhead. Following our performance intu-
ition discussion in Section 6.1, we get ideal queued behavior for
TLR and increasing concurrent threads does not degrade perfor-
mance the way the other schemes do. No explicit lock requests
are made under TLR and TLR performs ideally; no processor
restarts and all transactions complete with a single cache miss.
Also shown is the TLR-strict-ts case without the single cache
block optimization of Section 3.2 Under TLR-strict-ts, t ime-
stamps are always enforced even though there is no danger of
deadlock because only one data block is being contended for. The
performance gap between TLR and TLR-str ict- ts is because
sometimes the order in which requests reach the coherence proto-
col is different from the order of the respective timestamps result-
ing in some misspeculation. The mismatch of protocol orders and
timestamp orders results in a sub-optimal ordering and additional
latencies (Section 6.1).

Figure 10 shows results for doubly- 1 inked i i s t. Per-
formance for BASE degrades similar to the other microbench-
marks because of severe lock contention. SLE does not perform
well either (and performs similar to BASE) because determining
when to apply speculation is difficult due to the dynamic concur-
rency of the benchmark. More often than not, SLE falls back to
the base case of lock acquisitions because of detected data con-
flicts. Any concurrency SLE exploits is offset by locking over-
head when SLE needs to acquire the lock. MCS again is scalable
but experiences a fixed software overhead. TLR performs well
and can exploit enqueue/dequeue concurrency. For two proces-
sors, BASE performs slightly better than TLR because of faimess
issues for that one run.

In summary, TLR outperforms both BASE and MCS. TLR
exploits dynamic concurrency while both BASE and MCS are
limited by synchronization performance. MCS performs a con-
stant factor worse than TLR while BASE performance degrades
quite substantially with increasing contention. Poor behavior of
BASE under lock contention occurs because of repeated access to
the lock variable by multiple processors racing for the lock and
data thus introducing a large amount of traffic into the network
[16]. MCS is scalable because processors form an orderly queue
in software rather than repeatedly race for the variable and data.

6.3 Applications
Figure 11 shows application performance for 16 processors.

The y-axis is normalized execution time. All bars are normalized
to BASE. Each benchmark has three bars: the first bar is BASE.
The second bar is SLE and the third bar is TLR. Each bar is
divided into two parts: contributions due to lock variable accesses
(loads and stores) and the remaining contributions. The account-
ing is performed at instruction commit t ime-- the instruction that
stalls commit is charged the stall. The breakup is approximate
since accounting for stall cycles due to individual operations is
difficult and not accurate. For some benchmarks, the non-lock
portion for the optimized case is larger than the non-lock portion
for the base case. This is because sometimes removing locks puts
other memory operations on the critical path. Speculative loads
issued for data within critical sections that were earlier over-
lapped with the lock-acquire operation now are exposed and stall
the processor. Since we assume fast network latencies and an
aggressive memory system, communication among processors is
fast and thus the stalls due to lock operations is small.

All experiments employ the instruction-based predictor for
reducing latencies in crit ical sections and discussed ear l ier
(Section 3.1.2. and Table 2). This results in a highly-optimized
base system execution and the performance numbers for TLR are
thus conservative. Later, we discuss the effect this predictor has
on the base system and present performance numbers to give an
idea of how much better TLR would do against a more conven-
tional base case. The speedup for technique X over technique Y is
the ratio of the benchmark parallel cycle count with technique Y
to that of the benchmark parallel cycle count with technique X. A
speedup value greater than 1 is better.

Ocean-cont and water-nsq do not show much perfor-
mance benefits. While o c e a n - c o n t has lock contention and
opportunities for concurrent critical section execution, the perfor-
mance impact on our target system is not much because lock
accesses do not contribute much to performance loss. w a t e r -
n s q has frequent uncontended lock acquires. While the bars for
BASE show potential for performance, removing locks does not
result in a corresponding performance gain because now the data
cache misses within the critical section, that were earlier over-
lapped with lock access misses, now are exposed and account for
the stalls. For, TLR speedup over BASE for w a t e r - n s q is 1.01
and for o c e a n - c o n t is 1.00. MCS speedup over BASE for
o c e a n - c o n t is 0%, and for w a t e r - n s q is 0.96. The perfor-
mance loss for MCS for w a t e r - n s q is due to the software over-
head for uncontended locks.

14

1.0

0.8

• 0.6

"~ o.4

i 0.2

O.O-
ocean-cont water-nsq raytrace radiosity barnes cholesky mp3d

(36m) (18m) (80rn) (92m) (60m) (44m) (112m)

Figure I1. Application performance for 16 processors. The y-
axis is normalized execution time. All bars are normalized to the
performance of BASE. Benchmarks are on the x-axis. Each
benchmark has three bars: first bar is BASE, second bar is
BASE+SLE and third bar is BASE+SLE+TLR. Each bar is
divided into two parts: contributions due to lock variables (load
and store instructions) and the remaining contributions. The
number in parentheses below the benchmark name is the paral-
lel execution cycle count, in millions, for the BASE shown as the
first o f three bars for each benchmark.

For r a d i e s i t y , speedup of TLR over BASE is 1.47 and
nearly all locking overhead disappears. Speedup of MCS over
BASE is 1.35. The task queue critical section was most contended
for in r a d i o s 2 t y and accounted for most conflict-induced
restarts under TLR.

For r a y t r a e e , the speedup of TLR over BASE is 1.17.
MCS performance is similar to TLR and its speedup over BASE
is also 1.17. For r a y t r a c e (c a r input) on our system, lock
contribution to execution time is 16%--much less than those
reported earlier on systems with larger latencies, slower memory
systems and different cache coherence protocols [19, 16].

For b a r n e s TLR speedup over BASE is 1.16. However,
MCS speedup over BASE is 1.21. MCS performs 4% better than
T L R - - t h e only application where MCS performs better than
TLR. B a r n e s is based on a hierarchical octree representation of
space in three dimensions and each node in the tree has its own
lock. The root of this tree represents a space cell containing all
bodies in the system. The tree is built by adding particles to tke
initially empty root cell and subdividing a cell into its eight chil-
dren as soon as it contains more than single body. Most locking
occurs in the tree building phase. Each process loads its bodies in
the octree using locks to ensure atomic updates of the cell nodes.
These locks tend to be contended and have data conflicts resulting
in TLR restarting frequently. TLR's restarts are due to sub-opti-
mal ordering discussed earlier in Section 6. I. MCS constructs an
ordered software queue and thus performs better than TLR.

C h o l e s k y , with the t k l 5 . 0 input set, is the only bench-
mark that cannot fit one critical section's data within the local
cache. About 3.7% of dynamic critical section executions resulted
in resource limitations for local buffering (write-buffer limita-
tions). This occurs at three functions (S c a t t e r U p d a t e , Com-
pleteSuperNode, and ModifyColumn) where a column in
the matrix is locked and the algorithm then writes to the column
entries resulting in buffer limitations (80% due to write buffer and
20% due to cache). TLR nevertheless achieves a speedup of 1.05
over BASE. MCS performs slightly worse than BASE (0.97).

Mp3d has frequent lock accesses but these locks are largely
uncontended. The 128K data cache is unable to hold all locks and
hence the processor suffers miss latency to locks. With TLR, sig-
nificant lock contribution still remains. TLR achieves a speedup
of 1.40 over BASE. BASE performs better than MCS (speedup

over MCS: 1 •47) because MCS pays a software overhead even for
uncontended locks. This overhead adds up significantly if locking
is frequent. TLR outperforms MCS by achieving a speedup of
2.06 because TLR pays no software overhead.

The performance gaps between MCS and TLR for barnes
and the TLR restarts in the applications suggests more optimiza-
tions are possible for TLR where coherence protocol support can
be used. A similar gap (between TLR and an ideal TLR execu-
tion) was also observed in Figure 9 in Section 6.2.

C o a r s e - g r a i n vs. f i ne -g r a in e x p e r i m e n t . W i t h mp 3 d, a
• J .

noticeable locking overhead remained and we investigated it fur-
ther. We conjectured replacing the per-cell fine-grain locks in
rap3d by one single coarse-grain lock should provide better per-
formance because the data foot-print reduces and the memory
system behavior should improve substantially. We replaced the
individual cell locks in mp3d with a single lock. This is bad for
BASE (and MCS) because now the benchmark has severe conten-
tion. As expected, TLR with one lock for all cells in mp3d out-
performs BASE with fine-grain per-cell locks by 58% (speedup
2.40) and outperforms TLR with fine-grain per-cell locks by 41%
(speedup 1.70). Thus, using coarse-grain locks can improve per-
formance significantly over fine-grain locks.

R e a d m o d i f y - w r i t e p r e d i c t i o n effects . The p e r f o r m a n c e
we report for the BASE case uses the instruction-based predictor
for collapsing read-modify-write sequences within predicted criti-
cal sections. We give speedups of BASE with the predictor (the
results in Figure 11) with respect to BASE without the predictor
(BASE-no-opt: a more conventional base case). The speedup is
calculated as the ratio of the parallel cycle count for BASE and
parallel cycle count for BASE-no-opt. A speedup value greater
than 1 is better . The speedups a r e - - o c e a n - c e n t : 1.00,
water-nsq: 1.04, raytrace: 1.28, radiosity: 1.05,
barnes: 1.04, cholesky: 1.33, and mp3d: 1.13. With the opti-
mization, the time spent waiting for lock operations increases
because critical section data latencies are reduced. Thus, our
speedups in Figure 11 would be much larger if we assumed a
more conventional base case without the predictor. For all bench-
marks, a 128 entry PC-indexed predictor was sufficient (only
radiosity used more than 30 entries--using just under 100)
and most of the remaining benchmarks used less than 20 entries).

7 Related work
We discuss related work under three categories: lock-free and

non-blocking methods, database concurrency control, and lock-
based synchronization.

Lock-free and non-blocking methods. Lamport introduced
lock-free synchronization to allow multiple threads to work on a
data structure concurrently without a lock [21]. Herlihy gave a
theoretical framework for constructing wait-free objects [12, 11].
Software lock-free schemes using lock-free data structures have
been proposed to address the inherent limitations of locking [12,
38, 4, 27]. Lock-free schemes provide optimistic concurrency
without requiring a critical section or software wait on a lock.
These schemes often require more complex operations than criti-
cal sections and rely on programmers to write appropriate code.
Programmers have to reason about correctness in the presence of
complex data structures. These alternatives commonly suffer
from difficulty of use, complex programming methodologies, and
often high software overheads, thus aggravating the complex-
ity/performance trade-off. Software only lock-free schemes have
been shown to per form poorly as compared to lock-based
schemes because of high software overheads and excessive data

15

copying to allow roll-back [2, 6]. With TLR, programmers con-
tinue using the familiar lock-based critical section while obtain-
ing the benefits of lock-free data structures.

Hybrid hardware/software schemes have been proposed. The
load-linked/store-conditional (LL/SC) instructions allow for an
optimistic atomic read-modify-write on a single word [14]. Trans-
actional memory [13] and the Oklahoma update [36] were gener-
alization of the LL/SC primitives outlined above. Both schemes
required special instructions, programmer support, and coherence
protocol extensions to provide mechanisms to write transactional
code. Transactional memory is not strictly non-blocking and
relied on software back off to guarantee forward progress. Okla-
homa update did not provide starvation freedom although it did
provide liveness by relying on a two-phase commit process and
sorting memory addresses in hardware to order their requests.
Software transactional memory [33] uses software primitives to
implement transactions but performs poorly with respect to its
lock-based counterparts. Speculative Lock Elision [30] dynami-
cally elides lock acquire and release operations from an execution
stream but requires lock acquisitions in the presence of conflicts.

Improving performance of software non-blocking schemes
have been studied previously [27, 4, 38]. Software proposals have
been made to make lock-based critical sections non-blocking [37]
and thread scheduling that is aware of blocking locks [18, 28].

Database concurrency control. Transactions are well under-
stood and studied in database literature [10]. The use of time-
stamps for resolving conflicts and ordering transactions in data-
base systems has been well studied [5, 32]. Optimistic concur-
rency control (OCC) was proposed as an alternative to locking in
database management systems [20]. OCC involves a read phase
where objects are accessed (with possible updates to a private
copy of these objects) followed by a serialized validation phase to
check for data conflicts (read/write conflicts with other transac-
tions). This is followed by the write phase if the validation is suc-
cessful. TLR does not have a serialized validation phase and
exploits hardware techniques to provide transactional behavior.

Lock-based synchronization. Lock-based synchronization
has been extensively studied in literature. These techniques
attempt to optimize the lock and data transfer operations [9, 3, 26,
16, 31]. The techniques are not lock-free. These techniques suffer
from locking overhead and serialization due to lock acquisitions.

Martfnez and Torrellas introduced Speculative Locks, allow-
ing speculative threads to bypass a held lock and enter a critical
section [24]. At any time the lock is always acquired by one
thread which is non-speculative. Speculative threads could then
become non-speculative after a lock was released by the non-
speculative thread if no data conflicts were detected by the specu-
lative threads and the speculative threads had completed their crit-
ical sections. In the presence of data conflicts, speculative threads
always restart and retry the above sequence, competing for the
lock. A free lock is always written to and acquired explicitly by a
thread. In Speculative Synchronization [25], Speculative Locks is
extended to include the SLE mechanism to be used in the absence
of data conflicts. In the presence of data conflicts, rather than fall-
ing back on the underlying scheme as SLE does, it adapts by
employing Speculative Locks as described above. These schemes
provide the same forward progress guarantees as SLE. These
schemes are not lock-free, experience the limitations of locks, and
do not provide the guarantees provided by TLR.

Delaying responses to requests for lock variables for a short
time and thus emulating hardware queued locks was proposed
earlier [31]. TLR generalizes that notion by applying deferrals to
data and to multiple cache blocks simultaneously.

8 Concluding Remarks
We have proposed Transactional Lock Removal (TLR), a

hardware mechanism to convert lock-based critical sections trans-
parently and optimistically into lock-free transactions and a
timestamp-based conflict resolution scheme to provide transac-
tional execution (failure-atomicity and serializability) and starva-
tion-freedom if the data accessed by the transaction can be locally
cached and subject to some implementation specific constraints.

TLR is a step in the direction towards high-perfl~rmance and
highly reliable concurrent multithreaded execution. We summa-
rize the contributions of our mechanism under 3 categories:
• Programmability. Reasoning about granularity of locks is not

required because ordering decisions are dynarnically made
based on actual data conflicts and independent of lock granu-
larity. Thus, a critical problem in reasoning about writing mul-
tithreaded programs is solved. Coarse granularity locking and
frequent locking can be employed without paying a perfor-
mance penalty.

• Stability. Since the software wait on locks is eliminated, prop-
erties of lock-free and wait-free execution are achieved trans-
parently. This results in improved system wide interactions,
non-blocking behavior, and improved stability.

• Performance. Since serialization decisions are made only
when data conflicts occur, the performance of the finest granu-
larity locking is automatically obtained independent of locking
granularity. Since a queue of requestors is constructed in hard-
ware using the coherence protocol, data transfers are efficient
and low overhead. Programmers can focus on writing correct
code while hardware automatically extracts performance.
TLR is the first proposal to combine these properties. While

TLR does tradeoff hardware for these properties, the hardware
cost is modest. Additionally, we address the inherent limitations
of the locking construct automatically while maintaining the well
understood critical section abstraction for the programmer.

Although our proposal is a hardware-only scheme, we believe
software developers can use such functionality in several ways.
The size of transactions can be architecturally specified thus guar-
anteeing programmers a wait-free critical section execution. Fur-
ther, operating systems can exploit the notion of transactional
execution to provide improved behavior and appropriate operat-
ing systems involvement can prevent software failures (that affect
one thread) to interact negatively with other concurrent threads
and allow other threads to continue execution.

Acknowledgements
We would like to especially thank Maurice Herlihy for exten-

sive discussions regarding the ideas in the paper and comments on
drafts of the paper. We thank Ras Bodik, Trey Cain, Mike Dahlin,
Joel Emer, Brian Fields, Timothy Hell, Mark Hill, Milo Martin,
Manoj Plakal, Eric Rotenberg, Shai Rubin, Dan Sorin, and David
Wood for discussions and comments, and the reviewers for their
comments. We thank Michael Scott for answering queries regard-
ing MCS behavior, Alaa Alameldeen for discussions regarding
multithreaded workload evaluation issues, and Main Kagi and
Sanjeev Kumar for the MCS lock code. This work is supported in
part by National Science Foundation grant CCR-9810114.

16

References
[1[A.R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M. Martin,

D. J. Sofin, M. D. Hill, and D. A. Wood. Evaluating non-determin-
istic multi-threaded commercial workloads. In Fifth Workshop on
Computer Architecture Evaluation Using Commercial Workloads,
pages 30-38, Feb. 2002.

[2] J. Allemany and E. Felten. Performance issues in non-blocking
synchronization on shared-memory multiprocessors. In Proceed-
ings of the l l th ACM Symposium on Principles of Distributed
Computing, pages 125-134, Aug. 1992.

[3] T.E. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. 1EEE Transactions on Parallel
and Distributed Systems, 1 (1): 6-16, Jan. 1990.

[4] G. Barnes. Method for implementing lock-free shared data struc-
tures. In Proceedings of the Fifth Annual ACM Symposium on Par-
allel Algorithms and Architectures, pages 261-270, June 1993.

[5] P.A. Bernstein and N. Goodman. Concurrency control in distrib-
uted database systems. ACM Computing Surveys, 13(2):185-221,
June 1981.

[6] B.N. Bershad. Practical considerations for lock-free concurrent
objects. Technical Report CMU-CS-91-183, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Sept. 1991.

[7] K.P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger. The notions
of consistency and predicate locks in a database system. Communi-
cations of the ACM, 11:624-633, 1976.

[8] K. Gharachorloo, A. Gupta, and J. L. Hennessy. Two techniques to
enhance the performance of memory consistency models. In Pro-
ceedings of the 1991 International Conference on Parallel Process-
ing, pages 355-364, Aug. 1991.

[9] J.R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchroni-
zation primitives for large-scale cache-coherent shared-memory
multiprocessors. In Proceedings of the Third Symposium on Archi-
tectural Support for Programming Languages and Operating Sys-
tems, pages 64-.-75, Apr. 1989.

[10] J. Gray. The transaction concept: Virtues and limitations. In Sev-
enth International Conference on Very Large Data Bases, pages
144-154, Sept. 1981.

[11] M. Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 13(1): 124-149, Jan. 1991.

[12] M. Herlihy. A methodology for implementing highly concurrent
data objects. ACM Transactions on Programming Languages and
Systems, 15(5):745-770, 1993.

[13] M. Herlihy and J. E. B. Moss. Transactional Memory: Architec-
tural support for lock-free data structures. In Proceedings ~[" the
20th Annual International Symposium on Computer Architecture,
pages 289-300, May 1993.

[14] E.H. Jensen, G.W. Hagensen, and J.M. Broughton. A new
approach to exclusive data access in shared memory multiproces-
sors. Technical Report UCRL-97663, Lawrence Livermore
National Laboratory, Livermore, CA, Nov. 1987.

[15] N. 1~ Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In
Proceedings of the 17th Annual International Symposium on Com-
puter Architecture, pages 364--373, May 1990.

[16] A. K~igi, D. Burger, and J. R. Goodman. Efficient synchronization:
Let them eat QOLB. In Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, pages 170-180, June
1997.

[17] S. Kaxiras and J.R. Goodman. Improving CC-NUMA perfor-
mance using instruction-based prediction. In Proceedings ~/" the
Fifth International Symposium on High-Performance Computer
Architecture, pages 161-170, Jan. 1999.

[18] L. 1. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Sched-
uler-conscious synchronization. ACM Transactions on Computer
Systems, 15(1):3--.40, 1997.

[19] S. Kumar, D. Jiang, R. Chandra, and J. P. Singh. Evaluating syn-
chronization on shared address space multiprocessors: Methodol-
ogy and performance. In Proceedings ~/" the 1999 ACM
SIGMETRICS Cot!ference on Measurements and Modeling of
Computer Systems, pages 23-34, May 1999.

[20] H. Kung and J. T. Robinson. On optimistic methods of concurrency
control. ACM Transactions on Database Systems, 6(2):213-226,
June 1981.

[21] L. Lamport. Concurrent reading and writing. Communications of
the ACM, 20(11):806-811, 1977.

[22] ' L. Lamport. Time, clocks, and the ordering of events in a distrib-
uted system. Communications of the ACM, 21:558-565, 1978.

[23] K.M. Lepak and M. H. Lipasti. Temporally silent stores. In Pro-
ceedings of the Tenth Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems, Oct. 2002.

[24] J.F. Martfnez and J. Torrellas. Speculative locks for concurrent
execution of critical sections in shared-memory multiprocessors. In
Workshop on Memory Performance Issues, June 2001.

[25] J. E Marrnez and J. Torrellas. Speculative synchronization: Apply-
ing thread-level speculation to explicitly parallel applications. In
Proceedings of the Tenth Symposium on Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.

[26] J .M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans-
actions on Computer Systems, 9(1):21---65, Feb. 1991.

[27] M.M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceed-
ings of the 15th ACM Symposium on Principles of Distributed
Computing, pages 267-275, May 1996.

[28] M.M. Michael and M. L. Scott. Nonblocking algorithms and pre-
emption-safe locking on multiprograrnmed shared memory multi-
processors. Journal of Parallel and Distributed Computing,
51(1):1-26, 1998.

[29] R. Rajwar. Speculation-Based Techniques for Transactional Lock-
Free Execution of Lock-Based Programs. PhD thesis, University of
Wisconsin, Madison, WI, 2002.

[30] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the
34th International Symposium on Microarchitecture, pages 294-
305, Dec. 2001.

[31] R. Rajwar, A. Kagi, and J. R. Goodman. Improving the throughput
of synchronization by insertion of delays. In Proceedings of the
Sixth International Symposium on High-Performance Computer
Architecture, pages 168-179, Jan. 2000.

[32] D.J. Rosenkrantz, R.E. Steams, and P. M. Lewis. System level
concurrency control for distributed database systems. ACM Trans-
actions on Database Systems, 3(2):178-198, June 1978.

[33] N. Shavit and D. Touitou. Software Transactional Memory. In Pro-
ceedings of the 14th ACM Symposium on Principles o)f Distributed
Computing, pages 204-213, Aug. 1995.

[34] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford paral-
lel applications for shared memory. Computer Architecture News,
20(I):5---44, Mar. 1992.

[35] A. Singhal, D. Broniarczyk, F.M. Cerauskis, J. Price, L. Yuan,
G. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvey, and
E. Hagersten. Gigaplane: A high performance bus for large SMPs.
In Proceedings of the Symposium on High Performance Intercon-
nects IV, pages 41-52, Aug. 1996.

[36] J .M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple
reservations and the Oklahoma update. IEEE Parallel & Distrib-
uted Technology, 1(4):58-71, Nov. 1993.

[37] J. Turek, D. Shasha, and S. Prakash. Locking without blocking:
Making lock based concurrent data structure algorithms nonblock-
ing. In Proceedings of the 11th ACM Symposium on Principles of
Distributed Computing, pages 212-222, Aug. 1992.

[38] J.D. Valois. l.x)ck-Free Data Structures. PhD thesis, Rochester
Institute of Technology, Rochester, NY, 1995.

[39] S.C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological con-
siderations. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 24---36, June 1995.

17

