
Stochastic Concurrent Constraint Programming
and Differential Equations

Luca Bortolussi1

Department of Mathematics and Computer Science
University of Trieste, Italia

Alberto Policriti2

Department of Mathematics and Computer Science
University of Udine, Italia

Abstract

We tackle the problem of relating models of systems (mainly biological systems) based on
stochastic process algebras (SPA) with models based on differential equations. We define
a syntactic procedure that translates programs written in stochastic Concurrent Constraint
Programming (sCCP) into a set of Ordinary Differential Equations (ODE), and also the
inverse procedure translating ODE’s into sCCP programs. For the class of biochemical
reactions, we show that the translation is correct w.r.t. the intended rate semantics of the
models. Finally, we show that the translation does not generally preserve the dynamical
behavior, giving a list of open research problems in this direction.

Key words: Stochastic Concurrent Constraint Programming, stochastic
modeling ordinary differential equations, biological systems.

1 Introduction

In the last decade there has been a remarkable interest of the computer science
community in systems biology [18], i.e. the branch of biological sciences con-
cerned with the study of living beings in a systemic light. The key issue is that
of understanding how the observable features of life emerge as the consequence of
the complex interactions among its basic (molecular) constituents, like proteins and
genes. In this comprehension activity a key role is played by mathematical model-
ing of biological systems and computational analysis of these models [6,17]. There
are broadly two different classes of modeling formalisms used, the first based on

1 luca@dmi.units.it
2 policriti@dimi.uniud.it

Preprint submitted to Elsevier Preprint 14 December 2006

the continuous and deterministic mathematics of differential equations, the second
based on the theory of stochastic processes. Computer science enters this game
at different levels: it provides the numerical routines for solving differential equa-
tions, it furnishes virtual environments where graphically building and analyzing
models, and, above all, it lends to systems biology a class of formal languages,
namely stochastic process algebras, that can be used to describe elegantly and pre-
cisely the systems of interest [22]. This is probably the most important contribution,
as it goes towards the definition of a formal language specifically designed to tackle
the intrinsic complexity of living systems. Process algebras used in biology are gen-
erally equipped with a stochastic semantics, resulting in a continuous-time Markov
Chain (CTMC for short) [19]. Remarkably, when process algebras are used to de-
scribe biochemical reactions, the CTMC given by their semantics coincides with
the one constructed when using classical stochastic simulation procedures, like the
celebrated Gillespie algorithm [14].

When biochemical reactions are considered, the coexistence of Gillespie method
and of a different modeling technique, based on ordinary differential equations
(ODE), must be faced. Notably, both these methods are justified using the same
fundamental principle, i.e. the law of mass action [14,24]. It is also important to
recall that the relation between deterministic and stochastic models of biochemical
reactions has been analitically studied in detail, leading to the development of an
hybrid modeling approach via stochastic differential equations to chemical kinetics,
i.e. the Chemical Langevin Equation [12].

The comparison between stochastic process and differential equations can be
carried at two different levels: we can compare them either syntactically or seman-
tically, looking at their dynamical behavior. In the case of stochastic and deter-
ministic models of biochemical reactions, derived from the law of mass action, the
syntactic comparison is somehow trivial: they should be equivalent, as they are
derived from the same set of chemical equations. A different problem is whether
these systems show an equivalent dynamical behavior. First of all, we must decide
in what sense a stochastic system, whose traces show the characteristic fluctuations
of noise, can be considered equivalent to a deterministic system. We may take a
“minimalist” approach, considering two such systems equivalent if the determin-
istic system coincides with the average behavior of the stochastic one. With this
approach we are dropping any information concerning the variance of the stochas-
tic system, an assumption that cannot be made in general, see [24]. In fact, many
stochastic systems exhibit an oscillatory behavior that is induced by stochastic fluc-
tuations, while their average does not fluctuate at all; this is the case, for instance,
of the stochastic model of the Lotka-Volterra prey-predator system, see [14,24] and
the last section. Despite this simplification, however, only few special mass ac-
tion deterministic models of biochemical reactions are equivalent in the behavioral
sense to their stochastic counterpart, see again [12].

In this paper we focus on this intriguing problem in the more general context
of stochastic models constructed using process algebras. Comparison of models of
biological systems built using stochastic process algebras with models of the same

2

systems derived using differential equations can be motivated by different reasons.
First, numerically solving differential equations is a computational task generally
easier than the stochastic simulation or the state-based analysis of stochastic sys-
tems: if we can get a set of ODE’s that describes the same behavior of a stochastic
process, we may be able to analyze the model more efficiently. Viceversa, process
algebra models are constructed taking into account the interaction patterns among
entities of the model, while differential equations hide these interactions in numer-
ical relations among variables: if, starting from a set of ODE’s, we can build an
equivalent SPA model, we may be able to recover part of the structure of these in-
teraction patterns. Also SPA and ODE models can be compared at two levels, one
syntactical and the other semantical, focussing on the dynamical behavior.

How can we compare syntactically stochastic process algebra programs and
differential equations? A possibility is to define (sensible) translation procedures,
operating at the syntactical level, that associate a set of differential equations to a
stochastic model and, viceversa, a stochastic model to a set of differential equations.
Therefore, a stochastic system and a set of ODE’s may be considered equivalent
whenever they can be derived one from the other using these translation methods.

Recently, there has been some work in this directions, developing techniques
associating sets of differential equations to programs written in PEPA [16] or in
π-calculus [8]. The basic idea of these methods is to approximate the number of
syntactic terms of a certain kind present in parallel in the system with a real number,
and then derive the variation of the number of such terms by asyntacticinspection
of their structure and their communication patterns. Hence, transitions involving
these terms will contribute with a negative flux, while transitions creating copies of
these terms will give a positive flux. These translations are intuitively correct: for
instance, if we write a process algebra model of biochemical reactions using mass
action kinetics (which is always the case forπ-calculus or PEPA), then the derived
set of differential equations is exactly the set of mass action ODE associated to
the biochemical reactions under examination, see [9] for a formal proof. On the
other hand, the system of ODE’s generated in this way is usually not behaviorally
equivalent to the SPA model, in the sense of differential equations describing the
average value of the stochastic system. The inverse direction, i.e. associating a
stochastic process algebra model to a set of ODE’s, has received less attention in
literature, the only example known to us being [5], where the authors use as process
algebra a stochastic version of concurrent constraint programming, sCCP [2].

In this paper, after recalling the basics of sCCP (Section2), we extend the work
done in [5], showing a method to associate ordinary differential equations to sCCP
programs written with a restricted syntax (Section3) and a translation of ODE’s
into sCCP programs (Section4). We then prove that these two translation are es-
sentially one the inverse of the other, showing also that they behave well when
applied, for instance, to sCCP agents describing biochemical reactions [4]. In prac-
tice, we show that the ODE’s associated to sCCP agents modeling biochemical
reactions, as defined in [4], are the usual ODE’s describing the intended kinetics.

Unfortunately, syntactic techniques developed up to now are not invariant from

3

Program = D.A

D = ε | D.D | p(~x) : −A

π = tellλ(c) | askλ(c)

M = π.G | M + M

G = 0 | tell∞(c) | p(~y) | M | ∃xG | G.G | G ‖ G

A = 0 | tell∞(c) | M | ∃xA | A.A | A ‖ A

Table 1
Syntax of sCCP.

a dynamical point of view. In the conclusions (Section5) we comment more on
this side of the problem, putting more emphasis on the need of finding translations
linking process algebras and ODE’s that preserve the observed behavior.

2 Stochastic Concurrent Constraint Programming

In this section we briefly recall the stochastic version of Concurrent Constraint
Programming [23], as presented in [2,4].

Concurrent Constraint Programming (CCP) is a process algebra having two dis-
tinct entities: agents and constraints. Constraints are interpreted first-order logical
formulae, stating relationships among variables (e.g.X = 10 or X + Y < 7).
Agents in CCP, instead, have the capability of adding constraints (tell) into a
“container” (theconstraint store) and checking if certain relations are entailed by
the current configuration of the constraint store (ask). The communication mecha-
nism among agents is therefore asynchronous, as information is exchanged through
global variables. In addition toask andtell , the language has all the basic con-
structs of process algebras: non-deterministic choice, parallel composition, proce-
dure call, plus the declaration of local variables.

The stochastic version of CCP (sCCP [2,4]) is obtained by adding a stochastic
duration to all instructions interacting with the constraint storeC, i.e. ask , tell .
Each instruction has an associated random variable, exponentially distributed with
rate given by a function associating a real number to each configuration of the con-
straint store:λ : C → R+. This is a unusual feature in traditional stochastic process
algebras like PEPA [15] or stochasticπ-calculus [20], and it will be a crucially used
in the translation mechanisms, cf. below. The syntax of sCCP can be found in Ta-
ble1.

The underlying semantic model of the language (defined via structural opera-
tional semantic, cf. [2]) is a CTMC, as each configuration of the system in sCCP
consists of the current set of processes and of the current configuration of the con-
straint store. Thus in every node of the transition graph all rate functions are eval-

4

uated. Therefore, as in stochasticπ-calculus [20] or PEPA [15], we have a race
condition between all active instructions such that the fastest one is executed.

As in [4], we allow alsotell instructions with infinite rate, which will be
executed instantaneously whenever encountered by an agent. To deal with this
kind of instructions and with procedure calls, we need to define two transitions
relations: one instantaneous and one stochastic. These transitions are applied in an
interleaved fashion: the instantaneous relation is applied until possible, then one
step of the stochastic one is executed. Restrictions on the syntax guarantee that the
instantaneous transition is confluent and becomes quiescent after a finite number of
steps, hence the stochastic semantics is well defined, see [3] for further details.

Variables used in the definition of rate functions need to store a single value
that may vary over time. Such variables, for technical reasons, are conveniently
modeled as variables of the constraint store, which are rigid (over time). To deal
with this problem we store time varying parameters as growing lists with an un-
bounded tail variable. We will, however, use a natural notation where X=X+1 has
the intended meaning of: “extract the last ground elementn in the listX, consider
its successorn + 1 and add it to the list (instantiating the old tail variable as a list
containing the new ground element and a new tail variable)”. We refer to such
variables asstream variables.

We have developed an interpreter for the language that can be used for running
simulations. This interpreter is written in Prolog and uses standard constraint solver
on finite domains as manager for the constraint store. All simulations of sCCP
shown in the paper are performed with it.

2.1 Modeling Biological Systems in sCCP

In [3,4] we argued that sCCP can be conveniently used for modeling biological
systems. In fact, while maintaining the compositionality of process algebras, the
presence of a customizable constraint store and of variable rates gives a great flex-
ibility to the modeler, so that different kinds of biological systems can be easily
described within this framework. In [4], we showed that biochemical reactions and
genetic regulatory networks are easily dealt by sCCP. In [3] we added to this list
also formation of protein complexes and the process of folding of a protein, whose
description requires the knowledge about spatial position of amino acids constitut-
ing the protein (a kind of information easily added exploiting the potentiality of the
constraint store).

While modeling biochemical reactions, we take a point of view different from
the classical usage of process algebras for this task: while inπ-calculus the de-
scription is molecular-centric, describing each single molecule of the system as an
independent process, we take a reaction-centric approach, where each reaction (or
action capability) is associated to a process, while molecules are represented by
variables of the constraint store (actually, stream variables). To simplify the task
of modeling, in [4] we defined a library of agents corresponding to different types
of biochemical reactions. Notably, the reaction-centric approach and the presence
of non-constant rates allows to describe reactions that have a chemical kinetics dif-

5

R1 + . . . + Rn →k P1 + . . . + Pm

reaction(k, [R1, . . . , Rn], [P1, . . . , Pm]) : −

askrMA(k,R1,...,Rn) (
∧n

i=1(Ri > 0)) .(
‖n

i=i tell∞(Ri = Ri − 1) ‖

‖m
j=1 tell∞(Pj = Pj + 1)

)
.

reaction(k, [R1, . . . , Rn], [P1, . . . , Pm])

S 7→E
K,V0

P

mm reaction(K, V0, S, P) : −

askrMM (K,V0,S)(S > 0).

(tell∞(S = S − 1) ‖ tell∞(P = P + 1)) .

mm reaction(K, V0, S, P)

where

rMA(k,X1, . . . , Xn) = k ·X1 · · ·Xn;

rMM (K, V0, S) = V0S
S+K ;

Table 2
Translation into sCCP of different biochemical reaction types, taken from [4]. The

reaction process models a mass-action-like reaction, while the second arrow corresponds
to a reaction with Michaelis-Menten kinetics.

ferent from the standard mass action one. This is not possible, for instance, in
π-calculus, given the fact that global rates are defined there using a mass action
principle: essentially, the number of possible communications on a channel are
multiplied by the basic rate of that communication. In Table2, we present an ex-
tract of the library defined in [4], where two different typologies of reactions are
considered: the first one has the classical mass action kinetics, while the second
represents a catalyzed transformation ofS into P (thanks to the action of enzyme
E) and has a Michaelis-Menten kinetics (its rate is computed using the expression
at the bottom of the table, corresponding to the format of the Michaelis-Menten
differential equation for enzymatic kinetics [10]; formal justification of these rates
in stochastic modeling can be found in [21]).

3 sCCP to Ordinary Differential Equations

In this section we define a translation machinery that associates a set of ordinary
differential equations to a sCCP program. This translation applies to a restricted
version of the language, both in the constraint store and in the syntax. Despite
these restrictions, this sub-language is sufficient to deal with applications in mod-
eling biochemical reactions and genetic regulatory networks. After defining this
translation, we show that it preserves the chemical kinetic, or the rate semantics, as
defined in [9]. Essentially, we take some sCCP agents used in modeling biochem-

6

ical reactions (Table2), and show that the associated ODE is the one describing
their kinetics [10], i.e mass action for simple reaction agents and Michaelis-Menten
equations for agents with Michaelis-Menten rate.

We restrict the language both in the admissible constraints of the store and in
the syntax of the agents. We restrict all the variables of the constraint store to be
stream variables, and we allow only equalities and inequalities as constraints to be
asked. In addition, we restrict the possible updates of variables in the store to a very
special class of constraints, of the formX = X+k, wherek is a positive or negative
constant. Note that these are the kind of updates we use in biological modeling, see
Table 2. The syntactic restrictions are the following: we allow only sequential
agents, fixing the number of agents in parallel in the initial configuration of the
system. Sequential agents are simply agents not containing any parallel operator. In
addition to this, we disallow the possibility of defining local variables: all variables
used by agents must be global. Therefore, we can avoid to pass parameters in the
procedure call, supposing that all procedures know the name of the global variables
they must act on.3

The translation from restricted sCCP programs to ODE proceeds in several
steps, illustrated in the following paragraphs.

Step 1: Reduced Transition Systems.
The first step consists in manipulating the syntactic trees of the sequential

agents composing the network, in order to rewrite them in a simpler form, called
reduced transition systems, cf. [3]. In order to illustrate this procedure, we show its
functioning on the following simple sCCP agent:

RWX :-
tell1(X = X − 1).RWX

+ tell1(X = X + 2).RWX) f(X) = 1
X2+1

+ askf(X)(true).(tell1(X = X − 2).RWX

+ tell1(X = X + 1).RWX)

This agent performs a sort of random walk in one variable, increasing or de-
creasing its value by 1 or 2 units, depending on its inner state.
The syntactic tree of this agent is a tree where each node either contains an in-
struction or is a summation node (see Figure1(1)). No parallel composition nodes
exist, as the agent is sequential. The basic idea of the translation is to collapse all
transitions with infinite rate following a stochastic-timed one; to do this, we first
move the information about guards, updates and rates of transitions from nodes to
edges, and then collapse the edges. We deal with recursive calls introducing cycles
in the syntactic tree, effectively constructing a compact form of the labeled transi-
tion system of the agent.

3 Sometimes parameter passing is used to reutilize the same code on different global variables.
In this case, we need to define different procedures, one for each set of global variables we are
interested in.

7

Fig. 1. Steps in the manipulation of the syntactic tree of agent RWX (1), transforming it into
a reduced transition system (4). In step (2) we moved information from nodes to edges, and
in (3) we removed procedure calls. In the graphs, empty labels are denoted withan asterisk
*.

In the first step of the procedure we label the incoming edge of a node with a
triple where the first element is a finite set of guards, the second element is a set
of assignments, and the third element is the rate function of that transition. Nodes
containing ask instructions contribute just with guards and rates, while tell agents
contribute with updates and rates (consistency check for assignments is trivial). We
also remove labels from nodes corresponding to ask or tell. Summation nodes and
procedure calls are left untouched, though incoming arcs of procedure calls are la-
beled by(∅, ∅,∞) (see Figure1(2)).
The following step consists in removing the nodes corresponding to recursive calls.
This can be achieved in two ways, depending on the presence or absence of a copy
of the syntactic tree of the called procedure in the graph under manipulation. If
no copies of the tree of the called procedure are present in the graph, we replace
the calling node with one copy of such tree (with the transformations of first step
already performed). If, instead, there already exists a copy of the tree of called
procedure in the graph we are managing, we simply redirect the incoming edge of
the node calling the procedure to the root of the copy of such tree. In this way, we
can introduce cycles in the graph (see Figure1(3)).
The next sequence of steps removes all nodes having a single outgoing edge with
infinite rate and a single incoming edge. We are guaranteed that all nodes with
more than one incoming edge have just stochastic edges (edges whose rate labeling
them is not∞) exiting from them (see [3]). Therefore, we are removing only nodes
defining a sequence of instantaneous and deterministic steps. When these nodes are
removed, their entering and exiting edge are merged, and the corresponding labels
are joined together, taking the conjunction of guards and updates. As rate of the
new edge we put the (only) one less that∞, if any,∞ otherwise. At the end of this
procedure, all edges will have a stochastic rate less than infinity. After merging all
possible edges, we clean all labels of remaining nodes (see Figure1(4)).

8

Step 2: the interaction matrix.
Consider an sCCP program, composed by several agents in parallel. Once we

have converted all of them into their reduced transition system representation, we
associate a unique number to each state and each transition of all such graphs.
Successively, we need to identify the variables of the system of differential equa-
tions. All variables of the store used by the agents will have a syntactic counterpart
in a variable of the ODE system. In the following, we denote such variables by
X1, . . . , Xn. In addition, we associate a variable to each state of the reduced tran-
sition systems, of the formPi, whereP is a name never used for a variable of
the store, andi is the index assigned to the node. Consider a transition indexed
by j; we indicate withexitj the variable labeling the exiting node of edgej, with
ratej(X1, . . . , Xn) its rate function (labeling the corresponding edge in the RTS)
and withguardj(X1, . . . , Xn) the function constructed by taking the product of the
indicator functions of the guards of each edge. An indicator function of a guard
returns 1 if the guard is satisfied, 0 otherwise.

We are now ready to define theinteraction matrix. This matrix has one row
for each variableX1, . . . , Xn, P1, . . . , Pm (we suppose to havem states in total
in the RTS of sCCP agents), and one column for each transition. Columnj is
constructed in the following way: if edgej goes from the node identified byPi

to a node identified byPh, we put a -1 in correspondence to rowPi and a +1 in
correspondence of rowPh (if i = h, we simply put a zero). Then, for each update
instruction of edgej of the formXl = Xl + τ , we putτ in correspondence of row
Xl. All other entries of the column are set to 0. We denote the interaction matrix
by Im and the element corresponding to the row associated to variableY and to
columnj by Im(Y, j).

For the example introduced above, the resulting interaction matrix is:

X −1 +2 0 −2 +1

P0 0 0 −1 +1 +1

P1 0 0 +1 −1 −1

(1)

Writing ODE’s.
Once we have the interaction matrix, writing the set of ODE’s is very simple.

To each row of the matrix we associate an equation expressing the variation of the
corresponding variable. The equation for a variableY is the following (k indicates
the number of columns in the matrix):

Ẏ =
k∑

j=1

(
Im(Y, j) · guardj(X1, . . . , Xn) · ratej(X1, . . . , Xn) · exitj

)
(2)

9

For instance, the set of ODE’s associated to the agent of our example is
Ẋ = P0 − P1

Ṗ0 = − 1
X2+1

P0 + 2P1

Ṗ1 = 1
X2+1

P0 − 2P1

3.1 ODE’s for Biochemical sCCP Agents

In Table2 we have presented part of the library of sCCP agents describing the main
biochemical reactions. Each agent in that diagram corresponds to a reaction having
a specific kinetics. We considered here only mass action kinetics and Michaelis-
Menten kinetics, theories usually presented by means of differential equations [10].
In this section we show that if we apply the translation just defined to these agents,
we obtain exactly the differential equations corresponding to their kinetics. There-
fore, we can say that our translation preserves the rate semantics, in the sense of [9].

Mass action kinetics.
Consider the sCCP encoding (Table2) of a biochemical reaction with mass

action kinetics, indicated by the arrowR1 + . . . + Rn →k P1 + . . . + Pm. First of
all, note that the expression of the rate function allows us to remove the condition
in the ask guard. In fact, whenever one of theRi variables is zero, the function
rMA is also zero, hence the term in the ODE will give no contribution. The reduced
transition system for the agent reactionk,R1,...,Rn,P1,...,Pm is the following

Applying the translation method defined, we obtain the following set of ODE:

Ṙ1 = −kR1 · · ·Rn Ṗ1 = kR1 · · ·Rn

...
... Ṗ = 0

Ṙn = −kR1 · · ·Rn Ṗm = kR1 · · ·Rn

This is exactly the form of Mass Action ODE for this reaction.

Michaelis-Menten kinetics.
Let’s consider a reaction based on Michaelis-Menten kinetics, represented in

Table2 by the chemical arrowS 7→E
K,V0

P .
To generate the corresponding set of ODE’s, we first have to build its reduced

transition system, having the form:

10

Note that also in this case we dropped the guard condition in the ask instruction,
as the form of the rate function subsumes it. Building the interaction matrix, we can
derive the corresponding set of ODE, taking the desired form of classic Michaelis-
Menten equation:

Ṗ = VmaxS
K+S

Ṡ = −VmaxS
K+S

Ẋ = 0

4 Ordinary Differential Equations to sCCP

In this section we define a transformation that associates a sCCP process to a
generic set of ordinary differential equation. Then, we show that the transformation
behaves well, in the sense that the set of ODE associated to the derived sCCP agent,
using the method of the previous section, is exactly the initial set of ODE. Finally,
we give an example.

Consider a system of first order ODE withn variablesX1, . . . , Xn; we write it
separating positive and negative addends in each equation:

Ẋ1 =
∑h1

j=1 f1j(X1, . . . , Xn)−
∑k1

j=1 g1j(X1, . . . , Xn)
...

Ẋn =
∑h1

j=1 f1j(X1, . . . , Xn)−
∑k1

j=1 g1j(X1, . . . , Xn)

(3)

The translation to sCCP simply proceeds associating an agent to each differen-
tial equation of (3), defined by

manXi
:- ∑hi

j=1 tellfij(X1,...,Xn)(Xi = Xi + τ).manXi

+
∑hi

j=1 tellgij(X1,...,Xn)(Xi = Xi − τ).manXi

Hereτ denotes the basic increment, that we consider as unitary. Notably, if we
apply the transformation defined in the previous section, associating a set of ODE
to our sCCP agent, we can easily see that we obtain exactly the initial set of ODE.
Before showing this in more detail, we want to spend some words on the functional
rates. This is a feature different from common process algebras, where rates are
real numbers and the final speed of an action is determined from this basic rate in a
mass action style, i.e. summing all rates of enabled transitions of a certain type. As
a result, the ODE format that can be generated from these process algebras coincide
with the set of mass action equations, like those of Section3.1. On the contrary,
functional rates are somehow more expressive, as they allow to encode, at least
syntactically, every possible ODE, without restrictions. In fact, we are using non-
constant rates to hide the logical interaction mechanism that is usually modeled
explicitly in common process algebras.

To generate a set of ODE from the agents manXi
, we have first to obtain their

reduced transition system. It is easy to see that it has the form

11

If we consider the interaction matrix that is derived from these RTS, we observe
that the row corresponding to variableXi has non-zero entries only relatively to
the transitions of the RTS for manXi

, each entry being equal toτ or −τ . The
corresponding ODE therefore is

Ẋi =

hi∑
j=1

τfij(X1, . . . , Xn)Pi −
ki∑

j=1

τgij(X1, . . . , Xn)Pi.(4)

Now, we can perform two simplifications: first,τ is the unitary increment, and we
can set it equal to 1. Secondly, the equation forPi, the variable denoting the only
state of agent manXi

, has equationṖi = 0, hencePi is constant. As we have just
one agent manXi

, Pi is equal to one. Therefore, equation (4) boils down to

Ẋi =

hi∑
j=1

fij(X1, . . . , Xn)−
ki∑

j=1

gij(X1, . . . , Xn),(5)

which is exactly the starting equation forXi.
Note that as basic step in the translation from ODE to sCCP we are using a

genericτ . τ determines the size of the basic increment or decrement of variables
of the system. In sCCP, we are not forced to use integer variables, but we can let
them vary, for instance, on a grid of rational numbers, where the basic distance can
be set equal toτ . Varying the size ofτ , we can calibrate the effect of the stochastic
fluctuations, reducing or increasing it. This is evident in the following example,
where we compare solutions of ODE’s and the simulation of the corresponding
sCCP processes.

Let’s consider the following system of equations, representing a model of the
repressilator, a synthetic genetic network having an oscillatory behavior (see [11]):

Ẋ1 = α1X
−1
3 − β1X

0.5
1 , α1 = 0.2

Ẋ2 = α2X
−1
1 − β2X

0.5
2 , α2 = 0.2

Ẋ3 = α3X
−1
2 − β3X

0.5
3 , α3 = 0.2.

(6)

The values ofβ are here parameters; their value has a severe impact on the behavior
of the system, that for some values ofβ oscillates (as expected from repressilator)
while for some other values does not oscillate at all (see Figure2). The correspond-
ing sCCP process is

manX1 ‖ manX2 ‖ manX3 ,(7)

12

Fig. 2. Numerical solutions of the system of equations for the repressilator (left col-
umn), and the numerical simulation of the corresponding sCCP program (right column),
for β = 0.01 (top) andβ = 0.001 (bottom)

where

manX1 : −(tell[α1X−1
3](X1 = X1 + τ) + tell[β1X0.5

1](X1 = X1 − τ)).manX1

manX2 : −(tell[α2X−1
1](X2 = X2 + τ) + tell[β2X0.5

2](X2 = X2 − τ)).manX2

manX3 : −(tell[α3X−1
2](X3 = X3 + τ) + tell[β3X0.5

3](X3 = X3 − τ)).manX3

In Figure2 we compare numerical solutions of S-Systems and simulations of
the corresponding sCCP process, for different values ofβ (αs have the value de-
fined in equation (6)) and fixedτ , equal to 0.01. As we can see, not only the general
qualitative behavior is respected, but also the quantitative information about con-
centrations is preserved. Note that also “wild” behaviors of S-Systems are perfectly
reproduced, see again Figure2. Probably, one of the main ingredients guaranteeing
this reproducibility is the fact that variables take values in a finer grid than integers,
meaning that the effect of stochastic fluctuations is less remarkable, as they relative
magnitude is smaller. This is essentially the same as working with a sufficiently
high number of molecules in Gillespie’s algorithm [14,13]. Interestingly, though
there is a strong qualitative accordance between the deterministic and stochastic ki-
netics, the graphs differ in the time scale. In the stochastic simulation, in fact, time
is no more an independent variable, but the temporal distance between consecutive
events is governed by the sum of the fluxes of the differential equations.

13

Fig. 3. Stochastic simulation of the Lotka Volterra model in sCCP (solid line) compared
with the solution of associated ODE’s (dotted line), for initial conditionsE0 = 20 and
C0 = 50. Predators are shown in blue and preys are shown in red.

5 Future Work and Conclusions

In the paper we focused on the problem of relating stochastic models written with
process algebras and models with differential equations. Despite our interest is
mainly in biological systems, and examples are drawn from this field, the problem
is general, and these methods can be applied to a broad range of systems, like
computer networks. Here we focused in the definition of translation procedures
associating sets of differential equations to process algebraic models and stochastic
process algebra programs to differential equations. The process algebra we used is
sCCP, a stochastic version of CCP; some of its features, functional rates above all,
play an important role in this translation procedure. In particular, they enable to
define a translation from general differential equations that is well-behaved, in the
sense that applying the transformation from sCCP programs we obtain again the
starting equation.

These translation procedures work at the syntactic level, and there is no the-
oretical guarantee that the transformed model shows a behavior that is equivalent
to the one of the initial model. For instance, consider the sCCP program for the
set of reactions describing a simple population dynamics, the so-called Lotka-
Volterra model (C is the predator andE is the prey),C →2, E →5 2E and
C + E →0.1 2C. The set of ODE obtained with the translation method defined
above areĊ = 0.1EC − 2C andĖ = 5E − 0.1EC. If we set the initial condi-
tions of the system toE0 = 20 andC0 = 50, the ODE’s are in equilibrium, and
their solution is a straight line. Instead, the stochastic system shows no equilibrium
at all: the number of preys and predators oscillates until they both go extinct, see
Figure3.
In other cases, the ODE’s associated to a sCCP program perfectly capture the
behavior of the system, see [7] for examples in this sense. However, the Lotka-
Volterra example is one of many where associated ODE fail to capture the behavior
of the system, so we are far away from having defined a procedure that translated
stochastic process algebra programs into ODE’s in asemanticallycorrect way. This

14

is the main open problem in this research topic. Indeed, there are other questions
worth considering. First of all, we lack a reasonable definition ofbehavioral equiv-
alencebetween stochastic processes and differential equations. Considering the
average behavior of the stochastic process is not the best solution, as there are
cases where the stochastic model exhibits strong oscillations, though the average
value of the systems does not oscillate at all [?,5]. Therefore, a different approach,
aiming to capture qualitative aspects more than quantitative information, should be
adopted.
Another open question concerns the characterization of a class of sCCP programs
for which the associated ODE’s works well also from a behavioral viewpoint. For
these systems, the syntactic transformation we have defined is safe. Finally, an
interesting point is that of seeing if and where hybrid systems, like hybrid automa-
ton [1], can enter the picture. In fact, while passing to ODE’s we are dropping any
form of non-determinism (which is, instead, present in stochastic systems under
the form of race conditions); hybrid automaton, on the other hand, while having a
continuous time evolution governed by ODE’s, have also discrete states and non-
deterministic transitions among them.
Finally, we need to characterize in a mathematically more precise way what hap-
pens in the translation from ODE’s to sCCP. Specifically, we want to understand
how the variation in the increment stepτ influences the behavior of the stochastic
process w.r.t. the one of the ODE. Our conjecture is that in the limit ofτ → 0, the
average of the stochastic behavior coincides with the solution of the ODE (modulo
a suitable time rescaling).

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

[2] L. Bortolussi. Stochastic concurrent constraint programming. InProceedings of 4th
International Workshop on Quantitative Aspects of Programming Languages, QAPL
2006, 2006.

[3] L. Bortolussi. Constraint-based approaches to stochastic dynamics of biological
systems. PhD thesis, PhD in Computer Science, University of Udine, 2007. In
preparation. Available on request from the author.

[4] L. Bortolussi and A. Policriti. Modeling biological systems in concurrent constraint
programming. InProceedings of Second International Workshop on Constraint-based
Methods in Bioinformatics, WCB 2006, 2006.

[5] L. Bortolussi and A. Policriti. Relating stochastic process algebras and differential
equations for biological modeling.Proceedings of PASTA 2006, 2006.

[6] J. M. Bower and H. Bolouri eds.Computational Modeling of Genetic and Biochemical
Networks. MIT Press, Cambridge, 2000.

15

[7] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of rkip on the
erk signalling pathway using the stochastic process algebra pepa.Transactions on
Computational Systems Biology, 4230:1–23, 2006.

[8] L. Cardelli. Chemicalπ-calculus.Draft, 2006.

[9] L. Cardelli. On process rate semantics.draft, 2006.

[10] A. Cornish-Bowden.Fundamentals of Chemical Kinetics. Portland Press, 3rd edition,
2004.

[11] M.B. Elowitz and S. Leibler. A syntetic oscillatory network of transcriptional
regulators.Nature, 403:335–338, 2000.

[12] D. Gillespie. The chemical langevin equation.Journal of Chemical Physics,
113(1):297–306, 2000.

[13] D. Gillespie and L. Petzold.System Modelling in Cellular Biology, chapter Numerical
Simulation for Biochemical Kinetics. MIT Press, 2006.

[14] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions.J. of
Physical Chemistry, 81(25), 1977.

[15] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[16] J. Hillston. Fluid flow approximation of pepa models. InProceedings of the Second
International Conference on the Quantitative Evaluation of Systems (QEST05), 2005.

[17] H. Kitano. Foundations of Systems Biology. MIT Press, 2001.

[18] H. Kitano. Computational systems biology.Nature, 420:206–210, 2002.

[19] J. R. Norris.Markov Chains. Cambridge University Press, 1997.

[20] C. Priami. Stochasticπ-calculus.The Computer Journal, 38(6):578–589, 1995.

[21] C. V. Rao and A. P. Arkin. Stochastic chemical kinetics and the quasi-steady state
assumption: Application to the gillespie algorithm.Journal of Chemical Physics,
118(11):4999–5010, March 2003.

[22] A. Regev and E. Shapiro. Cellular abstractions: Cells as computation.Nature, 419,
2002.

[23] V. A. Saraswat.Concurrent Constraint Programming. MIT press, 1993.

[24] Darren J. Wilkinson.Stochastic Modelling for Systems Biology. Chapman & Hall,
2006.

16

	Introduction
	Stochastic Concurrent Constraint Programming
	Modeling Biological Systems in sCCP

	sCCP to Ordinary Differential Equations
	ODE's for Biochemical sCCP Agents

	Ordinary Differential Equations to sCCP
	Future Work and Conclusions
	References

