
Introduction to Hessian4J

Roger Laenen Bruno Ranschaert

June 2, 2008

Contents

1 What is Hessian? 1

2 What’s it good for? 2

3 Basic concepts 2

4 The serialization phase 4
4.1 What’s a “helper”? . 4
4.2 What’s a “namer”? . 5
4.3 Annotations . 6

5 The renderer 6

6 The parser 6

7 The deserializer 7

8 A simple example showing it all 7

9 What next ? 8

1 What is Hessian?

In a nutshell, Hessian is a binary data transfer protocol with the following characteristics:

• It is completely self describing, class definitions are contained within the data stream. The
stream is self contained, no separate definition files are needed.

• It is language agnostic, various language implementations currently exist.

• It is compact in comparison with the hyped XML1 stuff. XML was invented to annotate
documents whereas Hessian was invented to represent binary data in a standard way.

• It’s a stateless protocol.

All grants for the protocol go to Caucho2 who defined the protocol and submitted it in 2007
as an IETF3 draft. This article doesn’t cover the internals of the protocol, more information on
this can be found on the Caucho website itself.

The Java implementation discussed in this document, named Hessian4J, differs from the
Caucho implementation in 2 ways :

1Extensible Markup Language. See http://en.wikipedia.org/wiki/XML.
2http://www.caucho.com/resin-3.0/protocols/hessian.xtp
3http://www.ietf.org

1

http://www.ietf.org
http://en.wikipedia.org/wiki/XML
http://www.caucho.com/resin-3.0/protocols/hessian.xtp

• It only supports the more recent (and more compact) version 2 of the protocol.

• The transformation from Java objects to the Hessian wire data is performed through an
intermediate model.

This last item was our primary motivation to create an alternative implementation. The ex-
istence of an intermediate Hessian model permits processing of the data (transformation, val-
idation, routing, ...) without requiring the existence of the associated Java business model. If
you are creating a web interface for example, all classes used in the definition of the inter-
face have to be available on the client and on the server. An intermediate agent is now able
to read and parse the Hessian stream without having to reconstruct the business model. The
intermediate model in our Hessian implementation is what the DOM4 model is for XML.

2 What’s it good for?

Hessian is a replacement for XML when you need something fast and simple while direct access
to the data (using a text editor) is less important. It is fast because it was designed that way,
the Hessian format allows very fast parsers. It is simpler then XML, compact and complete
implementations can be found for many languages.

Basically you can use it to stream any data to a file or over the network. Because Hessian is
a very compact protocol most benefit will be gained in high load environments. In a RESTful5
environment you could use Hessian as the payload of your HTTP-POST request. Specifically for
this purpose there is a separate draft proposal submitted to the IETF by Caucho. Examples
where Hessian can be used:

• Persist data to a file.

• Use it to call a network service.

• Use it to post messages on an ESB.

3 Basic concepts

As mentioned before the Hessian4J implementation transforms your Java model to the Hessian
format through an intermediate model. This is illustrated in Figure 1. Translating this to the
software architecture we get the following :

• HessianSerializer class which does the serializing and deserializing. The terms "serialize"
and "deserialize" mean the conversion between your Java object model and the Hessian
object model.

• HessianParser class which parses the Hessian data stream to the Hessian model. The term
"parse" means to read something in Hessian and convert it to the Hessian object model.

• The Hessian model classes that are able to render themselves to the Hessian wire data
format. The term "render" means to write a Hessian object representation to a Hessian
encoded stream.

The Hessian model in fact is a hierarchical Java representation of the Hessian data types.
Figure 2 illustrates a part of its basic structure.

4Document Object Model. See http://en.wikipedia.org/wiki/Document_Object_Model.
5Representational state transfer (REST) is a style of software architecture for distributed hypermedia systems such as

the World Wide Web. See http://en.wikipedia.org/wiki/Representational_State_Transfer

2

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Document_Object_Model

Figure 1: 2-phase transformation

Figure 2: Structure of the Hessian model

3

4 The serialization phase

Let’s first discuss the serialization from a Java object to its Hessian model representation. This
process is driven by the HessianSerializer. The serializer performs its task with the assistance of a
set of hierarchically structured helpers. A so-called helper knows how to (de)serialize a specific
class to/from the Hessian model. The HessianSerializer contains a repository with a predefined
set of helper classes. You can add your own helper class to this repository if needed. It is the
responsibility of these helpers to convert your Java objects to a corresponding Hessian model
and vice-versa. Let’s look at the following example:

1 HessianSerializer lSer = new HessianSerializer ();
2 HessianValue lVal = lSer.serialize(myObject);

That’s all there is. On line 1 a serializer is created. On line 2 your Java object is transformed
to a Hessian representation and is ready to be rendered to a stream.

4.1 What’s a “helper”?

Like we said before, you can add your own helper to the serializer repository. One of the most
common cases you will need to do this is when you are dealing with Java classes that have no
default constructor. Normally, the deserializer will instantiate the Java object using reflection to
call the default constructor. For classes without a default constructor you have to write a Helper
class that tells the serializer how to serialize and deserialize objects of it. Another common use
of Helpers is where you want to transform your object (eg limit the number of attributes, convert
a type..) before putting it on the wire. To give you an idea of the use of these helpers, take the
following snippet:

1 final HessianSerializer lSerializer = new HessianSerializer ();
2 lSerializer.getRepo (). addHelper(new BigDecimalHelper ());
3 HessianValue lVal = lSerializer.serialize(new BigDecimal("10.00"));
4 System.out.println(lVal.prettyPrint ());
5 BigDecimal lResult = (BigDecimal) lSerializer.deserialize(lVal);

We (de)serialize a BigDecimal here. BigDecimal is one of those classes without a default con-
structor, that’s where our BigDecimalHelper6 comes in. What the helper basically does is convert-
ing our Java BigDecimal representation to a HessianObject with a HessianString argument. The
value of this argument is the toString() value of the original BigDecimal. When consequently
deserializing, the same helper will call the BigDecimal(String) constructor with the value of the
string argument. Basically, the real (de)serialization work is done within the Helper classes, the
HessianSerializer mainly keeps the context (more on this later).

As you notice on line 4, you can always prettyPrint() a HessianValue to inspect the Hessian
representation.

1 <classdef #0:’java.math.BigDecimal ’>
2 [0] val
3

4 <object@0:’java.math.BigDecimal ’#0>
5 [0] <string:"10.00">

The dump shows that the Hessian data contains a Hessian class definition on line 1. The
index of the classdefs as they are written to the stream is mentioned in the dump: “#0”. The
classdef contains a single field named “‘val” which is written out on line 2. The dump contains
a single object on line 4 of the classdef. The only field contains a value of type string which is a
textual representation of a BigDecimal.

6This helper is defined by default in the repository.

4

When writing your own helper, there is a generic GenObjectHelper class you can extend from
or you can make your own from scratch by implementing the HessianHelper interface. When
(de)serializing Java objects that don’t have a specific Helper class we fall back to one of the 2
generic object helpers, ObjectHelper or ObjectHelperDirect. The difference between the 2 is the
approach they take to read/write the attributes. ObjectHelper uses the JavaBean approach
and as such calls the getters/setters of the object. The ObjectHelperDirect implementation on
the contrary uses reflection to directly access your attributes. By calling the setFieldAccess()
method on the HessianSerializer you can switch between these 2. By default, direct field ac-
cess is used.

4.2 What’s a “namer”?

Besides the Helpers another facility that is used by the (de)serializer is the Namer. The Namer
translates between Java class names and corresponding Hessian names and vice-versa. This
can be useful if the consumer of your data uses another naming convention or uses another
programming language altogether. The type names and class names in the Hessian model
do not have to correspond to Java class names. The namers allow you to replace the auto-
matically generated Java names with your own names. Namers are chained, when serializing
each class-name encountered is passed to the namer chain.

The following example illustrates this :

1 public class NamerSample
2 {
3 public static class BigDecimalNamer
4 implements Namer
5 {
6 public String mapHessian2Java(String aHessianName)
7 throws HessianSerializerException
8 {
9 if ("FOO".equals(aHessianName))

10 return "java.math.BigDecimal";
11 return aHessianName;
12 }
13

14 public String mapJava2Hessian(String aJavaName)
15 throws HessianSerializerException
16 {
17 if ("java.math.BigDecimal".equals(aJavaName))
18 return "FOO";
19 return aJavaName;
20 }
21 }
22

23 public static void main(String [] args)
24 throws HessianSerializerException
25 {
26 final HessianSerializer lSerializer = new HessianSerializer ();
27 lSerializer.addNamer(new BigDecimalNamer ());
28 HessianValue lVal = lSerializer.serialize(new BigDecimal("10"));
29 System.out.println(lVal.prettyPrint ());
30

31 BigDecimal bd = (BigDecimal)lSerializer.deserialize(lVal);
32 }
33 }

In this sample we serialize a BigDecimal as class FOO and deserialize it again to a BigDecimal.
One example of the use of namers is the WipeHibernateNamer. When working with Hibernate

5

you don’t always want to transfer the Hibernate specific collection classes to your client ap-
plication. In that case, you can add the WipeHibernateNamer which will translate the respective
collection names to their Java equivalents.

4.3 Annotations

When talking about helpers we mentioned the usage for classes without a default constructor.
However, when you have full control over the class there is a simpler way to come around
this problem. Hessian4J provides 2 annotations for this purpose, namely @HessianConstruct and
@HessianSerialize.

The method annotated with HessianSerialize should return an array of objects that can be
passed (in the given order) to the constructor annotated with the HessianConstruct annotation.
Using this approach avoids having to write a Helper class. The following snippet illustrates this :

1 public static class MyDate
2 {
3 private Date theDate;
4 private String theTimeZone;
5

6 @HessianConstruct
7 public MyDate(long aTime , String aTimeZone)
8 {
9 theDate = new Date(aTime);

10 theTimeZone = aTimeZone;
11 }
12

13 @HessianSerialize
14 public Object [] getTime ()
15 {
16 return new Object [] {theDate.getTime(), theTimeZone };
17 }
18 }

5 The renderer

There is no real Hessian renderer, instead each Hessian model class is able to render itself to
the Hessian wire protocol format by calling its render() method. The result of the rendering is
put in the OutputStream you pass to it. If you want to play a bit around with it, then just pass it a
FileOutputStream and use your favorite hexadecimal editor to view the Hessian data.

Besides the OutputStream the render method expects another 3 list-arguments, ’types’, ’class-
defs’ and ’objects’. A renderer uses these to make references to classes or objects that have
already been rendered in the same context. The types list is used for to store the type of maps
or lists (eg ArrayList, LinkedList, ...) in order to be able to reference it once the same collection
type occurs more then once in the data stream.

6 The parser

The HessianParser sequentially reads and parses the given Hessian input stream to transform
it into a HessianValue. It’s a one-pass parser which makes the parsing very fast. Note that
the parser is not thread-safe (parsing information is stored internally), so every parsing thread
should instantiate its own parser.

The use of the parser is very straightforward, instantiate it giving it an InputStream and call the
nextValue() method to parse the first available data element in the stream.

6

1 HessianParser lMyParser = new HessianParser(new FileInputStream(tempFile));
2 final HessianValue lMyString = lMyParser.nextValue ();

7 The deserializer

The deserialization takes the same approach as the serialization, it uses the same mechanism
of namers and helpers to convert your Hessian value to the corresponding Java object.

Just invoke it by calling the deserialize() method passing it your HessianValue like in the fol-
lowing example :

1 Order lOrder2 = (Order) serializer.deserialize(aHessianValue);

8 A simple example showing it all

To summarize this quick start, consider the following snippet, which serializes and renders an
order to a ByteArrayOutputStream and subsequently parses and deserializes it again to its Java
representation.

1 public class OrderSample
2 {
3 public static class Order
4 {
5 private Date orderDate = new Date ();
6 private BigDecimal totalAmt = BigDecimal.ZERO;
7 private Set <OrderLine > orderLines = new HashSet ();
8

9 public void addOrderLine(OrderLine aLine)
10 {
11 orderLines.add(aLine);
12 totalAmt = totalAmt.add(
13 aLine.unitAmount.multiply(
14 new BigDecimal(aLine.quantity)));
15 }
16 }
17

18 public static class OrderLine
19 {
20 private String description;
21 private int quantity;
22 private BigDecimal unitAmount;
23

24 public OrderLine () {}
25

26 OrderLine(String aDescription , int aQuantity , BigDecimal anAmount)
27 {
28 description = aDescription;
29 quantity = aQuantity;
30 unitAmount = anAmount;
31 }
32 }
33

34 public static void main(String [] args)
35 throws HessianSerializerException ,
36 HessianRenderException ,
37 HessianParserException

7

38 {
39 Order lOrder = new Order ();
40 lOrder.addOrderLine(new OrderLine("firstLine" ,1,new BigDecimal("10")));
41 lOrder.addOrderLine(new OrderLine("secondLine" ,5,new BigDecimal("5")));
42

43 HessianSerializer serializer = new HessianSerializer ();
44 HessianObject lVal = (HessianObject)serializer.serialize(lOrder);
45

46 final ByteArrayOutputStream lOut = new ByteArrayOutputStream ();
47 lVal.render(lOut);
48 System.out.println(lVal.prettyPrint ());
49

50 HessianParser lParser = new HessianParser(
51 new ByteArrayInputStream(lOut.toByteArray ()));
52 HessianValue lVal2 = lParser.nextValue ();
53

54 Order lOrder2 = (Order) serializer.deserialize(lVal2);
55 }
56 }

9 What next ?

This concludes this quick guide to Hessian4J. In another issue we will cover the Hessian web
service specification which defines the use of Hessian in a web service context. The current
implementation provides already the basic elements as defined in the draft7. Please download
the software (its licensed as LGPL8) and try it out. All feedback, positive or negative, is welcome.
Currently we’re working on integration with the Spring framework for a next release.

7http://hessian.caucho.com/doc/hessian-ws.html
8GNU Lesser General Public License. See more at http://www.gnu.org/licenses/lgpl.html. In short, you can use it

for commercial and non-commercial purposes, as long as you distribute the license text of Hessian4J as well.

8

http://www.gnu.org/licenses/lgpl.html
http://hessian.caucho.com/doc/hessian-ws.html

	What is Hessian?
	What's it good for?
	Basic concepts
	The serialization phase
	What's a ``helper''?
	What's a ``namer''?
	Annotations

	The renderer
	The parser
	The deserializer
	A simple example showing it all
	What next ?

