
Conceptual Navigation for Polyadic Formal Concept Analysis∗

Sebastian Rudolph† and Christian Săcărea‡ and Diana Troancă‡

†Technische Universität Dresden, Germany ‡Universitatea Babeş-Bolyai, Romania
sebastian.rudolph@tu-dresden.de {csacarea,dianat}@cs.ubbcluj.ro

Abstract
Formal Concept Analysis (FCA) is a mathemat-
ically inspired field of knowledge representation
with wide applications in knowledge discovery and
decision support. Polyadic FCA is an extension
of classical FCA that instead of a binary uses an
n-ary incidence relation to define formal concepts,
i.e. data clusters in which all elements are interre-
lated. We consider a paradigm for navigating the
space of concepts, based on so-called membership
constraints. We present an implementation for the
cases n ∈ {2, 3, 4} using an encoding into answer-
set programming (ASP) allowing us to exploit op-
timization strategies offered by ASP. For the case
n = 3, we compare this implementation to a sec-
ond strategy that uses exhaustive search in the con-
cept set, which is precomputed by an existing tool.
We evaluate the implementation strategies in terms
of performance. Finally, we discuss the limitations
of each approach and the possibility of generaliza-
tions to n-ary datasets.

1 Introduction
Conceptual knowledge is closely related to a deeper under-
standing of existing facts and relationships, but also to the ar-
gumentation and communication of why something happens
in a particular way. Formal Concept Analysis (FCA) [Gan-
ter and Wille, 1999] is a mathematical theory introduced by
R. Wille, being the core of Conceptual Knowledge Process-
ing [Wille, 2006]. It emerged from applied mathematics and
quickly developed into a powerful framework for knowledge
representation. It is based on a set-theoretical semantics and
provides a rich amount of mathematical instruments for rep-
resentation, acquiring, retrieval, discovery and further pro-
cessing of knowledge.

FCA defines concepts as maximal clusters of data in which
all elements are mutually interrelated. In FCA, data is rep-
resented in a basic data structure, called formal context. A
dyadic formal context consists of two sets, one of objects
and another of attributes and a binary relation between them,
expressing which objects have which attributes. From such

∗Diana Troancă was supported by a scholarship from DAAD.

dyadic formal contexts, formal concepts can be extracted
using concept forming operators, obtaining a mathematical
structure called concept lattice. Thereby, the entire informa-
tion contained in the formal context is preserved. The concept
lattice and its graphical representation as an order diagram
can then serve as the basis for communication and further
data analysis. Navigation in concept lattices enables explor-
ing, searching, recognizing, identifying, analyzing, and in-
vestigating; this exemplifies the fruitfulness of this approach
for knowledge management.

In subsequent work, F. Lehmann and R. Wille extended
dyadic FCA to a triadic setting (3FCA) [Lehmann and Wille,
1995]; here objects are related to attributes under certain con-
ditions. The triadic concepts arising from such data, can be
arranged in mathematical structures called trilattices. Trilat-
tices can be, up to some conditions, graphically represented
as a triangular diagram, yet, this kind of knowledge represen-
tation is much less useful and intuitive than its dyadic coun-
terpart, because of the difficulties of reading and navigating in
such triadic diagrams. Even if the theoretical foundations of
trilattices and that of 3FCA have been intensely studied, there
is still a need for a valuable navigation paradigm in triadic
concept sets. To overcome these difficulties, we proposed in
2015 a navigation method for triadic conceptual landscapes
based on a neighborhood notion arising from dyadic concept
lattices obtained by projecting along a dimension [Rudolph et
al., 2015b]. This method enables exploration and navigation
in triconcept sets by locally displaying a smaller part of the
space of triconcepts, instead of displaying all of them at once.

G. Voutsadakis [2002] further generalized the idea from
dyadic and triadic to n-adic data sets, introducing the term
Polyadic Concept Analysis. He describes concept forming
operators in the n-dimensional setting as well as the basic
theorem of polyadic concept analysis, a generalization of ear-
lier results by Wille [1995].

FCA was successfully used on triadic or tetradic datasets
such as folksonomies [Jäschke et al., 2008], data logs of
rental services [Cerf et al., 2013] or data about mobile op-
erators [Ignatov et al., 2015]. However, a common problem
for n-ary concept sets is their size and complexity. Even for
n = 2 and for relatively small data sets, the number of for-
mal concepts tends to be quite large (it can be of exponential
size in the worst case), which makes the graphical represen-
tation of these sets in their entirety unusable for practical pur-



poses. Several strategies have been proposed to overcome
this problem. For instance, Dragoş et al. [2014; 2015] are
using a circular representation for triadic data while investi-
gating users’ behavioral patterns in e-learning environments.
Săcărea [2014] uses a graph theoretical approach to represent
triadic concept sets obtained from medical data. For n-adic
concept sets with n ≥ 4, no navigation strategies have been
presented yet.

In 2015, we introduced membership constraints for n-adic
concepts in order to narrow down the set of user relevant n-
concepts and to focus on a certain data subset one is interested
to explore or start exploration from [Rudolph et al., 2015a].
As opposed to classical navigation tools, conceptual naviga-
tion has at its core a formal concept, i.e. a complete cluster
of knowledge. We discussed the problem of satisfiability of
membership constraints, determining if a formal concept ex-
ists whose object and attribute sets include certain elements
and exclude others.

In the current paper, we consider a general navigation
paradigm for the space of polyadic concepts and implement
this paradigm for the dyadic, triadic and tetradic (n = 4) case.
For the triadic case, we try two different implementations.
The first one uses the capabilities of Answer Set Program-
ming (ASP) for computing concepts and solving the corre-
sponding membership constraint satisfaction problem. By us-
ing this strategy, the implementation also explores optimiza-
tion strategies offered by ASP. The second strategy is based
on an exhaustive search of the set of polyadic concepts. The
concept set is no longer computed using the ASP encoding
but by one of the existing 3FCA tools. Finally, we evaluate
the performance of these two strategies in terms of implemen-
tation and computation speed and we discuss the limitations
of each approach and show that the ASP approach can be ex-
tended to any n-ary dataset.

2 Preliminaries
In this section, we briefly present the necessary basic notions
and definitions. Polyadic FCA is a direct generalization of
the dyadic or triadic case, where n (not necessarily differ-
ent) non-empty sets are related via an n-ary relation. An n-
concept is a maximal cluster of n sets, with every element
being interrelated with all the others.
Definition 1. Let n ≥ 2 be a natural number. An n-
context is an (n + 1)-tuple K := (K1,K2, . . . ,Kn, Y ),
where K1,K2, . . . ,Kn are sets and Y is an n-ary relation
Y ⊆ K1 ×K2 × · · · ×Kn.
Definition 2. The n-concepts of an n-context
(K1, . . . ,Kn, Y ) are exactly the n-tuples (A1, . . . , An)
that satisfy A1 × · · · ×An ⊆ Y and which are maximal with
respect to component-wise set inclusion. (A1, . . . , An) is
called a proper n-concept if A1, . . . , An are all non-empty.
Example 1. Finite dyadic contexts can be represented as
cross-tables, rows being labeled with object names, columns
with attribute names. In the triadic case, objects are related
to attributes and conditions via a ternary relation and the cor-
responding triadic context can be thought of as a 3D cuboid,
the ternary relation being marked by filled cells. Triadic con-
texts are usually unfolded into a series of dyadic ”slices”, like

in the following example, where we consider a triadic context
(K1,K2,K3, Y ) where the object set K1 consists of authors
of scientific papers, the attribute set K2 contains conference
names/journal names while the conditions K3 are the publi-
cation years. For this small selection we obtain a 2×4×2 tri-
adic context, the ”slices” being labeled by condition names.

2014 Corr ICC PIMRC HICSS

Rumpe ×
Alouni × × ×

2015 Corr ICC PIMRC HICSS

Rumpe × ×
Alouni × ×

Figure 1: DBLP data: author, conference/journal, year

There are exactly six triconcepts of this context, i.e., maxi-
mal 3D cuboids full of incidences:

• ({Rumpe,Alouni}, {Corr}, {2014, 2015}),

• ({Alouni}, {Corr, ICC ,PIMRC}, {2014}),

• ({Alouni}, {Corr, ICC}, {2014, 2015}),

• ({Rumpe}, {Corr,HICSS}, {2015}),

• (∅, {Corr, ICC ,PIMRC ,HICSS}, {2014, 2015}) and

• ({Rumpe,Alouni},{Corr,ICC ,PIMRC ,HICSS},∅).

The first four of these triconcepts are proper.

If K = (K1, . . . ,Kn, Y ) is an n-context, membership
constraints are indicating restricting conditions by specify-
ing which specific elements aj ∈ Kj must be included in
the jth component of an n-concept, respectively which ele-
ments bj ∈ Kj , j = 1, . . . , n must be excluded therefrom.
We investigated the question of satisfiability of such mem-
bership constraints, i.e., to determine if there are any formal
n-concepts which are satisfying the inclusion and exclusion
requirements [Rudolph et al., 2015a].

Definition 3. An n-adic membership constraint on an
n-context K = (K1, . . . ,Kn, R) is a 2n-tuple C =
(K+

1 ,K−1 , . . . ,K+
n ,K−n ) with K+

i ⊆ Ki called required sets
and K−i ⊆ Ki called forbidden sets.

An n-concept (A1, . . . , An) of K is said to satisfy such a
membership constraint if K+

i ⊆ Ai and K−i ∩ Ai = ∅ hold
for all i ∈ {1, . . . , n}.

We let Mod(K,C) (Modp(K,C)) denote the set of all
(proper) n-concepts of K that satisfy C.

An n-adic membership constraint C is said to be (prop-
erly) satisfiable with respect to K, if it is satisfied by one
of its (proper) n-concepts, that is, if Mod(K,C) 6= ∅
(Modp(K,C) 6= ∅).

We have shown that the problem of deciding satisfiabil-
ity of a membership constraint w.r.t. an n-context is NP-
complete in general [Rudolph et al., 2015a]. The intractabil-
ity easily carries over to proper satisfiability.



3 Navigation
In this section, we describe a strategy for navigating the space
of proper n-concepts of an n-context.1 The basic idea is
to use intuitive representations of “subspaces” of the over-
all space by specifying which elements must be included in
or excluded from a certain proper n-concept component Ai.
Obviously, such a subspace is identified by a membership
constraint C = (K+

1 ,K−1 , . . . ,K+
n ,K−n ) specifying exactly

the included and excluded elements for each component of
the n-concepts. The n-concepts in the “subspace” associ-
ated with C are then the n-concepts from Modp(K,C). Vi-
sually, C can be represented by displaying K1, . . . ,Kn as n
lists and indicating for every element if it is included, ex-
cluded, or none of the two (undetermined). The user can
then choose to restrict the space further by indicating for an
undetermined element of some Ki, if it should be included
or excluded. What should, however be avoided is that by
doing so, the user arrives at an empty “subspace”, i.e., a
membership constraint that is not satisfied by any proper n-
concept (i.e., Modp(K,C) = ∅). To this end, we will up-
date the membership constraint directly after the user inter-
action in order to reflect all necessary inclusions and exclu-
sions automatically following from the user’s choice. Assume
C = (K+

1 ,K−1 , . . . ,K+
n ,K−n ) is the membership constraint

after the user interaction. The updated constraint can be de-
scribed by C′ = (L+

1 , L
−
1 , . . . , L

+
n , L

−
n ), where

L+
i =

⋂
(A1,...,An)∈Modp(K,C)

Ai

and
L−i =

⋂
(A1,...,An)∈Modp(K,C)

Ki \Ai.

It is then clear that after such an update, for every element e of
some Ki which is still undetermined by C′, there exist proper
n-concepts (E1, . . . , En) and (F1, . . . , Fn) in Modp(K,C′)
with e ∈ Ei but e 6∈ Fi. Consequently, whatever undeter-
mined element the user chooses to include or exclude, the
resulting membership constraint will be properly satisfiable.
If the updated constraint C′ = (L+

1 , L
−
1 , . . . , L

+
n , L

−
n ) de-

termines for every element if it is included or excluded (i.e.,
if L+

i ∪ L−i = Ki holds for every i), the user’s navigation
has narrowed down the space to the one proper n-concept
(L+

1 , . . . , L
+
n ).

Considering the example from the previous section, as-
sume the user has specified the inclusion of the attribute Corr
in K2 and the exclusion of the attribute ICC from K2, i.e.,

C = (∅, ∅, {Corr}, {ICC}, ∅, ∅).
The proper 3-concepts of K satisfying C are

C1 = ({Rumpe,Alouni}, {Corr}, {2014, 2015}) and
C2 = ({Rumpe}, {Corr,HICSS}, {2015}),

therefore, we would obtain the updated constraint

C′ = ({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015}, ∅).
1Non-proper concepts are considered out of scope for knowledge

exploration, thus we exclude them from our consideration. The de-
scribed navigation would, however, also work if these concepts were
taken into account.

If the user now decided to additionally exclude 2014 from
K3, leading to the constraint

C′′ =
({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015}, {2014}),

the only proper 3-concept satisfying it is C2. Conse-
quently, C′′ will be updated to C′′′ = ({Rumpe}, {Alouni},
{Corr ,HICSS}, {ICC ,PIMRC}, {2015}, {2014}), which
then represents the final state of the navigation.

4 Implementation
Following the general scheme described in the previous sec-
tion, we implemented a navigation tool for the cases n ∈
{2, 3, 4}, using different strategies for n = 3. The two funda-
mentally different approaches differ in the method of comput-
ing the concepts (ASP vs different tool), as well as in which
navigation step the concepts are computed.

In 2015, we proposed an ASP encoding for the member-
ship constraint satisfiability problem and described an inter-
active search scenario [Rudolph et al., 2015a]. Currently,
in our first approach2, we extended and implemented this
scenario using different ASP optimization techniques. For
grounding and solving in the ASP navigation tool we used
Clingo from the Potassco collection [Gebser et al., 2011],
since it is currently the most prominent solver leading the lat-
est competitions [Calimeri et al., 2016].

ASP solves a search problem by computing answer sets,
which represent the models of a given answer set program
(the so-called stable models) [Gebser et al., 2012; Gelfond
and Lifschitz, 1988; 1991; Marek and Truszczyński, 1999;
Niemelä, 1999]. Our encoding is such that given K and C, an
answer set program is created, such that there is a one-to-one
correspondence between the answer sets and the n-concepts
of K satisfying C.

The known facts in a membership constraint satisfiability
problem are the elements of the context Ki, i ∈ {1, . . . , n},
the n-adic relation Y and the sets of required and forbidden
elements. The answer set program can be conceived as a
declarative implementation of the following “guess & check”
strategy:

• start from an empty constraint C
• decide for each element a ∈ Ki, i ∈ {1, . . . , n}, if
a ∈ K+

i , i.e. included, or a ∈ K−i , i.e. excluded,
hence reaching a membership constraint of the form
C = (K+

1 ,K−1 , . . . ,K+
n ,K−n ) with K+

i ∪ K−i = Ki

for every i

• check if (K+
1 , . . . ,K+

n ) is component-wise maximal
w.r.t. K+

1 ×K+
2 × . . .×K+

n ⊆ Y

• check if the required and forbidden elements are as-
signed correspondingly in the obtained membership
constraint C, i.e. required elements belong to K+

i ,
forbidden elements belong to K−j , for some i, j ∈
{1, . . . , n}

2https://sourceforge.net/projects/
asp-concept-navigation



At any step if one of the conditions is violated, the member-
ship constraint is eliminated from the set of models. Hence,
in the end we obtain all the membership constraints that cor-
respond to formal concepts satisfying the given restrictions.
The ASP encoding can be easily extended to retrieve only
the proper n-concepts satisfying C, by adding an additional
check that counts if |K+

i |>0 for every i.
The cautious option of ASP iteratively computes the in-

tersection over all answer sets, in the order in which they are
computed by the ASP solver. However, regardless of the ASP
solver, the last outputted solution when using the cautious
option is always the intersection of all answer sets of the pro-
gram. Later in this section, we show how this option can be
used to optimize the propagation phase of the navigation.

The propagation algorithm tests for all elements, that are
still in an undetermined state, which of the possible decisions
on that element (in or out) give rise to a satisfiable answer
set program. In case one of the decisions generates an unsat-
isfiable problem, the complementary choice is automatically
made. Remember that, as discussed in the previous section,
when starting from a satisfiable setting, it cannot be the case
that both choices generate an unsatisfiable program.

The alternative to explicitly testing all the possible choices
for every element in an undetermined state is to compute all
the answer sets for the already added constraints and to obtain
their intersection. This intersection contains the in and out
choices that need to be propagated, since their complemen-
tary constraints are not included in any answer set and hence,
would generate an unsatisfiable program. This approach is
formally described in Algorithm 1.

Algorithm 1 propagation of user decisions optimized
function PROPAGATEOPTIMIZED(K,C)
Input: n-context K, membership constraint C
Output: updated membership constraint
Data: membership constraint C=(K+

1 ,K
−
1 ,. . .,K

+
n,K

−
n )

for all i ∈ {1, . . . , n} do
L+
i =

⋂
(A1,...,An)∈Modp(K,C)

Ai

L−i =
⋂

(A1,...,An)∈Modp(K,C)
Ki \Ai.

end for
C = (L+

1 , L
−
1 , . . . , L

+
n , L

−
n )

return C
end function

Algorithm 1 was implemented in the ASP navigation tool
using the cautious option described previously in this section.
The implementation requires a single call to the ASP solver
which computes the intersection of the models in the answer
set. This intersection actually corresponds to the member-
ship constraint containing all the inclusions and exclusions
that need to be propagated. In comparison, for the simple
propagation algorithm, multiple calls to the ASP solver are
necessary. For each element that is in an undetermined state
two membership constraint satisfiability problems are gener-
ated, checking whether adding the element to the required

objects, respectively to the forbidden objects, generates an
unsatisfiable program. The optimized propagation algorithm
proved to drastically decrease the computation time as well
as the memory usage, hence improving the performance of
the interactive navigation tool. The experimental results are
described in more detail in the evaluation section.

The optimized ASP approach was implemented and evalu-
ated for triadic data. Furthermore, to show that it is easily ex-
tended to any n-adic context, we also implemented the dyadic
and tetradic case, without however evaluating their perfor-
mance on real data sets. In fact, the only modifications that
need to be made when updating the context’s dimension are
to add the new sets to the ASP encoding and to update the
graphical interface and the context loader to the new context
dimension.

The second approach for the navigation is a brute force
implementation3 and uses an exhaustive search in the whole
formal concept space. Hence, a prerequisite for this tool is
to previously compute all formal concepts using an existing
tool. We implemented the triadic case and used Trias [Jäschke
et al., 2006] to compute the triadic formal concepts. For that
reason, the input for the navigation tool is adapted to Trias’
output format.

This approach follows the same steps described in Algo-
rithm 1, however it uses different methods for implementing
them. The first main difference lies in the method of comput-
ing the formal concepts. Instead of computing them at each
step using a declarative approach, in the brute force approach
all formal concepts are computed in the preprocessing phase
using an existing algorithm. In a navigation step an exhaus-
tive search is necessary in order to select the subset of formal
concepts that satisfy the constraints and compute the intersec-
tion. This subset of formal concepts is successively pruned in
each navigation step until it contains a single concept, which
represents the final state of the navigation.

Figure 2: Screenshot navigation tool: intermediate state

The graphical interface is the same for all implementa-
tions. The first column includes possible actions and infor-
mation about the state of the navigation process (intermedi-
ate or final). The next columns each correspond to one di-
mension of the context and contain a list of the elements,

3https://sourceforge.net/projects/
brute-force-concept-navigation



each having two options next to it in or out. Figure 2 de-
picts a screenshot of the navigation example described in
section 3. It corresponds to the post propagation constraint
C′ = ({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015}, ∅).
This is an intermediate state, where required elements are
marked with green, forbidden elements with red, while ele-
ments in an undetermined state are unmarked. Furthermore,
required and forbidden elements have the in, respectively the
out column checked.

5 Evaluation
In order to evaluate the implemented tools, we ran exper-
iments on the dblp database4. The dblp database indexes
conference and journal publications and contains information
such as author, title, year, volume, and journal/conference
name. In order to compare the ASP to the implemented brute
force navigation tool one needs triadic datasets. The triadic
structure that we chose for the experiments contains the au-
thor’s name, conference/journal name and year of the publi-
cation. We extracted the described triadic dataset from the
dblp mysql dump and selected subsets of different dimen-
sions. The subsets were selected by imposing restrictions on
the number of publications per journal/conference, publica-
tion year and number of publications per author. For exam-
ple, the dataset with 28 triples was obtained following the
next steps:
• eliminate all journals/conferences having less than

15000 publications
• eliminate all publications before the year 2014
• eliminate all entries for authors that published less than

150 papers
After selecting a triadic data subset, no preprocessing

phase for the ASP navigation tool is needed, since its input
must contain only the triadic relation. However, the brute
force navigation tool requires a preprocessing phase. First
the triconcept set needs to be computed with the Trias algo-
rithm, hence the Trias tool5 needs to be installed separately.
If using the Trias algorithm without a database connection,
the standard input file requires numeric data. Hence, in order
to format the data according to the Trias tool input format,
the elements of the dataset need to be indexed. After running
Trias to obtain the triconcepts, the output needs to be format-
ted again before using the brute force navigation tool. Mainly
the dimensions and encodings of the object, attribute and con-
dition sets need to be added, so that the navigation tool can
output the names of the elements and not their indexes. Only
after these preprocessing steps can a user interactively nav-
igate in the tricontext using the brute force navigation tool.
Obviously, different formats for the input of the navigation
tool can be implemented, but for the purpose of comparing
the two tools we implemented one single input format based
on the standard Trias output.

For measuring the runtimes of the two navigation tools,
we have evaluated their performance on six different datasets

4http://dblp.uni-trier.de/
5https://github.com/rjoberon/

trias-algorithm

containing between 28 and 8133 triples. The datasets are de-
scribed in Table 1, where objects are identified with author
names, attributes with conferences/journal names and condi-
tions with the publication years. For each dataset we chose
some random navigation paths through the data, which con-
tain between 4 and 13 navigation steps and end when a final
state, i.e., a formal concept, is reached. By navigation step we
understand not only the action of a user choosing an element
as in or out, but also the subsequent propagation phase. In or-
der to compare the two approaches we computed the average
navigation step time for each dataset and measured the time
used for loading the data. This information can be obtained
from the file statistics.log which is created as an output by the
navigation tools. Furthermore, for the brute force navigation
we also measured the preprocessing time, i.e. the time that
Trias needs to compute the triconcepts. Note that the time
needed to index the dataset for the Trias input, as well as to
add the encodings to the Trias output to obtain the input for
the navigation tool, were excluded from this analysis, since
this processing phase can be avoided by implementing dif-
ferent input/output formats for the Trias tool or for the brute
force navigation tool. We denote the data loading time plus
the preprocessing time as offline time. In case of the ASP
navigation tool the offline time equals the data loading time,
since no preprocessing is needed. The experiments were run
on an Intel(R) Core(TM) I7-3630QM CPU @ 2.40 GHz ma-
chine with 4 GB RAM and 6M Cache.

First we compared the different propagation implementa-
tions for the ASP approach: simple propagation vs. optimized
propagation. The results are shown in Figure 3, where the
y-axis depicts the logarithmically scaled time of execution,
while the x-axis corresponds to the size of the relation. Be-
sides the big difference in the execution time of each step,
the ASP navigation tool with simple propagation uses a lot of
memory. For the context with 8133 triples after a few naviga-
tion steps the execution was stopped by the system because it
reached the limit memory of 4 GB RAM. In comparison, this
problem does not occur for the navigation tool with optimized
propagation.

Next, we ran experiments on the same dataset to compare
the ASP navigation tool with optimized propagation to the
brute force navigation tool. Figure 4 shows the offline time
of the ASP navigation tool vs. the brute force navigation tool
on the logarithmically scaled y-axis in relation to the num-
ber of triples represented on the x-axis. As the chart shows,
the offline time for the brute force navigation has a massive
growth compared to the size of the triadic relation, while the
offline time for the ASP navigation tool has a more linear
growth. When comparing the average step time, the brute
force navigation tool has slightly better results than the ASP
navigation tool, but, as shown in Figure 5, for subsets with
less than 6000 triples the average step time is under 1 second
for both approaches. Furthermore, from the experiments ran
on the larger data subset, containing 8133 triples, it followed
that the ASP navigation tool is still usable, with an average
step time of 1.194 seconds, as opposed to the brute force nav-
igation tool, which turned out to have a very time consuming
preprocessing phase: the Trias algorithm did not manage to
compute the triconcept set in two hours.



Table 1: ASP and brute force Navigator experiments

object
nr.

attribute
nr.

condition
nr.

triples
nr.

ASP navigation
data loading

time (s)

ASP navigation
average step

time (s)

Trias
preprocessing

time (s)

brute force
navigation data
loading time (s)

brute force
navigation average

step time (s)
2 15 2 28 0.015 0.1873 0.27 0.016 0.006

14 62 5 680 0.109 0.2315 1.04 0.421 0.0047
41 67 7 2514 0.374 0.3278 23.24 1.95 0.0219
68 67 8 4478 0.546 0.593 644.758 4.384 0.053
83 67 9 5987 0.66 0.635 2152.839 6.992 0.16
108 67 10 8133 1.07 1.194 > 2h

Figure 3: Average step time for ASP navigation with simple propa-
gation vs optimized propagation

Figure 4: Offline time for ASP vs brute force navigation tool with
respect to the number of triples in the relation

The experiments lead us to believe that for larger datasets
the ASP navigation tool should be the preferred one, since
it has a small execution time for loading the data, as well as
for each navigation step, both of which are important for an
interactive tool. Furthermore, in case of dynamic datasets that
change frequently, it makes sense to use the ASP navigation
tool which requires no preprocessing of the data.

Figure 5: Average step time for ASP vs brute force navigation tool
with respect to the number of triples in the relation

6 Conclusion
This paper presents a navigation paradigm for polyadic FCA
using different implementation strategies. For higher-adic
FCA, this is, to the best of our knowledge, the first naviga-
tion tool which allows to explore, search, recognize, identify,
analyze, and investigate polyadic concept sets by using mem-
bership constraints, in line with the Conceptual Knowledge
Processing paradigm. Experiments on 3-dimensional datasets
strongly suggests that the ASP navigation approach with op-
timized propagation is, in general, the better choice since it
has low execution times, even for larger contexts. Further-
more, in case one needs to adapt the navigation tool to an
n-dimensional context for n ≥ 5, the ASP approach is eas-
ier generalized, by following the example of the already im-
plemented cases n ∈ {2, 3, 4}, whereas for the brute force
navigation approach, which was implemented only for n = 3
using Trias, one would first need to find an algorithm for com-
puting the n-concepts.

For future work we intend to compare the ASP approach of
the n-adic case with the naive approach that uses tools such as
Data-Peeler [Cerf et al., 2009] or Fenster [Cerf et al., 2013]
which claim to be able to compute closed patterns for n-adic
datasets. Furthermore, we will focus on exploration strategies
and rule mining in polyadic datasets.



References
[Calimeri et al., 2016] Francesco Calimeri, Martin Gebser, Marco

Maratea, and Francesco Ricca. Design and results of the fifth
answer set programming competition. Artif. Intell., 231:151–181,
2016.

[Cerf et al., 2009] Loı̈c Cerf, Jérémy Besson, Céline Robardet, and
Jean-François Boulicaut. Closed patterns meet n-ary relations.
ACM Trans. Knowl. Discov. Data, 3(1):3:1–3:36, 2009.

[Cerf et al., 2013] Loı̈c Cerf, Jérémy Besson, Kim-Ngan Nguyen,
and Jean-François Boulicaut. Closed and noise-tolerant patterns
in n-ary relations. Data Min. Knowl. Discov., 26(3):574–619,
2013.

[Dragoş et al., 2014] Sanda Dragoş, Diana Haliţă, Christian
Săcărea, and Diana Troancă. Applying triadic FCA in studying
web usage behaviors. In Robert Buchmann, Claudiu Vasile Kifor,
and Jian Yu, editors, Proceedings of the 7th Internetiontal Con-
ference on Knowledge Science, Engineering and Management
(KSEM 2014), Sibiu, Romania, volume 8793 of Lecture Notes
in Computer Science, pages 73–80. Springer, 2014.

[Dragoş et al., 2015] Sanda Dragoş, Diana Haliţă, and Christian
Săcărea. Behavioral pattern mining in web based educational
systems. In Nikola Rozic, Dinko Begusic, Matko Saric, and Petar
Solic, editors, Proceedings of the 23rd International Conference
on Software, Telecommunications and Computer Networks (Soft-
COM 2015), Split, Croatia, pages 215–219. IEEE, 2015.

[Ganter and Wille, 1999] Bernhard Ganter and Rudolf Wille. For-
mal concept analysis - mathematical foundations. Springer,
1999.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann, Roland
Kaminski, Max Ostrowski, Torsten Schaub, and Marius Thomas
Schneider. Potassco: The potsdam answer set solving collection.
AI Commun., 24(2):107–124, 2011.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan and Claypool Publishers, 2012.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lif-
schitz. The stable model semantics for logic programming. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Pro-
gramming, Proceedings of the Fifth International Conference
and Symposium, Seattle, Washington (2 Volumes), pages 1070–
1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lif-
schitz. Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365–386, 1991.

[Ignatov et al., 2015] Dmitry I. Ignatov, Dmitry V. Gnatyshak,
Sergei O. Kuznetsov, and Boris G. Mirkin. Triadic formal con-
cept analysis and triclustering: searching for optimal patterns.
Machine Learning, 101(1-3):271–302, 2015.

[Jäschke et al., 2006] Robert Jäschke, Andreas Hotho, Christoph
Schmitz, Bernhard Ganter, and Gerd Stumme. TRIAS - an algo-
rithm for mining iceberg tri-lattices. In Christopher W. Clifton,
Ning Zhong, Jiming Liu, Benjamin W. Wah, and Xidong Wu, ed-
itors, Proceedings of the 6th IEEE International Conference on
Data Mining (ICDM 2006), Hong Kong, China, pages 907–911.
IEEE Computer Society Press, 2006.

[Jäschke et al., 2008] Robert Jäschke, Andreas Hotho, Christoph
Schmitz, Bernhard Ganter, and Gerd Stumme. Discovering
shared conceptualizations in folksonomies. Journal of Web Se-
mantics, 6(1):38–53, 2008.

[Lehmann and Wille, 1995] Fritz Lehmann and Rudolf Wille. A tri-
adic approach to formal concept analysis. In Gerard Ellis, Robert
Levinson, William Rich, and John F. Sowa, editors, Proceedings
of the Third International Conference on Conceptual Structures
(ICCS 1995), Santa Cruz, California, USA, volume 954 of Lec-
ture Notes in Computer Science, pages 32–43. Springer, 1995.

[Marek and Truszczyński, 1999] Victor W. Marek and Miroslaw
Truszczyński. The Logic Programming Paradigm: A 25-Year
Perspective, chapter Stable Models and an Alternative Logic Pro-
gramming Paradigm, pages 375–398. Springer, Berlin, Heidel-
berg, 1999.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable model
semantics as a constraint programming paradigm. Ann. Math.
Artif. Intell., 25(3-4):241–273, 1999.

[Rudolph et al., 2015a] Sebastian Rudolph, Christian Săcărea, and
Diana Troancă. Membership constraints in formal concept analy-
sis. In Qiang Yang and Michael Wooldridge, editors, Proceedings
of the Twenty-Fourth International Joint Conference on Artificial
Intelligence (IJCAI 2015), Buenos Aires, Argentina, pages 3186–
3192. AAAI Press, 2015.

[Rudolph et al., 2015b] Sebastian Rudolph, Christian Săcărea, and
Diana Troancă. Towards a navigation paradigm for triadic con-
cepts. In Jaume Baixeries, Christian Săcărea, and Manuel Ojeda-
Aciego, editors, Proceedings of the 13th International Confer-
ence on Formal Concept Analysis (ICFCA 2015), Nerja, Spain,
volume 9113 of Lecture Notes in Computer Science, pages 252–
267. Springer, 2015.

[Săcărea, 2014] Christian Săcărea. Investigating oncological
databases using conceptual landscapes. In Nathalie Hernan-
dez, Robert Jäschke, and Madalina Croitoru, editors, Proceed-
ings of the 21st Internation Conference on Conceptual Struc-
tures: Graph-Based Representation and Reasoning (ICCS 2014),
Iaşi, Romania, volume 8577 of Lecture Notes in Computer Sci-
ence, pages 299–304. Springer, 2014.

[Voutsadakis, 2002] George Voutsadakis. Polyadic concept analy-
sis. Order - A Journal on The Theory of Ordered Sets and Its
Applications, 19(3):295–304, 2002.

[Wille, 1995] Rudolf Wille. The basic theorem of triadic concept
analysis. Order - A Journal on The Theory of Ordered Sets and
Its Applications, 12(2):149–158, 1995.

[Wille, 2006] Rudolf Wille. Methods of conceptual knowledge
processing. In Rokia Missaoui and Jürg Schmid, editors, Pro-
ceedings of the 4th International Conference on Formal Con-
cept Analysis (ICFCA 2006), Dresden, Germany, volume 3874 of
Lecture Notes in Computer Science, pages 1–29. Springer, 2006.


