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Abstract. We present a distributed transactional memory (TM) scheduler called
Bi-interval that optimizes the execution order of transactional operations to min-
imize conflicts. Bi-interval categorizes concurrent requests for a shared object
into read and write intervals to maximize the parallelism of reading transactions.
This allows an object to be simultaneously sent to nodes of reading transactions
(in a data flow TM model), improving transactional makespan. We show that Bi-
interval improves the makespan competitive ratio of the Relay distributed TM
cache coherence protocol to O(log(n)) for the worst-case and Θ log(n− k) for
the average-case, for n nodes and k reading transactions. Our implementation
studies confirm Bi-interval’s throughput improvement by as much as 200% ∼
30%, over cache-coherence protocol-only distributed TM.

Keywords: Transactional Memory, Transactional Scheduling, Distributed Sys-
tems, Distributed Cache-Coherence

1 Introduction

Transactional memory (TM) is an alternative synchronization model for shared in-
memory data objects that promises to alleviate difficulties with lock-based synchro-
nization (e.g., lack of compositionality, deadlocks, lock convoying). A transaction is a
sequence of operations, performed by a single thread, for reading and writing shared
objects. Two transactions conflict if they access the same object and one access is a
write. When that happens, a contention manager (CM) is typically used to resolve the
conflict. The CM resolves conflicts by deciding which transactions to abort and aborting
them, allowing only one transaction to proceed, and thereby ensures atomicity. Aborted
transactions are retried, often immediately. Thus, in the contention management model,
a transaction ends by either committing (i.e., its operations take effect), or by aborting
(i.e., its operations have no effect). Efficient contention management ensures transac-
tional progress—i.e., at any given time, there exists at least one transaction that pro-
ceeds to commit without interruption [20]. TM for multiprocessors has been proposed
in hardware [11], in software [12], and in hardware/software combination [17].

A complimentary approach for dealing with transactional conflicts is transactional
scheduling. Broadly, a transactional scheduler determines the ordering of transactions
so that conflicts are either avoided altogether or minimized. This includes serializing
transaction executions to avoid conflicts based on transactions’ predicted read/write
access sets [8] or collision probability [7]. In addition, conflicts can be minimized by
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carefully deciding when a transaction that is aborted due to a conflict is resumed [1, 7],
or when a transaction that is stalled due to potential for an immediate conflict is later
dispatched [22]. Note that, while contention management is oblivious to transactional
operations, scheduling is operation-aware, and uses that information to avoid/minimize
conflicts. Scheduling is not intended as a replacement for contention management; a
CM is (often) needed and scheduling seeks to enhance TM performance.

Distributed TM promises to alleviate difficulties with lock-based distributed syn-
chronization [13, 4, 18, 16, 24]. Several distributed TM models are possible. In the data-
flow model [13], which we also consider, object performance bottlenecks can be re-
duced by migrating objects to the invoking transactional node and exploiting locality.
Moreover, if an object is shared by a group of geographically-close clients that are far
from the object’s home, moving the object to the clients can reduce communication
costs. Such a data flow model requires a distributed cache-coherence protocol, which
locates an object’s latest cached copy, and moves a copy to the requesting transaction,
while guaranteeing one writable copy. Of course, CM is also needed. When an object is
attempted to be migrated, it may be in use. Thus, a CM must mediate object access con-
flicts. Past distributed TM efforts present cache coherence protocols (e.g., Ballistic [13],
LAC [24], Relay [23]) and often use a globally consistent CM (e.g., Greedy [9]).

We consider distributed transactional scheduling to enhance distributed TM perfor-
mance. We present a novel distributed transactional scheduler called Bi-interval that
optimizes the execution order of transactional operations to minimize conflicts. We
focus on read-only and read-dominated workloads (i.e., those with only early-write
operations), which are common transactional workloads [10]. Bi-interval categorizes
concurrent requests for a shared object into read and write intervals to maximize the
parallelism of reading transactions. This reduces conflicts between reading transactions,
reducing transactional execution times. Further, it allows an object to be simultaneously
sent to nodes of reading transactions, thereby reducing the total object traveling time.

We evaluate Bi-interval by its makespan competitive ratio—i.e., the ratio of Bi-
interval’s makespan (the last completion time for a given set of transactions) to the
makespan of an optimal transactional scheduler. We show that Bi-interval improves the
makespan competitive ratio of the Relay cache coherence protocol with the Greedy CM
from O(n) [23] to O(log(n)), for n nodes. Also, Bi-interval yields an average-case
makespan competitive ratio of Θ(log(n− k)), for k reading transactions.

We implement Bi-interval in a distributed TM implementation constructed using the
RSTM package [5]. Our experimental studies reveal that Bi-interval improves transac-
tional throughput of Relay by as much as 188% and that of LAC protocols by as much
as 200%. In the worst-case (i.e., without any reading transaction), Bi-interval improves
throughput of Relay and LAC protocols (with the Greedy CM) by as much as 30%.

Thus, the paper’s contribution is the Bi-interval transactional scheduler. To the best
of our knowledge, this is the first ever transactional scheduler for distributed TM.

The rest of the paper is organized as follows. We review past and related work in
Section 2. We describe our system model and definitions in Section 3. Section 4 de-
scribes the Bi-interval scheduler, analyzes its performance, and gives a procedural de-
scription. We discuss Bi-interval’s implementation and report experimental evaluation
in Section 5. The paper concludes in Section 6.
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2 Related Work

Past works on distributed transactional memory include [4, 13, 18, 16, 24]. In [18], the
authors present a page-level distributed concurrency control algorithm, which maintains
several distributed versions of the same data item. In [4], the authors decompose a
set of existing cache-coherent TM designs into a set of design choices, and select a
combination of such choices to support TM for commodity clusters. Three distributed
cache-coherence protocols are compared in [16] based on benchmarks for clusters.

In [13], Herlihy and Sun present a distributed cache-coherence protocol, called Bal-
listic, for metric-space networks, where the communication cost between nodes form
a metric. Ballistic models the cache-coherence problem as a distributed queuing prob-
lem, due to the fundamental similarities between the two problems, and directly uses
an existing distributed queuing protocol, the Arrow protocol [6], for managing transac-
tional contention. Since distributed queuing protocols, including Arrow, do not consider
contention between transactions, Ballistic suffers from a worst-case queue length of
O(n2) for n transactions requesting the same object. Further, its hierarchical structure
degrades its scalability—e.g., whenever a node joins or departs the network, the whole
structure has to be rebuilt. These drawbacks are overcome in the Relay protocol [23],
which reduces the worst-case queue length by considering transactional contention, and
improves scalability by using a peer-to-peer structure.

Zhang and Ravindran present a class of location-aware distributed cache-coherence
(or LAC) protocols in [24]. For LAC protocols, the node which is “closer” to the object
(in terms of the communication cost) always locates the object earlier. When working
with the Greedy CM, LAC protocols improve the makespan competitive ratio.

None of these efforts consider transactional scheduling. However, scheduling has
been explored in a number of multiprocessor TM efforts [8, 1, 22, 7, 3]. In [8], Drago-
jević et. al. describe an approach that schedules transactions based on their predicted
read/write access sets. They show that such a scheduler can be 2-competitive with an
optimal scheduler, and design a prediction-based scheduler that dynamically serializes
transactions based on the predicted access sets. In [1], Ansari et. al. discuss the Steal-
On-Abort transaction scheduler, which queues an aborted transaction behind the non-
aborted transaction, and thereby prevent the two transactions from conflicting again
(which they likely would, if the aborted transaction is immediately restarted).

Yoo and Lee present the Adaptive Transaction Scheduler (ATS) [22] that adaptively
controls the number of concurrent transactions based on the contention intensity: when
the intensity is below a threshold, the transaction begins normally; otherwise, the trans-
action stalls and do not begin until dispatched by the scheduler. Dolev et. al. present the
CAR-STM scheduling approach [7], which uses per-core transaction queues and serial-
izes conflicting transactions by aborting one and queueing it on the other’s queue, pre-
venting future conflicts. CAR-STM pre-assigns transactions with high collision proba-
bility (application-described) to the same core, and thereby minimizes conflicts.

Attiya and Milani present the BIMODAL scheduler [3], targeting read-dominated
and bimodal (i.e., those with only early-write and read-only) workloads. BIMODAL
alternates between “writing epochs” and “reading epochs” during which writing and
reading transactions are given priority, respectively, ensuring greater concurrency for
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reading transactions. BIMODAL is shown to significantly outperform its makespan
competitive ratio in read-dominated workloads, and has an O(s) competitive ratio.

Our work is inspired by the BIMODAL scheduler. The main idea of our work is also
to build a read interval, which is an ordered set of reading transactions to simultaneously
visit requesting nodes of those reading transactions. However, there is a fundamental
trade-off between building a read interval and moving an object. If an object visits
only read-requesting nodes, the object moving time may become larger. On the other
hand, if an object visits in the order of the nearest node, we may not fully exploit the
concurrency of reading transactions. Thus, we focus on how to build the read interval,
exploiting this trade-off. Note that this tradeoff does not occur for BIMODAL.

3 Preliminaries

We consider Herlihy and Sun’s data-flow TM model [13]. In this model, transactions
are immobile, but objects move from node to node. A CM module is responsible for
mediating between conflicting accesses to avoid deadlocks and livelocks. We use the
Greedy CM which satisfies the work conserving [2] and pending commit [9] properties.

When a transaction attempts to access an object, the cache-coherence protocol lo-
cates the current cached copy of the object, moves it to the requesting node’s cache,
and invalidates the old copy (e.g., [23, 24]). If no conflict occurs, the protocol is re-
sponsible for locating the object for the requesting nodes. Whenever a conflict occurs,
the CM aborts the transaction with the lower priority. The aborted transaction is en-
queued to prevent it from concurrently executing again. When the current transaction
commits, the transactional scheduler should decide in what order the enqueued trans-
actions should execute. We assume that the same scheduler is embedded in all nodes
for consistent scheduling. We only consider read and write operations in transactions:
a transaction that only reads objects is called a reading transaction; otherwise, it is a
writing transaction.

Similar to [13], we consider a metric-space network where the communication costs
between nodes form a metric. We assume a complete undirected graph G = (V,E),
where | V |= n. The cost of an edge e(i, j) is measured by the communication delay
of the shortest path between two nodes i and j. We use dG(i, j) to denote the cost of
e(i, j) in G. Thus, dG(i, j) forms the metric of G.

A node v has to execute a transaction T , which is a sequence of operations on the
objects R1, R2,. . . Rs, where s ≥ 1. Since each transaction is invoked on an individual
node, we use vTj to denote the node that invokes the transaction Tj . We define VT = {
vT1 , vT2 , . . . vTn

} indicating the set of nodes requesting the same object. We use
Ti ≺ Tj to represent that transaction Tj is issued a higher priority than Ti by the
Greedy CM. We use τj to denote the duration of a transaction’s execution on node j.

Definition 1 A scheduler A is conservative if it aborts at least one transaction in every
conflict.

Definition 2 (Makespan) Given a scheduler A, makespani(A) is the time that A
needs to complete all the transactions in V Ri

Tn
which require accesses to an object Ri.
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We define two types of makespans: (1) traveling makespan(makespand
i (A)), which is

the total communication delay to move an object; and (2) execution makespan(makespanτA(A)),
which is the time duration of transactions’ executions including all aborted transactions.

Definition 3 (Competitive Ratio) The competitive ratio (CR) of a schedulerA for V Ri

Tn

is makespani(A)
makespani(OPT ) , where OPT is the optimal scheduler.

Definition 4 (Object Moving Time) In a given graphG, the object moving cost ηAG(u, V )
is the total communication delay for visiting each node from node u holding an object
to all nodes in V , under scheduler A.

We now present bounds on transactional aborts.

Lemma 1. Given n transactions, in the worst-case, the number of aborts of a CM in
V Ri

Tn
is n2.

Proof. Since the CM is assumed to be work-conserving, there exists at least one trans-
action in V Ri

Tn
that will execute uninterruptedly until it commits. A transaction T can be

aborted by another transaction in V Ri

Tn
. In the worst-case, λCM =

∑n−1
m=1m ≤ n2.

Lemma 2. Given n transactions, in the worst-case, the number of aborts of a conser-
vative scheduler in V Ri

Tn
is n− 1.

Proof. By Lemma 1, we know that a transaction T can be aborted as many times as
the number of elements of V Ri

Tn
. In the worst-case, the number of aborts of T is n − 1.

Thus, a scheduler enqueues the requests that are aborted and an object moves along the
requesting nodes. Hence, in the worst-case, λScheduler =

∑n−1
m=1 1 = n− 1.

We now investigate the makespan for all requests for object Ri by an optimal off-
line scheduler.

Lemma 3. The makespans of the optimal off-line scheduler are bounded as:

makespandi (OPT ) ≥ min dG(vT , V Ri

Tn−1
),makespanτi (OPT ) ≥

n−1∑
m=1

τm

Proof. Suppose that n concurrent requests are invoked for the same object Ri and n-1
transactions are aborted in the worst-case. The optimal moving makespan is the sum-
mation of the minimum paths for Ri to visit each requested nodes. Ri starts moving
from vT to each node that belongs to V Ri

Tn−1
according to the shortest paths. Once Ri

visits a node, the node holds it during τm for processing.

Lemma 4. The makespans of scheduler A are bounded as:

makespandi (A) ≤ max ηAG(vT , V Ri

Tn−1
),makespanτi (A) ≤

n−1∑
m=1

τm

Proof. If n−1 requests arrive before the completion of a transaction at vT , conflicts oc-
cur at vT , which currently is Ri’s holding node. The scheduler builds a list of requested
nodes to visit. Once a transaction is aborted, object moving and execution times are
determined using the number of nodes that would be used in the worst case scenario.
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4 The Bi-interval Scheduler

Bi-interval is similar to the BIMODAL scheduler [3] in that it categorizes requests into
read and write intervals. When a request of transaction T2 on node 2 arrives at node 1,
there are two possible cases: 1) if the transaction T1 on node 1 has committed, then the
object will be moved to node 2; 2) if T1 has not committed yet, then a conflict occurs.
For the latter case, two sub-cases are possible. If the queue of aborted transactions is
empty, the (Greedy) CM aborts the newer transaction [9]. If T1 ≺ T2, T1 is aborted. To
handle a conflict between a reading and a writing transaction, a reading transaction is
aborted to concurrently process it with other reading transactions in the future. On the
other hand, if there are aborted transactions in the queue, T1 and the aborted transactions
will be scheduled by node 1. If T1 has been previously scheduled, we use a pessimistic
concurrency control strategy [21]: T2 is aborted and waits until the aborted transactions
are completed. Otherwise, we use the Greedy CM.

When a transaction commits and the aborted transactions wait in the queue, Bi-
interval starts building the read and write intervals.

Write Interval: The scheduler finds the nearest requesting node. If the node has
requested an object for a writing transaction, a write interval starts and the scheduler
keeps searching for the next nearest node. When a requesting node for a reading trans-
action is found, the write interval ends and a read interval starts. The object is visited
according to the chain of writing transactions in serial order.

Read Interval: When the scheduler finds the nearest node that has requested an ob-
ject for a reading transaction, a read interval starts. The scheduler keeps searching for
the next nearest node to build the read interval. If a requesting node for a writing trans-
action is found, the scheduler keeps checking the nearest node until a node requesting
the object for a reading transaction appears again. If it appears, the read requesting node
is joined to the read interval, meaning that the previously found requesting node(s) for
a writing transaction is(are) scheduled behind the read interval. Instead of giving up
the benefit of shorter object traveling times by visiting the nearest node, we achieve
the alternative benefit of increased concurrency between reading transactions. Before
the joining procedure to extend the read interval, the scheduler computes the trade-off
between these benefits. If scheduling is completed, the object is simultaneously sent to
all requesting nodes involved in the read interval. If no node for a reading transaction
appears, another write interval is created.

There are two purposes for building a read interval through scheduling. First, the
total execution time decreases due to the concurrent execution of reading transactions.
Second, an object is simultaneously sent to some requesting nodes for reading trans-
actions. Thus, the total traveling time in the network decreases. We now illustrate Bi-
interval’s scheduling process with an example.

Figure 1 shows an example of a five-node network. Node 3, where the conflicts
occurs, is responsible for scheduling four requests from nodes 1, 2, 4, and 5. If all
requests involve write operations, node 3 schedules them as the following scheduled
list: 4© → 5© → 1© → 2©. If only nodes 2 and 4 have reading transactions, node 3
yields the following scheduled list: 4©→ 2©→ 1©→ 5©. Node 3 simultaneously sends
a copy of the object to nodes 4 and 2. Once the copy arrives, nodes 4 and 2 process
it. After processing the object, node 4 sends a signal to node 2 letting it know about
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Fig. 1. A Five-Node Network Example for Bi-interval’s Illustration

the object availability. At this time, node 2 is processing or has finished processing
the object. After processing it, node 2 sends the object to node 1. The makespan is
improved only when min(τ3, τ4) > ηG(3, 2). In the meantime, if other conflicts occur
while the object is being processed along the scheduled list, aborted transactions (due
to the conflicts) are scheduled behind the list to ensure progress based on pessimistic
concurrency control. This means that those aborted transactions will be handled after
processing the scheduled list.

Fig. 2. An Example of Exploiting Parallelism in a Read Interval

Figure 2 shows an example of the parallelism in a read interval. Even though the
object is simultaneously sent to nodes 4 and 2, it may not arrive at the same time. Due
to different communication delays of the object and different execution times of each
transaction, nodes 4 and 2 may complete their transactions at different times. According
to the scheduled order, node 4 sends a signal to node 2 and node 2 immediately sends
the object to node 1. Thus, the total makespan at nodes 4 and 2 includes only the worst-
case execution time plus the object moving time. However, the communication delay
between nodes 4 and 1 takes longer because node 2 is not the nearest node of node 4.

4.1 Algorithm Description

Bi-interval starts finding the set of consecutive nearest nodes using a nearest neighbor
algorithm. V Ri

Tm
denotes the set of nodes for reading transactions to obtain an object
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Ri, where m ≥ 1. V Ri

Tw
denotes the set of nodes for writing transactions to obtain Ri.

Suppose that the scheduler found the ordered set of V Ri

Tm
and V Ri

Tw
as nearest nodes.

ηG(V Ri

Tm
, vm+1)− ηG(V Ri

Tm
, V Ri

Tw
) < τω (1)

When a request for a reading transaction from node vm+1 appears after V Ri

Tw
is

found, V Ri

Tw
is switched to vm+1 in the condition of Equation 1 to extend the size of

V Ri

Tm
. Equation 1 shows the condition for a reading request vm+1 to move to the previous

read interval if the difference between the delay from V Ri

Tm
to vm+1 and from V Ri

Tm
to

V Ri

Tw
is less than or equal to τω , where τω is the worst-case execution time of a reading

transaction, and 1 ≤ m ≤ k.

min
1≤Ir≤k

(τω · Ir +
n−k∑
m=1

τm + ηG(vT , V̄ Ri

T )) (2)

Here, Ir is the number of read intervals, k is the number of reading transactions, vT ∈
V Ri

T , and V̄ Ri

T = { vT1 , vT2 , . . . vTn+Ir−k
}.

Equation 2 expresses the minimization of makespan for the execution and object
traveling time, which is Bi-interval’s main objective:

Algorithm 1: Algorithm of Bi-interval

Input: V Ri
Tn

= { vT1 , vT2 , · · · vTn }
Output: LRi

T /* Scheduled List */
WRi

T ← ∅; LRi
T ← ∅;1

p←NULL; q ←NULL2
repeat3

p=FindNearestNode(V Ri
Tn

);4

if p is a reading request then5
if q is a writing request and6

DetermineTotal(p,WRi
T ) is not OK

then
A write interval is confirmed;7

LRi
T ← LRi

T ∪W
Ri
T ;8

WRi
T ← ∅;9

else10

V Ri
Tn
←V Ri

Tn
\ { p};11

LRi
T ← LRi

T ∪ { p };12

else13

V Ri
Tn
←V Ri

Tn
\ { p};14

WRi
T ←WRi

T ∪ { p };15

q = p;16

until V Ri
Tn

is ∅ ;17

Boolean DetermineTotal(p,WRi
T )18

if delay(LRi
T , p)-delay(LRi

T , WRi
T )< τworst19

then
return OK;20

return Not OK;21
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Algorithm 1 shows a detailed description of Bi-interval based on the nearest neigh-
bor problem [15], which is known to be an NP-complete problem. Algorithm 1 is in-
voked when a transaction is committed and aborted requests are accumulated to be
scheduled. In order to solve Equation 2, we consider a greedy approach, where at each
stage of the algorithm, the link with the shortest delay is taken.

In order to visit k requesting nodes, the path from a starting node to visit k nodes in
V Ri

Tk
is selected. The set of LRi

T is initiated, and the last remaining element is returned
as a result. If the nearest node is found and it is a request for a read operation, the
algorithm checks if a read interval has been started. If a read interval was previously
started, the DetermineTotal function is called. If it returns OK, the read requesting node
is joined to the previous read interval. Otherwise, a new read interval is created. Note
that if a new read interval is started, it means that a write interval is confirmed because
the DetermineTotal function is called only if a read requesting node is found as the
nearest node right after a write requesting node is found in a queue.

The FindNearestNode function finds the smallest delay from node vT to a node
in the set of V Ri

Tk
. Whenever the FindNearestNode function returns a requesting node

p for a reading transaction after finding a requesting node q for a writing transaction,
Algorithm 1 has to check whether a write interval is created (i.e., LRi

T ← LRi

T ∪W
Ri

T )
by comparing the delay corresponding to the total execution times and communication
delay. The time and message complexity of Algorithm 1 is O(n2).

4.2 Competitive Ratio Analysis

We focus on the analysis of execution and traveling makespan competitive ratios.

Theorem 1. Bi-interval’s execution makespan competitive ratio is 1+ Ir

n−k+1 .

Proof. The optimal off-line algorithm concurrently executes all reading transactions.
So, Bi-interval’s optimal execution makespan (makespanτi (OPT)) is

∑n−k+1
m=1 τm.

CRτBiinterval ≤
τω · Ir +

∑n−k+1
m=1 τm∑n−k+1

m=1 τm
≈ Ir + n− k + 1

n− k + 1

Theorem 2. Bi-interval’s traveling makespan competitive ratio is log(n+ Ir− k− 1).

Proof. Bi-interval follows the nearest neighbor path to visit each node in the scheduling
list. We define the stretch of a transactional scheduler as the maximum ratio of the mov-

ing time to the communication delay—i.e., Stretchη(vT , V Ri

Tn−1
) = max

ηG(vT ,V
Ri

Tn−1
)

dG(vT ,V
Ri

Tn−1
)

≤ 1
2 log(n− 1) + 1

2 from [19]. Hence, CRdBiinterval ≤ log(n+ Ir − k − 1).

Theorem 3. The total worst-case competitive ratio CRWorst
Biinterval of Bi-interval for

multiple objects is O(log(n)).

Proof. In the worst-case, Ir = k. This means that there are no consecutive read inter-
vals. Thus, makespanOPT and makespanBiinterval satisfy the following, respectively:

makespanOPT =
n−k+1∑
m=1

τm + min dG(vT , V Ri

Tn−k+1
) (3)
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makespanBiinterval =
n−1∑
m=1

τm + log(n− 1) max dG(vT , V Ri

Tn−1
) (4)

Hence, CRWorst
Biinterval ≤ log(n− 1).

We now focus on the case Ir < k.

Theorem 4. When Ir < k, Bi-interval improves the traveling makespan (makespand
i (Biinterval))

as much as O(| log(1− (k−Ir

n−1 )|).

Proof.

max
ηG(vT , V Ri

Tn+Ir−k−1
)

dG(vT , V Ri

Tn−1
)

= max
(ηG(vT , V Ri

Tn−1
)

dG(vT , V Ri

Tn−1
)

+
ε

dG(vT , VTn−1)

)
(5)

≤ 1
2

log(n− k + Ir − 1) +
1
2

When Ir < k, a read interval has at least two reading transactions. We are interested in
the difference between ηG(vT , V Ri

Tn−1
) and ηG(vT , V Ri

Tn+Ir−k−1
). Thus, we define ε as

the difference between two ηG values.

max
ε

dG(vT , VTn−1)
≤ 1

2
log(

n− k + Ir − 1
n− 1

) (6)

In (6), due to Ir < k, n−k+Ir−1
n−1 < 1. Bi-interval is invoked after conflicts occur, so

n 6= k. Hence, ε is a negative value, improving the traveling makespan.

The average-case analysis (or, probabilistic analysis) is largely a way to avoid some
of the pessimistic predictions of complexity theory. Bi-interval improves the competi-
tive ratio when Ir < k. This improvement depends on the size of Ir—i.e., how many
reading transactions are consecutively arranged. We are interested in the size of Ir when
there are k reading transactions. We analyze the expected size of Ir using probabilistic
analysis. We assume that k reading transactions are not consecutively arranged (i.e.,
k ≥ 2) when n requests are arranged according to the nearest neighbor algorithm. We
define a probability of actions taken for a given distance and execution time. The action
indicates the satisfaction for the inequality of Equation 1.

Theorem 5. The expected number of read intervals E(Ir) of Bi-interval is log(k).

Proof. The distribution used in the proof of Theorem 5 is an independent uniform dis-
tribution. p denotes the probability for k reading transactions to be consecutively ar-
ranged.

E(Ir) =
∫ 1

p=0

k∑
Ir=1

(
k

Ir

)
· pk(1− p)k−Irdp

=
k∑

Ir=1

( k!
Ir! · (k − Ir)!

∫ 1

p=0

pk(1− p)k−Irdp
)

≈
k∑

Ir=1

k!
Ir!
· k!

(2k − Ir + 1)!
≈ log(k) (7)
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We derive Equation 7 using the beta integral.

Theorem 6. Bi-interval ’s total average-case competitive ratio (CRAverageBiinterval) isΘ(log(n−
k)).

Proof. We define CRmBiinterval as the competitive ratio of node m. CRAverageBiinterval is
defined as the sum of CRmBiinterval of n+ E(Ir)− k + 1 nodes.

CRAverageBiinterval ≤
n+E(Ir)−k+1∑

m=1

CRmBiinterval

≤ log(n+ E(Ir)− k + 1) ≈ log(n− k)

Since E(Ir) is smaller than k, CRAverageBiinterval = Θ(log(n− k)).

5 Implementation and Experimental Evaluation

We implemented Bi-interval in an experimental distributed TM implementation, which
was built using the RSTM package [5]. Figure 3 shows the architecture of our dis-
tributed TM implementation. As a C++ TM library, RSTM provides a template that
returns a transaction-enabled wrapper object. We implemented a distributed database
repository that is connected to the template for handling transactional objects. The ar-
chitecture consists of two parts: local TM and remote TM. Algorithm 2 gives detailed
descriptions of these parts. When an object is needed, the local TM is invoked in the
requesting node and the remote TM is invoked in the object holding node.

Fig. 3. Architecture of Experimental Distributed TM System

Experimental Evaluation. The purpose of our experimental evaluation is to mea-
sure the transactional throughput when the Bi-interval scheduler is used to augment
a distributed cache-coherence-based TM. We implemented the LAC and Relay cache
coherence protocols, which can be augmented with Bi-interval. We also included the
classical RPC and distributed shared memory (DSM-L) models, both lock-based, in our
experiments, as baselines. RPC and DSM-L are based on a client-server architecture in
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Algorithm 2: Algorithm of Local and Remote TM

Local TM1
if a requested object is in the local memory2
and it is validated then

return the object;3

else4
send a request message;5

if the response is not an abort message then6
wait for the requested object during a7
timer t

if t is expired then8
resend a request message;9

Remote TM10
if a requested object is validated then11

invalidate and send the object12

else13
a conflict is detected.14
invoke a CM.15
enqueue the aborted request;16

if a transaction is committed then17
invoke the scheduler algorithm;18

which a server has to hold shared objects, and clients request the object from the server.
In contrast, in distributed TM, a shared object is distributed for each node. The LAC
and Relay protocols include a procedure to find a node that holds or will hold an ob-
ject. However, for fair comparison, we assume that all nodes know the location of the
shared objects. Each node runs varying number of transactions, which write to and/or
read from the objects. We used an 18-node testbed in the experimental study.

Two types of transactions were used in the experiments: insertion for a writing trans-
action and lookup for a reading transaction in a red-black tree. We measured the trans-
actional throughput—i.e., the number of completed (committed) transactions per sec-
ond under an increasing number of requesting nodes, for the different schemes. Since
the throughput varies depending on the nodes’ locations, we measured the total time to
complete all transactions for each requesting node and computed the average number of
committed transactions per second. We also varied the number of writing transactions.
In the plots, 100% means that all requesting nodes are involved in writing transactions.

Figure 4 shows the transactional throughput under 6, 10, 14, and 18 nodes request-
ing an object. (In all the figures, we abbreviate the Greedy CM as GCM.) We observe
that Bi-interval-LAC and GCM-LAC, and Bi-interval-Relay and GCM-Relay exhibit
the same behavior under no conflicts. However, once a conflict occurs, an aborted trans-
action is not aborted again in Bi-interval-LAC (Relay). In GCM-LAC and GCM-Relay,
the requesting nodes that have been aborted request an object again, so that increases
the communication delay. Unless a request arrives at the object holding node right after
a transaction is committed, the up-to-date copy of the object has to wait until the request
arrives. However, the object holding node with Bi-interval immediately sends the copy
to the requesting node right after it commits. The purpose of the Relay protocol is to
reduce the number of aborts, so GCM-Relay has better performance than GCM-LAC.
If no conflict occurs, Relay performs better than LAC. However, when a conflict oc-
curs, Bi-interval-LAC performs better than Bi-interval-Relay due to the advantage of
the parallelism of the reading transactions involved in the aborts. Bi-interval-LAC (0%)
boosts the performance to the maximum possible transactional throughput.

It is interesting to observe the throughput difference between Bi-interval-LAC (100%)
and Bi-interval-Relay (100%) shown in Figures 4(c) and 4(f), respectively. The cause
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(a) Bi-interval-LAC (0%) (b) Bi-interval-LAC (50%) (c) Bi-interval-LAC (100%)

(d) Bi-interval-Relay (0%) (e) Bi-interval-Relay (50%) (f) Bi-interval-Relay (100%)

Fig. 4. Transactional Throughput Under Increasing Requesting Nodes/Single Object

of the throughput deterioration of Bi-interval-Relay (100%) is the high object moving
delay. Even though transactions are aborted less in Relay, the copy of an object moves
along a fixed spanning tree, which may not be the shortest path. Bi-interval-LAC, which
has a relatively higher number of aborts, achieves the nearest node for aborted transac-
tions.

In DSM-L and RPC, if an object is invalidated, they block new requests to pro-
tect the previous request. Specifically, Bi-interval-LAC and Relay (0%) simultaneously
send all requesting nodes involved in aborted transactions to the object. Thus, they sig-
nificantly outperform the other schemes.

We now turn our attention to throughput when a transaction uses multiple objects,
and performs increasing number of object operations, causing longer transaction ex-
ecution times. We measured throughput under 10 and 20 objects and 1000 and 100
operations. The objects are not related to each other, but the transaction has to use them
together, so a transaction’s execution time is longer. Figure 5 shows the results. GCM-
LAC and GCM-Relay suffer from large number of aborts due to increasing number of
objects and operations. They show greater throughput degradation from the number of
aborts than that under shorter transactions. We observe a maximum improvement of
30% for Bi-interval under 100% updates.

Due to space restrictions, additional results are omitted; they can be found in [14].



14 Junwhan Kim and Binoy Ravindran

(a) Bi-interval-LAC (0%) (b) Bi-interval-LAC (50%) (c) Bi-interval-LAC (100%)

(d) Bi-interval-Relay (0%) (e) Bi-interval-Relay (50%) (f) Bi-interval-Relay (100%)

Fig. 5. Transactional Throughput Under Multiple Objects and Increasing Operations

6 Conclusions

Our work shows that the idea of grouping concurrent requests into read and write in-
tervals to exploit concurrency of reading transactions — originally developed in BI-
MODAL for multiprocessor TM — can also be successfully exploited for distributed
TM. Doing so poses a fundamental trade-off, however, one between object moving
times and concurrency of reading transactions. Bi-interval’s design shows how this
trade-off can be exploited towards optimizing transactional throughput.

Several directions for further work exist. First, we do not consider link or node fail-
ures. Second, Bi-interval does not support nested transactions. Additionally, we assume
that transactional objects are unlinked. If objects are part of a linked structure (e.g.,
graph), scalable cache-coherence protocols and schedulers must be designed.
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