
Batched Transactions for RESTful Web Services

Sebastian Kochman, Pawe l T. Wojciechowski, and Mi losz Kmieciak

Poznań University of Technology, Poland
Pawel.T.Wojciechowski@cs.put.poznan.pl

Abstract. In this paper, we propose a new transaction processing sys-
tem for RESTful Web services; we describe a system architecture and
algorithms. Contrary to other approaches, Web services do not require
any changes to be used with our system. The system is transparent to
non-transactional clients. We achieve that by introducing an overlay net-
work of mediators and proxy servers, and restricting transactions to be a
batched set of REST/HTTP operations (or requests) on Web resources
addressed by URIs. To be able to use existing Web hosts that normally do
not support versioning of Web resources, transaction resources are cur-
rently modified in-place, with a simple compensation mechanism. Con-
current execution of transactions guarantees isolation.

1 Introduction

The REpresentational State Transfer (REST) [5] is an architecture style for Web-
based applications. It has gained, and is still gaining, enormous popularity due to
its simplicity, scalability and, interoperability – thanks to wide acceptance of the
Hypertext Transfer Protocol (HTTP)1. REST offers simplicity at the expense
of lacking some standards well supported in other styles. For example, SOAP-
based Web Services have a WS-AtomicTransaction [12] standard for transaction
processing, while REST currently lacks a similar standard (see also [13]).

Transaction processing is a broad and complex issue. We may consider trans-
actions on different levels of abstraction and supporting different properties.
Transactions usually model operations that have to be executed atomically, i.e.,
they should either be executed completely and successfully or not at all. Alterna-
tive approaches are, e.g. Sagas [16] that do not guarantee atomicity. Transactions
are a very useful abstraction of the real world business operations. That’s why
transaction processing could be a valuable extension to REST.

Although there are many interesting proposals of introducing transactions
to REST, no one has gained wide acceptance among the community. In most
cases such systems or patterns arguably break some of the REST style principles.
For example, the client-server communication is constrained by no client con-
text being stored on the server between requests. This statelessness constraint
– a key requirement in relation to RESTful Web services – is often a subject of
discussions about interpretation. Developers of systems (including some trans-
action systems described later) often worked around the issue of statelessness
constraint by giving the session state a resource identifier on the server side. An

1 In this paper, we focus on REST over HTTP and URI.

interpretation proposed in [3] disallows it and claims that such a design cannot
be called RESTful. But it might be REST with some exceptions, and this ”with
exceptions” approach is probably right for most enterprise architectures.

In this paper, we introduce Atomic REST – a new, lightweight transaction
system. We restrict transactions to be a batched set of REST/HTTP opera-
tions (or requests) on Web resources addressed by URIs. While other proposals
of transactions in REST are mostly software design patterns or libraries to be
used by the client/server implementers, our approach is different: most of the
transaction processing work is done by separate services – proxies and mediators
– communicating using an overlay network. In particular, Web services do not
require any changes to be used with our system. Moreover, the system is trans-
parent to the clients that do not require transactions. These features enable easy
integration of Atomic REST with existing RESTful Web services.

To be able to use existing Web hosts that usually do not support versioning
of Web resources, transaction resources are currently modified in-place, with a
(best-effort) compensation mechanism that is based on the symmetry of HTTP
operations. Concurrent execution of transactions guarantees isolation. In the
paper, we describe the Atomic REST’s design and algorithms. To demonstrate
the main concept, we develop a prototype implementation of Atomic REST;
more information is available on the project page [7].

The paper has the following structure. First, we discuss related work. Then,
the main idea of our transaction system is presented in Section 3. In Section 4
we describe the algorithms that we designed for Atomic REST, followed by
the discussion of their properties and proofs of isolation in Section 5. Next, we
briefly describe an example validation test of our experimental implementation
in Section 6. Finally, we conclude.

2 Related Work

Pessimistic Transactions One of the first proposals of atomic transactions in
REST is described by JBoss [10]. It is an extension of JAX RS – a popular Java
API for RESTful Web services, with atomic transactions based on exclusive locks
represented as resources on the server side. Contrary to their approach, we have
adopted a different architecture, introducing separate services (mediators) that
are responsible for the execution of transactions, and using server proxies that
allow the services to remain unaware of transaction processing.

A similar approach to [10] is represented by RETRO [8] – a transaction model
that defines many fine-grained resources for transaction processing, with a choice
of exclusive and shared locks. We are not aware of any RETRO implementation
announced yet. Some authors [15] pointed out drawbacks of this model: clutter-
ing the business representations with transactional entities and the complexity
that makes programming cumbersome.

Optimistic Transactions Optimistic concurrency control [2] fits REST better
than pessimistic transactions because it increases availability of a Web service
by decreasing resource blocking. Below we characterize example approaches.

2

The most common solution for providing atomic transactions to REST is
using the POST method to execute a batched set of operations. The concurrency
control is optimistic since the data is cached by a client, and the consistency of
the cache is checked during commit-time. The main advantage of the overloaded
POST-based solution is its simplicity. On the other hand it is often criticized
because it does not respect the semantics of uniform interface methods [5]: POST
should create a resource, not execute any operations. Moreover, the mechanism
is quite limited, e.g. contrary to Atomic REST, it does not allow transactions
spanning many services.

Overloading the POST method is used, among other systems, in the cloud
computing environments, such as Microsoft Windows Azure [6]. It offers struc-
tured storage in the form of tables with a REST-compliant API, enabling to
perform a transaction across entities stored within the same table and partition.
An application can atomically perform multiple Create/Update/Delete opera-
tions across multiple entities in a single batch request to the storage system, as
long as the entities in the batch operation have the same partition key value
and are in the same table [9]. Thus, the high scalability and accessibility of the
service is achieved by introducing the limitation on the set of resources that may
be included in one transaction.

A simple design pattern that provides transactions in REST is described in
[14]. A new transaction is created by sending a POST to a factory resource.
Once the transaction is created successfully, we can access it as a “gateway” to
the main service, sending all possible HTTP requests to a variety of resources.
The pattern is simple and seems to be effective, but is it RESTful? In the same
book, the authors emphasize the difference between application state and re-
source state. The user transaction is, in fact, the application state, therefore
it should not be maintained by the server. Exposing it as resources does not
change anything. In fact, the authors admit that their proposal is not “the offi-
cial RESTful or resource-oriented way to handle transactions” – it is just “the
best one they could think up”. On the other hand, even if the pattern breaks the
statelessness constraint of REST, it is a clean concept that can work successfully
for a variety of services.

Compensation An alternative (or complementary) approach to atomic trans-
actions is the transaction compensation mechanism, which can be well suited
for some applications. Operations are executed normally, and in case of a fail-
ure, the compensation procedure is called in order to revert the transaction’s
changes. Let’s consider an example of a holiday trip. One would like to reserve
an airline ticket, a hotel room and a bus trip to a national park. One wants
only all or nothing. How can we provide such transaction semantics over sev-
eral autonomous systems? This problem is solved frequently with compensation,
even though it does not guarantee atomicity. However, it may provide an accept-
able contract: a high probability of success and acceptable side effects in case of
failure (e.g. a cancellation fee at one of the services).

A model of compensating RESTful transactions, called jfdi, has been made
available by JBoss [11]. To our best knowledge, the model has not been imple-

3

mented yet. In terms of the interface, it is similar to JBoss’s lock-based trans-
actions that we described earlier. Although it does not provide any locks, the
compensation logic is held on the server side – the transaction objects and com-
pensation controllers (called compensators) are exposed as resources. It is very
comfortable for the client that does not need to know how to compensate each
operation on that particular service. However, similarly to pessimistic transac-
tions, this design decision invalidates the statelessness constraint.

A popular compensation pattern known as Saga (described, e.g. in [16]) dif-
fers from jfdi in many respects. Saga is not intended to be a product, it is just
a software pattern. In Saga, the whole compensation logic is held on the client’s
side. An advantage is that services do not have to be prepared anyhow. How-
ever, a given client is specific for a certain case, and so it can be hard to extend
the client’s code to work with other services. On the other hand, jfdi is more
service-centric; it can only support services that use jfdi, but clients can be much
simpler, generic and, more reusable.

This section shows that the existing transaction processing patterns are either
too limited or do not produce generic, reusable clients. On the other hand,
service-centric products often break the REST statelessness constraint. When
designing our system, we have used the best ideas from the work described
above but at the same time we tried to develop a fresh approach. In the following
section we describe our system.

3 Basic Definitions

Proxy + Server A Proxy + Server B

Mediator

1,2
hhQQQQQQQQQQQQQ

1,2
66mmmmmmmmmmmmm

Client 1

1

2:lllllllllllll

lllllllllllll
Client 2

2

KS

Client 3

3

SS

Fig. 1. An example interaction pattern of Atomic REST (single mediator).

We explain the main idea of our system using two examples of interaction
patterns in Figures 1 and 2. We can identify four components (ignore the arrows
for a while):

– Server – provides a user-defined RESTful Web service, executing client re-
quests and returning results, without knowledge of Atomic REST;

– Client – a user-defined client, with or without knowledge of Atomic REST;
– Mediator (or Transaction Manager) – a Web service managing transaction

execution on behalf of the client;

4

Proxy + Server A Proxy + Server B Proxy + Server C4

||
Mediator X

1

OO

oo ///o/o/o/o/o/o Mediator Y

2,3

OO

2,3,4

55jjjjjjjjjjjjjjj

Client 1

1

KS
2

08jjjjjjjjjjjjjjj

jjjjjjjjjjjjjjj
Client 2

3

KS

Client 3

4

SS

Fig. 2. An example interaction pattern of Atomic REST (many mediators).

– Proxy – a server’s façade, intercepting messages addressed to the server and
handling Atomic REST-specific requests; the proxy enables a RESTful Web
service to support transactions without any changes in its code.

A distributed transaction in our system (or a transaction, in short) is a batch
of REST operations (or requests) to be applied to different resources maintained
by servers. Thus, from a client view-point a transactional request does not dif-
fer much from an ordinary HTTP request. This means that clients are able to
cache transaction responses, which fulfills one of the REST architectural con-
straints, i.e. cacheable responses. Execution of concurrent transactions satisfies
the isolation property and a weak form of atomicity, described in Section 5.

Batching of transaction operations restricts transactions to be rather short
and non-interactive (similarly to, e.g. Sinfonia [1]). Hence the time when re-
sources are blocked by a client is reduced to a minimum. This means that our
system could be deployed on the Web and platforms, such as those provided
for cloud computing, in which dependencies between network nodes should be
avoided and the request processing time has to be short.

A client can submit several requests to be executed by many servers, as a
single transaction. For example, in Figure 1 there is a single mediator and two
clients who submit their transactions 1 and 2 to the mediator for execution. The
transactions request some resources on servers A and B. The mediator executes
transactions sequentially, first 1, then 2. Thus, isolation is satisfied. At the same
time, client 3 submits a non-transactional request to server B that does not
conflict with the transactions and is handled by server B normally.

In Figure 2, there is an example with many mediators. Introducing many
mediators supports privacy and load balancing. Each server gets transactions
only from its trusted (single) mediator, e.g. server A trusts only mediator X.
Each mediator can handle many servers. Mediators could be replicated for fault-
tolerance if required. Client 1 executes transactions 1 and 2 using, respectively
mediator X and Y , while client 2 uses only Y . At the same time client 3 submits
a non-transactional request to server C. Since the request conflicts with the
transactions, it is forwarded to B’s mediator Y as a transaction containing only
a single request. At the end, all results will be returned to the clients. In order
to agree upon the order of transaction execution, mediators communicate using
a coordination protocol described below.

5

4 The Atomic REST Algorithm

Below we describe the algorithms that are executed by mediators, proxies and
clients. For clarity, we omitted some details. The symbols used in pseudocode
are as follows:

P a proxy or an URI of the proxy/server, depending on the context
tk a transaction’s unique identifier
op a tk’s single HTTP operation (or request) to be executed
resource a resource (defined by an URI) on which to execute the operation
〈xml〉 an operation (or request) payload
Mtk a set of mediators coordinating the execution of a transaction ttk
mtk

a leader mediator of a transaction tk
Otk a set of tk’s HTTP operations (or requests), of the form

〈op P/resource 〈xml〉〉
O
m
tk

a set of tk’s HTTP operations (or requests), to be submitted for
execution by mediator m

R
m
tk

a set of tk’s resources whose servers trust mediator m (we omit m
when the mediator is known from the context)

RP a set of resources to be marked as “transactional” at proxy P
r a fine-grained resource controlled by the Read/Write or Intention-

-to-{Read|Write} locks
res a result of operation (or request) execution

4.1 The Single Mediator’s algorithm

Algorithm 1 defines the mediator’s behaviour, assuming only one mediator in
the system (this corresponds to our current implementation of Atomic REST).
Later, we extend this algorithm to support many mediators.

When a mediator mtk
receives a transaction tk from a client, it first extracts

all tk’s resources Rtk whose servers trust this mediator (lines 1-5). Then, it
tries to grab fine-grained locks on these resources atomically (lines 23-26). We
describe the locking mechanism used in Atomic REST below. If succeeded, the
mediator requests all proxies required to execute transaction tk, to set all their
resources required by tk into the “transactional” mode (lines 27-30). Otherwise,
it enqueues tk into mtk

’s First-In-First-Out queue of transactions Q (lines 32-33).
Next, mediator mtk

synchronously sends the transaction tk’s HTTP requests
(or operations) 〈opi Pi/resourcei 〈xml〉i〉 to a corresponding proxy/server Pi for
execution, and collects the results (lines 7-8).

If some operation failed, e.g. due to the “503 Service Unavailable” error, all
tk’s operations executed so far must be withdrawn. Since, our system is intended
to be used with existing RESTful Web services that normally do not support
multiversioning of resources, all transaction operations modify resources in-place.
Thus, the only way to withdraw the operations that have already been executed
by a transaction is to compensate them (lines 9-19); below we explain it.

Finally, the locks on resources are released, non-conflicting transactions are
dequeued (line 20) and the composite result is returned to the client (line 21).

6

Algorithm 1 A single mediator mtk
’s code.

1: receive 〈PUT mtk/transaction/tk 〈{mtk} Otk 〉〉: // a transaction from a client
2: return execute-transaction(tk,mtk , Otk)
3:
4: function execute-transaction(tk,mtk , Otk):
5: Rtk ← resources-of(Otk ,mtk) // get resources whose servers trust this mediator
6: lock-resources(tk,mtk , Otk , Rtk)
7: for all 〈opi Pi/resourcei 〈xml〉i〉 ∈ Otk , where i = 1..n and n = |Otk | do
8: resi ← 〈opi Pi/resourcei 〈xml〉i〉
9: if resi = error then

10: // opi failed - depending on the error, compensate opi or not
11: for all j = 1..i− 1 do
12: resj ← compensate 〈opj Pj/resourcej 〈xml〉j〉,
13: where resj ∈ {compensation-ok, compensation-failed}
14: end for
15: for all j = i + 1..n do
16: resj ← compensation-ok // since opj (j > i) not executed yet
17: end for
18: end if
19: end for
20: unlock-resources(Rtk)
21: return {(1, res1), ..., (n, resn)}
22:
23: function lock-resources(tk,mtk , Otk , Rtk):
24: // try to lock tk’s resources Rtk ; for clarity of pseudocode, semaphores are used
25: // but our implementation uses Read/Write and Intention-to-{Read|Write} locks
26: if atomically ∀rj ∈ Rtk semaphorej .P(rj) succeeded then
27: for all RPi ∈ Rtk , where i = 1..w do
28: // set “transactional” mode for tk’s resources RPi at proxy Pi

29: 〈PUT Pi/atomicrest/RPi 1〉
30: end for
31: else
32: Q.enqueue(tk,mtk , Otk) // enqueque tk and wait till tk dequeued
33: lock-resources(tk,mtk , Otk , Rtk)
34: end if
35:
36: function unlock-resources(Rtk):
37: for all RPi ∈ Rtk , where i = 1..w do
38: // unset “transactional” mode for tk’s resources RPi at proxy Pi

39: 〈PUT Pi/atomicrest/RPi 0〉
40: end for
41: for all rj ∈ Rtk do
42: semaphorej .V(rj) // unlock tk’s resource rj
43: end for
44: dequeue-trans() // dequeue non-conflicting transactions in a queue Q
45:
46: function dequeue-trans(), where Q = (t1,mt1 , Ot1); ... ; (tn,mtn , Otn), n = |Q|:
47: for all i = 1..l (l ≤ n) do
48: Q.dequeue(ti,mti , Oti), where
49: ∀a, b ∈ {1, ..., l} resources-of(Ota ,mta) ∩ resources-of(Otb ,mtb) = ∅
50: end for

7

Algorithm 2 Proxy Pi’s code.

1: receive 〈op Pi/resource 〈xml〉〉, where op ∈ {POST, PUT, GET, DELETE}:
2: if transactional-mode(resource) = 0 or (optionally) op = GET then
3: // resource not in a “transactional” mode or uncommitted read allowed
4: res← 〈op Pi/resource 〈xml〉〉 // execute op by a server normally
5: else
6: // some transaction locked resource, pass op as a transaction to Pi’s mediator
7: (1, res)← 〈PUT m/transaction/ 〈{m} {〈op Pi/resource 〈xml〉〉}〉〉
8: end if
9: return res

Resource locking To simplify the pseudocode, we have used fine-grained
semaphores to block access to resources. However, in our implementation, we
use multigranularity locks [2] of four types: Read, Intention-to-Read, Write and
Intention-to-Write. The former two are used for GET and HEAD operations, while
the latter two for PUT, POST, and DELETE.

The Intention-to-{Read|Write} locks are acquired on “ancestor” resources of
the locked resources. For instance, consider a transaction containing an operation
GET http://www.service.org/books/medicine?author=foo. In this case, the
Intention-to-Read lock should be acquired both on http://www.service.org/

and http://www.service.org/books/ before the Read lock will be acquired on
http://www.service.org/books/medicine.

Since all locks of a subtransaction are taken by each mediator locally as a
single atomic operation, no deadlock can occur due to the locking order.

Compensation To compensate an operation on some resource means to execute
a complementary operation on this resource. Transaction compensation could be
provided by a user or done automatically whenever possible. For the latter, the
following table presents REST/HTTP and complementary operations that are
used by Atomic REST for compensation (details omitted due to lack of space):

Request Compensating request

GET no compensation needed

PUT (modification) PUT

PUT (creation) DELETE

POST (creation) DELETE

DELETE PUT

4.2 The Proxy’s Algorithm

The Pi proxy (see Algorithm 2) simply receives HTTP requests, executes
them, and returns results. If any resource required by an operation op is in a
“transactional” mode, i.e. there exists some transaction that can access this re-
source exclusively and op 6= GET, the operation cannot be directly executed by
the server at Pi. In such a case, the operation is forwarded to Pi’s trusted medi-
ator m that will execute it as a single-operation transaction (line 7). Otherwise,

8

Algorithm 3 Client’s transactional code.

1: // get a set Mtk of all mediators required to execute Otk as a transaction
2: Mtk ← ∅
3: for all Pi ∈ servers-of(Otk) do
4: m ← 〈GET Pi/atomicrest/mediator〉
5: Mtk ←Mtk ∪ {m}
6: end for
7: // get the transaction’s unique ID tk and use any mediator m ∈Mtk to execute tk
8: tk ← 〈POST m/transaction〉, where m ∈Mtk

9: result← 〈PUT m/transaction/tk 〈Mtk Otk 〉〉

Algorithm 4 Mediator mi’s code (many mediators possible).

1: receive 〈PUT mi/transaction/tk 〈Mtk Otk 〉〉:
2: // mtk ← mi, send transaction tk to all mediators using a total order broadcast
3: atomic-bcast(tk,Mtk , Otk) to all mediators in Mtk

4: // collect transaction tk’s partial results from all mediators and return to a client
5: while ∃m ∈Mtk resulttk [m] = ∅ do
6: ()
7: end while
8: return resulttk
9:

10: receive atomic-bcast(tk,Mtk , Otk) from tk’s leader mediator mtk :
11: // get transaction’s part that can be executed by this mediator
12: O

mi
tk
← get-my-part(mi, Otk)

13: res← execute-transaction(tk,mi, O
mi
tk

)
14: send-result(tk, res) to mtk

15:
16: receive send-result(tk, res) from m // executed if mi is a leader (i.e. mi = mtk)
17: resulttk [m]← res

the operation can be executed by the server as a normal HTTP request (line 4).
For efficiency, we allow uncommitted reads by non-transactional clients. If this
behaviour is not acceptable, the “or op = GET” must be removed (line 2).

4.3 The Client’s Algorithm

To execute a transaction (see Algorithm 3), the client first obtains a list of
mediators (lines 2-6) and then chooses one of them to get a transaction’s unique
ID and to pass the transaction to it for execution (lines 9-10).

4.4 The Many Mediators’ Algorithm

Algorithm 4 extends Algorithm 1 to support many mediators. Upon delivery
of a transaction tk from a client a mediator becomes a leader and broadcasts tk
to all mediators that are required to execute it (including itself). For this, a total
order broadcast (also known as atomic broadcast) [4] is used. After getting tk,

9

each mediator extracts the part of tk that refers to resources accessible by the
mediator, and executes it (lines 10-14); we call each such a part a subtransaction.
The leader collects results and returns them to the client (lines 5-8, 16-17).

5 Properties

Below we discuss the isolation and atomicity properties that are guaranteed by
the Atomic REST algorithm (their definitions follow the ACID properties [2]).

5.1 Isolation

Below we prove that our algorithm satisfies isolation. In case of fatal failures
(defined in Section 5.2), the property can be guaranteed up to the fatal failure.

Lemma 1. All subtransactions executed by each mediator are isolated.

Proof. Each subtransaction is described by a set of resources. Since locks on the
resources are taken atomically and released after a subtransaction is finished,
no subtransactions sharing resources can be executed concurrently. This means
that they are executed sequentially, so they are isolated. Subtransactions that do
not share resources may be executed concurrently but they are isolated trivially.
From this we get that all subtransactions are isolated. �

Theorem 1. The Atomic REST algorithm guarantees transaction isolation.

Proof. Proof by contradiction. Let us assume that two transactions t and t′ are
not isolated. From Lemma 1, we get that for every mediator mi (mi ∈ M) all
subtransactions of t and t′ executed by mi (if any) are isolated. Thus, if t and t′

are not isolated, then there must exist two mediators m1 and m2, such that m1

first executes a subtransaction subtm1
of transaction t, then a subtransaction

subt′m1
of transaction t′, while m2 executes its subtransactions of transactions t′

and t in the opposite order. But this is not possible since by atomic broadcast
semantics, all mediators receive transactions in the same global order. Thus, ifm1

executes subt
m1
t followed by subt

m1

t′ , then m2 must execute subt
m2
t followed by

subt
m2

t′ . Moreover, non-transactional requests cannot modify resources processed
by a transaction since they are guarded by a “transactional” mode that is kept
during transaction execution. Hence by Lemma 1, it is possible to serialize all
transactions, which satisfies isolation. �

5.2 Atomicity

If there are no errors, transactions are executed atomically. If there are errors,
transaction atomicity is currently provided by the compensation mechanism.
Since automatic compensation of transaction operations is not always possible
(either due to HTTP-bound issues or application semantics), our system cannot
guarantee atomicity in all cases. This is acceptable since Atomic REST is no

10

Fig. 3. Overhead induced by Atomic REST.

more tolerant to failures than an average Web service that can fail at any time.
Therefore, in case of some failures, some transaction operations may or may not
have been executed or compensated; we call such failures fatal. Thus, the client
should always check the results returned by the system, and in case of some
error messages, execute a suitable action. For example, the client could repeat
transaction operations. For instance, the PUT, DELETE and GET methods are
idempotent methods, and so they can be repeated many times.

Implementing stronger semantics of atomicity would require significant
changes to the code of Web services, such as resource multiversioning and the
2PC (or 3PC) protocol for the mediator-server communication. Multiversioning
would allow transaction operations to be executed on shadow copies of resources,
made public on transaction commit and rejected on transaction abort. However,
we think that supporting existing Web services by Atomic REST compensates
the drawback of a weaker atomicity semantics. Moreover, we intend our transac-
tions to be a mechanism to increase expressiveness in Web programming, rather
than for implementing fault-tolerant Web services.

6 Validation

We define overhead value per an individual REST/HTTP request (or operation),
imposed by our transaction system, as α = ∆−∆min

n (in seconds), where n is the
number of requests executed by a transaction, ∆ is the elapsed time between
sending the first transaction request and receiving response to the last request,
and ∆min is the lower bound of transaction’s total processing time, computed
as ∆min = n ∗ δ (in seconds), where δ is the time of processing every request by
the server (in our tests we choose it to be a constant value of the sleeping time
before a server can accept another client request).

In Figure 3 we show the result of an example validation test1. We can see
that while n is increasing the overhead time per request asymptotically reaches

1 Configuration: Intel Xeon QuadCore X3230 @2.66GHz with 4MB cache and 4GB
RAM. Operating system: openSUSE 10.3 with Sun’s JRE 1.6.0

11

a constant value. Thus, the total overhead time per transaction is linearly de-
pendant on the number n of transaction requests. We have used a least squares
method to compute the linear regression slope value, and obtained that the
overhead of Atomic REST is between 3.4 and 4 times larger than the overhead
of non-transactional client-server processing of the same REST/HTTP requests
(denoted as non-Atomic REST in Figure 3), when compared to a purely local
processing of these requests by the Web server.

7 Conclusion

The algorithms that we designed in this paper enabled us to develop a distributed
lightweight transaction system for REST that enjoys clean design, conformance
to REST constraints, support of existing Web services and transparency for
non-transactional clients. Moreover, validation results of our experimental single-
mediator implementation show that the overhead is acceptable.

Acknowledgments This work has been partially supported by the Polish Ministry

of Science and Higher Education within the European Regional Development Fund,

Grant No. POIG.01.03.01-00-008/08.

References

1. M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. Sinfonia: A
new paradigm for building scalable distributed systems. In Proc. SOSP’07, 2007.

2. P. A. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan
Kaufmann, 2009.

3. B. Carlyle. The REST statelessness constraint. http://soundadvice.id.au/blog/
2009/06/13/#stateless, June 2009.

4. X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421, 2004.

5. R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

6. J. Haridas, N. Nilakantan, and B. Calder. Windows Azure Table. Microsoft, 2009.
7. IT-SOA. Atomic REST. http://www.it-soa.eu/atomicrest, 2011.
8. A. Marinos, A. Razavi, S. Moschoyiannis, and P. Krause. RETRO: A consistent

and recoverable RESTful transaction model. In Proc. ICWS ’09, July 2009.
9. Microsoft. Windows Azure - Team Blog. http://blogs.msdn.com/windowsazure.

10. M. Musgrove. http://community.jboss.org/wiki/Transactionalsupportfor

JAXRSbasedapplications, Feb. 2009.
11. M. Musgrove. Compensating RESTful Transactions. http://community.jboss.

org/wiki/CompensatingRESTfulTransactions, June 2009.
12. OASIS. Web Services Atomic Transaction, Version 1.2, Feb. 2009.
13. C. Pautasso, O. Zimmermann, and F. Leymann. RESTful Web Services vs. ”Big”

Web Services: Making the Right Architectural Decision. In Proc. WWW ’08, 2008.
14. L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, 2007.
15. A. Rotem-Gal-Oz. Transactions are bad for REST. http://www.rgoarchitects.

com/nblog/2009/06/15/TransactionsAreBadForREST.aspx, June 2009.
16. A. Rotem-Gal-Oz, E. Bruno, and U. Dahan. SOA Patterns, chapter 5.4 Saga.

Manning Publications Co., June 2007.

12

