
BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA, ROMANIA

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Conceptual Visualization and Navigation
Methods for Polyadic Formal Concept Analysis

PhD Thesis

PhD Supervisors:

Prof. Dr. Florian Mircea Boian, Babeş-Bolyai Cluj-Napoca

Prof. Dr. rer. nat. Sebastian Rudolph, TU Dresden

PhD Student: Diana Troancă

2016

Abstract

Formal concept analysis (FCA) is the core of Conceptual Knowledge Processing, being

closely related to a deeper understanding of existing facts and relationships, while at

the same time trying to find explanations for their existence. Polyadic formal concept

analysis is an extension of classical FCA that instead of binary relations uses an n-ary

incidence relation to define formal concepts, i.e. data clusters in which all elements are

interrelated. In this thesis, we introduce new methods of visualization, navigation and

exploration based on polyadic formal concept analysis for n-adic datasets with n ≥ 3.

In Chapter 3.1, we introduce a triadic approach to study the Web usage behavior of an

e-learning platform. We analyze temporal aspects of the users’ behavior and visualize the

results in a circular layout using the Circos tool. In the subsequent chapter, we define

methods to reduce the size of a triadic dataset without altering its underlying structure.

For this purpose, we extend the notions of clarification and reduction from the dyadic to

the triadic setting and show that these processes have an influence solely on the efficiency

and not on the results of any further analysis. In Chapter 3.3, we introduce a navigation

paradigm based on a reachability relation among formal concepts. This relation gives

rise to so-called reachability clusters containing mutually reachable concepts. We discuss

theoretical aspects about the properties of the formal concepts arising from the defined

reachability relation and describe the framework of the proposed navigation paradigm. In

Chapter 3.4, we consider the problem of satisfiability of membership constraints in order

to determine if a formal concept exists whose components include and exclude certain

elements. We analyze the computational complexity of this problem for particular cases

as well as for the general n-adic problem and present an answer set programming encod-

ing for the membership constraint satisfaction problem. Next, we propose a navigation

paradigm based on membership constraints and implement it for the dyadic, triadic and

tetradic case using different strategies, one based on the proposed ASP encoding and one

using an exhaustive search in the whole concept set, precomputed with an external FCA

tool. We evaluate and compare the implementations and discuss the limitations and the

possibility of generalizations of each approach. In the final part of the thesis, we describe

the achievements of our research as well as possible directions for future work.

Acknowledgements

I would like to express my sincere gratitude to both of my advisors, Prof. Florian-Mircea

Boian and Prof. Sebastian Rudolph, for the continuous support of my PhD study and

related research, for their patience, motivation, and immense knowledge. In addition, I

would like to thank Prof. Sebastian Rudolph for the financial support that allowed me

to join his research group and spend 3 months at the host university TU Dresden, and

also to attend various conferences, workshops and doctoral consortiums. Without their

guidance and persistent help this dissertation would not have been possible.

Furthermore, I would like to thank the German Academic Exchange Service DAAD

for their financial support granted through a one year research scholarship. Besides the

opportunity to spend another 10 months at the host university TU Dresden working

within a larger group of researchers this enabled me to focus solely on my thesis and

achieve the final goals of my research project.

Besides my advisors I thank my fellow researchers Christian Săcărea, Sanda Dragoş

and Diana Haliţă for the stimulating discussions and for the sleepless nights we were

working together before deadlines.

I would also like to thank the rest of my thesis committee: Prof. Leon Ţâmbulea,

Lect. Darius Bufnea, Lect. Adrian Sterca, Conf. Rareş Boian, as well as other fellow re-

searchers for their insightful comments, feedback and also for the questions which incented

me to widen my research from various perspectives.

Last but not the least, I would like to thank my family for supporting me throughout

writing this thesis and in my life in general.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Thesis Focus and Key Contributions . 4

1.4 Thesis Outline . 6

2 Preliminaries and State of the Art 9

2.1 Formal Concept Analysis . 9

2.1.1 History of Formal Concept Analysis 9

2.1.2 Dyadic Formal Concept Analysis 10

2.1.2.1 Theoretical Foundations 10

2.1.2.2 Existing Tools and Algorithms 21

2.1.3 Triadic Formal Concept Analysis 26

2.1.3.1 Theoretical Foundations 26

2.1.3.2 Existing Tools and Algorithms 31

2.1.4 Polyadic Formal Concept Analysis 33

2.2 Complexity Theory . 34

2.3 Answer Set Programming . 37

3 Visualization, Navigation and Exploration in Polyadic Datasets 41

3.1 Formal Concept Analysis for Web Usage Mining 41

3.1.1 Web Usage Mining and Web Analytics Metrics 41

3.1.2 Web Usage Mining for E-learning Systems 45

3.1.3 PULSE - a PHP Utility used in Laboratories for Student Evaluation 47

3.1.4 Applying Formal Concept Analysis on PULSE Usage Data 48

3.1.4.1 Data Preprocessing and Pattern Discovery 48

3.1.4.2 Pattern Analysis and Visualization using Circos 51

3.1.5 Circos Interpretations of Triadic Data 52

3.2 Clarification and Reduction of Triadic Contexts 57

3.3 A Triadic Navigation Paradigm based on Reachability Relations 61

3.3.1 Motivation . 61

3.3.2 Proof of Concept . 62

3.3.3 Reachability Relations among Triconcepts 64

3.3.4 Reachability in Composed Tricontexts 72

3.3.5 Properties of Reachability Clusters 75

3.3.6 Exploration Strategy . 81

3.4 An n-adic Navigation Paradigm based on Membership Constraints 84

3.4.1 Motivation . 84

3.4.2 Membership Constraints . 85

3.4.2.1 Membership Constraints in Dyadic Formal Concept Analysis 86

3.4.2.2 Membership Constraints in Triadic Formal Concept Analysis 91

3.4.2.3 Membership Constraints in n-adic Formal Concept Analysis 96

3.4.2.4 A Discussion on Proper Satisfiability 98

3.4.3 Encoding for Membership Constraints in Answer Set Programming 101

3.4.4 Navigation in Conceptual Spaces based on Membership Constraints 103

3.4.5 Implementation of Exploration and Navigation Tool based on Mem-

bership Constraints . 108

3.4.5.1 ASP Navigation Tool . 111

3.4.5.2 Brute Force Navigation Tool 112

3.4.6 Evaluation and Comparison of the ASP and the Brute Force Approach113

4 Conclusions and Future Work 123

4.1 Achievements . 123

4.2 Open Issues and Future Work . 125

1. Introduction

1.1 Motivation

Given that nowadays collecting and storing data is not so problematic as it used to be,

there are large collections of data available for further analysis. The challenge, however, is

to process this data and to extract useful information. There are a lot of real life situations

where a better understanding of the available data can help us improve certain services

or methodologies. For example, in the medical field, a lot of researchers try to study data

available from patients in order to have a better insight about diseases, treatments and

outcomes. Other systems which store large datasets are online platforms. One relatively

new, but important, field in this category is online education. In the last years, the use of

e-learning platforms has rapidly increased, not just in academia, but also for personal use

(for example, the platform Coursera1 had an immense growth in the number of courses

offered since 2012 when it was founded). Analyzing the log data of such online learning

platforms, one can try to understand the dynamics and the behavior of the users in order

to enhance the platform structure and the learning experience of the students.

The World Wide Web nowadays can be seen as a huge information service center

and browsing Web pages has become an essential aspect of our everyday lives. In order

to improve the online experience by adapting the content and the design of Web pages,

behavioral aspects of these processes have become more and more important, hence re-

searchers developed tools for Web usage mining. However, when trying to apply these

tools to an educational portal, we observe that special attention has to be given to these

systems. Considering that most of the websites have a commercial purpose, the goals

of the users visiting those sites are rather different from the goals of the users of an e-

learning platform, whose behavior is focused solely on information acquisition. Driven by

these practical requirements, we propose formal concept analysis as Web usage mining

technique.

Formal concept analysis (FCA) provides a powerful mathematical tool that addresses

1https://www.coursera.org/

1

https://www.coursera.org/

Chapter 1 Introduction

knowledge processing and knowledge representation ([Ganter and Wille, 1999]). The

methods offered by FCA focus on representing, acquiring and retrieving knowledge and

therefore serve the purpose of understanding and investigating datasets. The field of

formal concept analysis has constantly developed in the last 30 years, one important

point in its evolution being the extension to higher-dimensional datasets. FCA offers

reasoning support for understanding large collections of information. Furthermore, it has

the advantage that one can apply FCA techniques on a dataset without having extensive

knowledge about the underlying reasoning support. This can be a big advantage in

employing FCA as a method of knowledge processing used on a large scale. However, in

order to achieve this, user-friendly tools are required which automate the FCA procedures

and let users focus on idetified correlations and patterns in the processed data. Given

this problem setting, we propose different visualization, navigation and exploration tools

and analyze their usability in experimental settings.

We test these tools on real datasets, such as:

• the usage data of an e-learning portal called PULSE, used at Babeş-Bolyai Univer-

sity Cluj-Napoca,

• a medical database comprising information about several thousand cancer patients,

• the dblp database2 which contains information about conference and journal publi-

cations such as: authors, journal or conference name, volume, year.

In our experiments, we find that the applicability of the proposed tools is not limited

to educational portals, which were the starting point of our research, and the tools can

be used for analyzing any dataset, even for data of dimensions higher than three (we

analyze a tetradic dataset obtained from the dblp database). This makes the proposed

tools valuable for organizing knowledge in a way which supports human thinking and

decision making.

1.2 Problem Statement

When trying to formalize situations occurring in everyday life, it is easy to imagine them

using binary relations, which is exactly the formalization exploited by dyadic formal con-

cept analysis: there are objects, attributes and a binary relation between them that states

whether an objects has or has not a certain attribute. There are a lot of problems that can

2http://dblp.uni-trier.de/

2

http://dblp.uni-trier.de/

Chapter 1 Introduction

be modeled by this paradigm considering preprocessing techniques like attribute scaling

in case of multivalued attributes.

However, sometimes it makes sense to consider a problem as “three-dimensional”, using

an additional set of conditions, or even study a dataset as an n-adic context with n > 3.

For the triadic case, the (ternary) relation expresses if an object has an attribute under

a certain condition. Typical examples of triadic contexts, often analyzed by researchers,

are based on folksonomies, where we have users, resources and tags [Jäschke et al., 2008;

Trabelsi et al., 2012].

There are a number of papers studying applications for the triadic case and also a few

studying theoretical aspects of triadic or higher-adic formal concept analysis. However,

we believe that there are certain theoretical aspects that are not yet fully defined and

understood for the triadic case. One of the problems, that this thesis addresses, is that

triadic formal concept analysis does not scale well when handling large datasets. In ad-

dition, the tools available for n-adic contexts, with n > 2, are limited to the functionality

of computing the formal concepts and moreover, they usually require some knowledge of

the theoretical aspects of formal contexts in order to use them. Most of these tools have

a very large runtime already for medium datasets and are almost unusable for very large

datasets.

We consider that besides computing the concept set, an even more important aspect

is exploring this concept set using different graphical visualizations which offer navigation

functionalities among the concepts. For the usability of such tools it is important to

offer visualizations of the data in a human-readable format, which is easy to understand

without extensive FCA knowledge. With this purpose, we propose in this thesis different

methods of navigation and exploration for higher-adic datasets, all based on graphical

representations of the data which offer a better understanding of the underlying structure

and the existing correlations within the data. We discuss the scalability of the proposed

paradigms and show that some of these approaches have the advantage of being applicable

to any n-adic dataset.

In order to study the applicability of these tools, we analyze the computational com-

plexity of the underlying problems as well as their time efficiency. Furthermore, we run

experiments on multiple real datasets in order to test the different exploration strategies

proposed by us. From the interpretation of the experimental results, we deduce that these

exploration methods give more insight into the structure of the data by detecting patterns

and correlations which are not visible in the raw data.

Obviously, the proposed navigation tools have certain limitations. These limitations

together with possible solutions, which lead to new ideas for future work, are discussed in

3

Chapter 1 Introduction

the thesis. However, we believe that despite some limitations, the proposed exploration

approaches can be successfully used as an interactive data mining technique and more

importantly, they make data analysis techniques based on formal concept analysis more

accessible to the users, regardless of their previous knowledge about FCA.

1.3 Thesis Focus and Key Contributions

This thesis offers an overview of polyadic formal concept analysis with the main focus

on the triadic case. The dyadic case was extensively studied by other researchers and

aspects such as understanding the underlying structure of the context, visualizing the

context, navigating among concepts, reducing and clarifying the context, all have a good

theoretical and practical basis for dyadic datasets. In our work, we try to extend these

theoretical notions from the dyadic case to the triadic one and we study practical aspects

and implementations for higher-adic cases. The only tools available so far for contexts of

arity higher than three focus on computing formal concepts. However, there are no tools

regarding reduction and visualization of a context, or navigation within the context. For

that reason, we implement tools regarding all of this aspects and moreover, we analyze

different techniques of computing formal concepts and compare them to available algo-

rithms. For the tools we develop, we analyze besides their efficiency also their scalability

and extend them, where possible, to the general case of n-adic contexts.

The main contributions of the thesis as well as where the results were published are

detailed in the following:

Chapter 3.1: In this chapter, we analyze alternative visualization methods for a

formal context in a circular layout using a tool called Circos (originally developed to

visualize genomic data in bioinformatics). We then use formal concept analysis as an

educational Web usage mining technique on the data of an e-learning platform called

PULSE. In our analysis, we investigate temporal patterns of Web usage behavior within

the system and identify three types of student behaviors: relaxed, normal and intense. We

find correlations between these types of behavior and the timeline of the attended courses

taking into consideration what different activities occured at each point in the timeline

(task assignment, task deadlines, partial exam, final exam, etc.). Finally, the results

obtained in the analysis are visualized with the previously mentioned circular layout.

The techniques used for this analysis as well as experimental results were published in

2014 in two papers, at the International Conference on Knowledge Science, Engineering

and Management [Dragoş et al., 2014b] and in the journal Studia Universitatis Babeş-

Bolyai [Dragoş et al., 2014a].

4

Chapter 1 Introduction

Chapter 3.2: This chapter presents extensions of the theoretical notions of clarifica-

tion and reduction of a formal context from the dyadic to the triadic case. Most of the

time, these are processes that should occur in the preprocessing phase of an analysis of a

dataset, depending on the final purpose of the analysis. Clarification and reduction serve

the purpose of reducing the size of the dataset without altering its underlying structure.

Intuitively, elements that can be clarified have identical behavior to some other elements,

and elements that can be reduced have the common behavior of a group of elements (i.e.,

their behavior could be expressed as the “intersection” of the behaviors of all elements in

the group). We deduce that the clarification and reduction processes eliminate redundant

information and increase the efficiency of the algorithms applied in the next phases of

the analysis, such as computing the structure of the context and visualize it or navigate

among the formal concepts. The theoretical aspects of clarification and reduction as well

as an application on a cancer registry database were published in 2015 at the International

Workshop “What can FCA do for Artificial Intelligence” co-located with the International

Joint Conference on Artificial Intelligence [Rudolph et al., 2015b]. In the experiments

described in our paper, we observe that in real datasets the number of elements that can

be eliminated through the clarification and reduction process is often high, hence these

preprocessing steps play an important role for speeding up the data analysis.

Chapter 3.3: In this chapter, we describe the first navigation paradigm proposed for

triadic datasets based on reachability notions. Motivated by the fact that dyadic contexts

have a lattice representation which enables navigation among the concepts, we propose

a navigation method for triadic datasets that builds upon the lattice representations of

appropriately defined dyadic projections. Intuitively, after choosing a concept and a so-

called perspective, i.e. one of the three dimensions of the context, the user can visualize

a subspace of concepts reachable through that perspective. The navigation is such that

the user can choose a different perspective for each navigation step, hence being able to

explore the structure of the dataset. We analyze the properties of the defined notion of

reachability and the underlying structure of the context with respect to the reachability

relation. We observe that there are so-called clusters of reachable concepts and moreover,

from a starting point it is not always the case that every other concept is reachable.

Understanding the properties of the clusters is a non-trivial task which gives rise to

interesting theoretical questions which are discussed in our work. The theoretical and

practical aspects of this navigation paradigm were published in 2015 at the International

Conference on Formal Concept Analysis [Rudolph et al., 2015c].

Chapter 3.4: The second navigation paradigm described in this chapter has a com-

pletely different approach and focuses on narrowing down the space of concepts according

5

Chapter 1 Introduction

to the user’s interests by applying different constraints on the data. With this purpose,

we define the notions of membership constraints and consider the corresponding satisfia-

bility problem in a context, in order to determine if there is a concept that satisfies the

given constraints. We analyze the computational complexity of the satisfiability problems

for dyadic, triadic and finally n-adic datasets. Given that, in general, the membership

constraint satisfiability problems turn out to be NP-complete it is not trivial to find effi-

cient algorithms for computing them. For that purpose, we present a generic answer set

programming (ASP) encoding of membership constraints. This encoding enables us to

use ASP tools in the implementation, which are highly optimized to solve satisfiability

problems, even when they are NP-complete. Next we describe an interactive naviga-

tion paradigm based on membership constraints which allows the user to gradually add

constraints and navigate towards a single concept representing the potential goal of the

navigation. These results were published in 2015 at the International Joint Conference on

Artificial Intelligence [Rudolph et al., 2015a]. As a next step of our work, we imple-

ment this navigation paradigm using different techniques. The first technique is based on

the ASP encoding and has the advantage of scalability, while the second technique, which

is based on an exhaustive search in the concept space, depends on an external tool for

computing the formal concepts and therefore it is not always scalable. In order to ensure

that the user always gets to a concept in the final state of the navigation, we introduce

a propagation phase that adds other necessary constraints depending on the constraint

added by the user. We analyze optimization methods for the propagation phase and, fi-

nally, run experiments in order to compare the two approaches. The detailed description

of the navigation paradigm and the different techniques used in the implementation as well

as the experimental results were described in a paper submitted in 2016 at the Workshop

on Artificial Intelligence for Knowledge Management co-located with the International

Joint Conference on Artificial Intelligence [Rudolph et al., 2016].

1.4 Thesis Outline

The thesis has four main parts. The first introductory part contains the motivation of our

research and a description of the problem that we are trying to solve. Moreover, the key

contributions of the thesis are highlighted here with the corresponding papers in which

the results were published.

The second part includes preliminaries and the state of the art. It starts by introducing

formal concept analysis for the dyadic, triadic and n-adic case. Besides the theoretical

aspects, for each of the cases, existing tools and algorithms are presented. In this chapter,

6

Chapter 1 Introduction

one can see that some theoretical results are available only for dyadic FCA (hence the

need for extension). The next two chapters discuss some notions of complexity theory

and answer set programming, which are necessary in order to understand the following

chapters.

The third part, called “Visualization, Navigation and Exploration in Triadic Datasets”

is the main part of the thesis comprising all the theoretical and practical results obtained

in our research. It starts with Chapter 3.1 which has a more practical approach while

trying to solve the first problem that we address, namely visualization of triadic datasets.

Here, we introduce Web usage mining and Web analytics metrics and explain why most

Web usage mining techniques do not work as expected on e-learning systems. Then we

use formal concept analysis as a Web usage mining technique and analyze the log data of

an e-learning portal called PULSE. We offer a detailed description of the analysis which

includes three phases: preprocessing, pattern discovery and pattern analysis. Finally,

we visualize the experimental results in a circular layout using a tool called Circos and

interpret these results in order to identify temporal patterns of Web usage behavior.

In Chapter 3.2, the notions of clarification and reduction are extended from the dyadic

to the triadic setting. After formally defining the two processes for triadic contexts, we

run experiments on a cancer registry database. Herefrom we conclude that clarification

and reduction are an important part of the preprocessing phase of any data analysis, since

they can drastically reduce the size of a dataset without altering its underlying structure,

i.e. without changing the results of the analysis.

Chapter 3.3 describes the first navigation paradigm that we propose for triadic datasets.

We motivate the chosen method of navigation and before introducing the theoretical as-

pects, we present a proof of concept by navigating within a small triadic dataset. Next we

introduce the notions of reachability relation among triconcepts and reachability cluster,

and study properties arising from these notions. Finally, we describe an exploration strat-

egy based on the reachability relation, which uses conveniently chosen dyadic projections

in order to take advantage of the navigation strategies of a dyadic context.

Chapter 3.4 contains a second navigation paradigm based on a different approach. This

approach focuses on narrowing down the space of concepts based on constraints speci-

fied by the user. For this purpose we introduce the theoretical aspects of membership

constraints for the dyadic, triadic and n-adic case. Moreover, we discuss the computa-

tional complexity of the satisfiability problems of membership constraints. Given that the

satisfiability problem proves to be NP-complete in general, we present an encoding for

membership constraints in answer set programming, which will enable us to use highly

optimized ASP tools. In the next chapter we discuss possible implementations and opti-

7

Chapter 1 Introduction

mizations for an exploration and navigation tool based on membership constraints. The

two different tools described here are ASP Navigation Tool, based on the ASP encoding,

and Brute Force Navigation Tool, based on an exhaustive search in the concept space,

which was precomputed with an external FCA tool. In the last chapter we evaluate and

compare the two navigation paradigms as well as the different implementation strategies.

The final part of the thesis highlights the achievements of our research and discusses

open issues and plans for future work.

8

2. Preliminaries and State of the Art

2.1 Formal Concept Analysis

2.1.1 History of Formal Concept Analysis

Formal concept analysis (FCA) was introduced by Bernhard Ganter, Rudolf Wille and

Peter Burmeister in the early 1980s. The theory has its mathematical basis in general

lattice theory created by Garrett Birkhoff in the 1930s and published a few years later

[Birkhoff, 1940].

The main advantage of formal concept analysis is the fact that the FCA tools do not

require extensive knowledge on lattice theory. Furthermore, FCA is perfectly suitable for

information retrieval, since elements satisfying some properties can be expressed in the

FCA formalization as a set of objects having some attributes in common.

In 1995, Fritz Lehman and Rudolf Wille extended formal concept analysis to the

triadic case. They added a third dimension, changing the way of modelling a formal

concept analysis problem as follows: objects have attributes under certain conditions.

However, because of its higher complexity, there was little focus on the triadic case.

Considering the limited attention the triadic case received, it is not surprising that

there are even less results for further generalizations of formal concept analysis. For the

n-adic case, there are some theoretical aspects that have been studied by Voutsadakis

[2002], but there are few applications for dimensions higher than 3 [Jelassi et al., 2012;

Cerf et al., 2009; Cerf et al., 2013]. The reason behind this is not just the high complexity,

but also the lack of appropriate datasets. The datasets available have usually only been

interpreted as bidimensional or tridimensional contexts. Nevertheless, it is interesting to

understand the aspects of n-adic formal concept analysis even on a theoretical level.

9

Chapter 2 Preliminaries and State of the Art

2.1.2 Dyadic Formal Concept Analysis

2.1.2.1 Theoretical Foundations

This chapter aims to present an overview of dyadic formal concept analysis, in order to

better understand the extensions to the triadic as well as to the general n-adic case. For a

deeper understanding of the theoretical foundations please refer to the references [Ganter

and Wille, 1999].

The fundamental structures used by formal concept analysis are those of a formal

context and a formal concept, notions often simply referred to as context and concept.

Definition 2.1.1 A (dyadic) formal context K = (G,M, I) is defined as a triple con-

sisting of two sets and a binary relation I ⊆ G ×M between the two sets. G represents

the set of objects, M the set of attributes and I is called the incidence relation. The

notation for an element of the incidence relation is gIm or (g,m) ∈ I and it is read

object g has attribute m.

Formal contexts can be represented as cross tables, the rows of which are objects,

the columns attributes and the incidence relation is represented by crosses in the table.

Therefore, if object g has attribute m, there will be a cross in the cell corresponding to

row g and column m. Although this is a simple and easy to understand representation,

it is only useful for small contexts. In the case of large contexts it becomes impossible to

read the incidence relation or to extract useful information only by looking at the table.

Example 2.1.1 The following is an example of a cross table representation for the planets

context. The objects are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune

and the attributes are properties related to the size, distance from the sun and whether

they have satellites or not.

planets dist
near

dist
far

size
small

size
medium

size
large

satellite
yes

satellite
no

Mercury × × ×
Venus × × ×
Earth × × ×
Mars × × ×
Jupiter × × ×
Saturn × × ×
Uranus × × ×
Neptun × × ×

Figure 2.1: Planets context

10

Chapter 2 Preliminaries and State of the Art

In order to define the notion of a formal concept, the derivation operators have to be

introduced first.

Definition 2.1.2 We define the derivation operator for the object set G and the attribute

set M by:

A′ = {m ∈M | gIm, ∀g ∈ A} for A ⊆ G, and

B′ = {g ∈ G | gIm, ∀m ∈ B} for B ⊆M .

For an element g ∈ G or m ∈ M , instead of writing {g}′ and {m}′, often the notations

g′ and m′ are used.

Based on these derivation operators, the notion of formal concept is introduced.

Definition 2.1.3 If K = (G,M, I) is a formal context, then a (dyadic) formal concept

is defined as a pair (A,B), with A ⊆ G, B ⊆M , A′ = B and B′ = A. A is called extent

and B intent of the concept. The set of all concepts of the context (G,M, I) is denoted

by B(G,M, I) or B(K).

Definition 2.1.4 (Object concept and attribute concept) Let K = (G,M, I) be a

formal context, g ∈ G an object and m ∈ M an attribute. Then, the formal concept

(g′′, g′) is called an object concept and it is denoted by γg, while the formal concept

(m′,m′′) is called an attribute concept and it is denoted by µm.

The context in Figure 2.1 has the following concepts:

• (∅, {near , far , small ,medium, large, yes , no})

• ({Jupiter , Saturn}, {large, far , yes})

• ({Uranus ,Neptun}, {medium, far , yes})

• ({Earth,Mars}, {yes , near , small})

• ({Mercury ,Venus}, {no, near , small})

• ({Jupiter , Saturn,Uranus ,Neptun}, {far , yes})

• ({Earth,Mars ,Mercury ,Venus}, {near , small})

• ({Jupiter , Saturn,Uranus ,Neptun,Earth,Mars}, {yes})

• ({Mercury ,Venus ,Earth,Mars , Jupiter , Saturn,Uranus ,Neptune}, ∅)

11

Chapter 2 Preliminaries and State of the Art

The following proposition offers a better understanding of the rules of derivation.

Proposition 2.1.1 Let (G,M, I) be a context and A1, A2, A3 ⊆ G. Then the following

hold:

• A1 ⊆ A2 ⇒ A′
2 ⊆ A′

1

• A3 ⊆ A′′
3

• A′
3 = A′′′

3

Furthermore, the same correspondences apply for subsets of attributes.

Since formal concept analysis is based on order theory, the notion of closure system,

closure operator and complete lattice have to be introduced next.

Definition 2.1.5 (Closure system) A closure system on a set G is a set of subsets that

contains G and is closed under intersection.

Definition 2.1.6 (Closure operator) A closure opeator φ on G is a map that has the

following properties for ∀X,Y ⊆ G:

• assigns a closure φX ⊆ G to X

• monotone: X ⊆ Y ⇒ φX ⊆ φY

• extensive: X ⊆ φX

• idempotent: φφX = φX

The set {φ(X) | X ⊆ G} is called the set of closures of φ.

Before introducing the notion of a complete lattice, we define a few notions from order

theory.

Definition 2.1.7 (Infimum and supremum) Let (B,≤) be an ordered set and A ⊆ B.

We call an element l ∈ A a lower bound of A if for ∀a ∈ A we have that l ≤ a.

Similarly, an element u ∈ A is an upper bound of A if for ∀a ∈ A we have that l ≥ a.

Furthermore, the infimum of A is defined as the largest element of the set of all lower

bounds of A and is denoted by inf A or
∧
A. If we talk about the infimum of two elements

x and y, i.e. A = {x, y}, the notations inf(x, y) and x∧ y are also used. Analogously, the

supremum of A is defined as the smallest element of the set of all upper bounds of A

and is denoted by supA or
∨

A. For the supremum of two elements x and y we use the

notations sup(x, y) or x ∨ y. It is notable that the infimum and supremum do not always

exist.

12

Chapter 2 Preliminaries and State of the Art

Definition 2.1.8 (Complete lattice) An ordered set V = (V,≤) is a lattice, if for any

two elements x, y ∈ V the supremum sup(x, y) and the infimum inf(x, y) always exist. V

is called a complete lattice, if for any subset X ⊆ V , the supremum
∨
X and the infimum∧

X exist.

Observation 2.1.1 For any closure operator, the set of all closures is a closure system.

Any closure system is an ordered set by set inclusion ⊆ and it is actually a complete

lattice.

Next we can define the notions of
∧
-irreducible and

∨
-irreducible in a complete lattice

as follows [Ganter and Wille, 1999].

Definition 2.1.9 (
∧
-irreducible and

∨
-irreducible) Let V be a complete lattive and

v ∈ V an element of the lattice for which we define the following:

v∗ =
∨
{x ∈ V | x < v}

v∗ =
∧
{x ∈ V | v < x}

We say that the element v is
∨
-irreducible (read supremum-irreducible) if v ̸= v∗,

i.e. if v cannot be represented as the supremum of strictly smaller elements. Analogously,

v is
∧
-irreducible (read infimum-irreducible) if v ̸= v∗, i.e. if v cannot be represented

as the infimum of strictly larger elements.

The set of concepts of a formal context can be ordered by a subconcept-superconcept

relation as follows:

Definition 2.1.10 Let (A1, B1) and (A2, B2) be two concepts of a context K. (A1, B1) is

a subconcept of (A2, B2) if A1 ⊆ A2. In this case, (A2, B2) is called a superconcept

of (A1, B1). The notation is (A1, B1) ≤ (A2, B2). The set of all concepts with this order

relation, (B(K),≤), is a complete lattice, called the concept lattice of K.

In the subconcept-superconcept relation there is a “smallest” and a “biggest” element.

These are, usually, the trivial concepts that have either the extent or the intent equal to

the empty set. Hence, for the context (G,M, I), the concept (∅,M) would correspond

to the node at the bottom of the concept lattice and the concept (G, ∅) to the node

at the top of the lattice. However, it can be the case that the minimal concept does

not have an empty object set if there is at least one object that is in relation to all the

attributes. The same applies to the maximal concept, that can have a non-empty attribute

set. Sometimes only non-trivial concepts, i.e. concepts having non-empty components, are

13

Chapter 2 Preliminaries and State of the Art

taken into consideration when analyzing a formal context, excluding the trivial ones which

are artificial and don’t reveal any information about the data.

The fact that the concept lattice is a complete lattice is actually proven by the basic

theorem on concept lattices [Ganter and Wille, 1999]. Another consequence of the basic

theorem is that the set of extents, respectively the set of intents are closure systems on

the object set, respectively on the attribute set. The corresponding closure operator for

each of the closure systems is the double derivation X 7→ X ′′.

The concept lattice of the previously given example (Figure 2.1), is represented in

Figure 2.2.

Figure 2.2: Lattice for the planets context

Intuitively, a concept can be understood as a set of objects with a common set of

attributes, that satisfies the condition of maximality (i.e. no other object or attribute can

be added to the extent, respectively to the intent of the concept without violating the

first property). This interpretation of the formal concepts makes formal concept analysis

a useful tool for information retrieval, since in a dataset, we usually look for a set of

objects that have certain properties, i.e. attributes.

All the concepts can be read from the concept lattice in the following way. Each

concept corresponds to exactly one node in the lattice. When looking at a node, the

extent of the corresponding concept contains all the objects from the lattice reachable

when going (only) downward. Analogously, the intent contains all the attributes reachable

when going (only) upward.

Because the lattice is based on an order relation, navigating in a lattice structure

14

Chapter 2 Preliminaries and State of the Art

is easy. Consider for example the concept ({Jupiter, Saturn}, {large, far, yes}) as a

starting point. When navigating upwards, we get to the following concept:

({Jupiter, Saturn, Uranus,Neptun}, {far, yes}). Hence, in this navigation step two new

objects were added to the extent, but one attribute was removed from the intent, which

can be easily deduced from the concept lattice. Similarly, when navigating downwards

the extent gets smaller and the intent larger.

However, for larger contexts, the concept lattice becomes hard to read because of

the numerous labels that need to be attached to the nodes and impossible to use as a

visualization tool. Therefore, the possibility of reducing the dimensions of the context,

i.e. the number of objects and attributes, was studied. There are two operations that

can reduce the size of the context without altering its underlying structure: clarification

and reduction. Clarification is based on the idea that objects with the same intent can

be merged into one element of the same type, since they have the same behavior. The

same applies for attributes with the same extent.

Definition 2.1.11 A dyadic context (G,M, I) is clarified if for any objects g, h ∈ G,

from g′ = h′ follows g = h, and for all attributes m,n ∈M , m′ = n′ implies m = n.

Observation 2.1.2 Intuitively, when examining the cross table representation of the con-

text, elements that can be clarified are objects corresponding to equal lines and attributes

corresponding to equal columns. The same properties can be observed in the concept lat-

tice of the context: if two elements of the same type (objects or attributes) correspond to

the same node in the concept lattice than they can be merged in the clarification process

without altering the structure of the concept lattice.

The second operation, reduction, takes advantage of the fact that objects and attributes

that can be written as combinations of other objects, respectively attributes, can be

eliminated without having an influence on the conceptual structure.

Definition 2.1.12 A clarified context (G,M, I) is called row reduced if every object

concept is ∨-irreducible and column reduced if every attribute concept is ∧-irreducible.
The context is called reduced if it is both row reduced and column reduced.

Proposition 2.1.2 Consider a clarified context (G,M, I) and two elements g ∈ G, m ∈
M . Then we have the following characterizations of reducible object, respectively attribute:

• object g is reducible if and only if there exists a subset X ⊆ G with g /∈ X, s.t.

g′ = X ′

15

Chapter 2 Preliminaries and State of the Art

• attribute m is reducible if and only if there exists a subset Y ⊆M with m /∈ Y , s.t.

m′ = Y ′

Proof. The proof follows from the fact that, in case that g′ = X ′, then the object

concept γg becomes the supremum of all object concepts γx, x ∈ X. Similarly, the

attribute concept µm becomes the infimum of all attribute concepts µy, y ∈ Y , when

m′ = Y ′ [Ganter and Wille, 1999]. 2
Observation 2.1.3 Intuitively, an object that can be reduced corresponds to a line that

can be expressed as a combination of other lines as their intersection. Analogously, an

attribute that can be reduced corresponds to a column that can be expressed as a combi-

nation of other columns. However, the elements that can be eliminated in the reduction

process are not immediately observable in the concept lattice.

The planets context from Example 2.1.1 is already clarified and reduced. The following

example, although being an artificially generated context, will illustrate the procedure of

clarification and reduction.

Example 2.1.2 K = (G,M, I), G = {g1, g2, g3, g4, g5},M = {m1,m2,m3,m4,m5}

m1 m2 m3 m4 m5

g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 ×
g5 ×

The concept lattice of the context in Example 2.1.2 in represented in Figure 2.3a. Ac-

cording to Observation 2.1.2 objects g1 and g2 can be merged into one object in the

clarification process, named g1 2 in this example. Also, attribute m1 can be expressed as

the combination of attributes m2 and m3, so it will be eliminated in the reduction process.

Ganter and Wille define another method for the reduction of a clarified context, by

means of arrow relations. These are formally described by the following defition [Ganter

and Wille, 1999].

16

Chapter 2 Preliminaries and State of the Art

Figure 2.3: Concept lattices before and after reduction

(a) Concept lattice of the original context (b) Concept lattice of the reduced context

Definition 2.1.13 Let (G,M, I) be a context, g, h ∈ G objects, and m,n ∈M attributes.

Then, we define the following relations:

g ↙ m⇔

{
(g,m) /∈ I

if g′ ⊂ h′, then (h,m) ∈ I

g ↗ m⇔

{
(g,m) /∈ I

if m′ ⊂ n′, then (g, n) ∈ I

g ↙↗ m⇔ g ↙ m and g ↗ m

Intuitively, the relation g ↙ m means that the derivation g′ is maximal among all

object intents which do not contain attribute m. The correlation between the arrow

relations and reduction in a context is shown in the following proposition.

Proposition 2.1.3 Let (G,M, I) be a context, g ∈ G an object, and m ∈M an attribute.

Then, we have that:

• the object concept γg is ∨-irreducible if and only if there is an attribute n ∈M with

g ↙ n. Furthermore, in a finite context, this is also equivalent to the fact that there

is an attribute n1 ∈M with g ↙↗ n1.

• the attribute concept µm is ∧-irreducible if and only if there is an object h ∈ G with

h↗ m. Furthermore, in a finite context, this is also equivalent to the fact that there

is an object h1 ∈ G with h1 ↙↗ m.

17

Chapter 2 Preliminaries and State of the Art

Observation 2.1.4 From the definition, we can deduce that the arrow relations only

hold between pairs of objects and attributes which do not belong to the incidence relation

I. Hence, in the cross table representation of the context, we can add the arrows where the

corresponding relation holds, since it will not overlap with a cell where we already have a

cross (meaning the pair belongs to the incidence relation). After adding the corresponding

arrows in the table, in order to reduce the context we delete all rows and columns that do

not contain a double arrow ↙↗.

Example 2.1.3 For example, the clarified context from the previous Example 2.1.2 and

the corresponding arrow relations can be seen in Figure 2.4. We can observe that the only

row or column that do not contain a double arrow is the column corresponding to attribute

m1, which as we have also seen in Example 2.1.2, can be reduced.

Figure 2.4: Clarified context with arrow relations

Despite the clarification and reduction processes, concept lattices can still grow expo-

nentially in the size of the context. One method of addressing this problem is reducing the

complexity of the diagram using conceptual scaling. In order to reduce the complexity,

one can consider only a subset of attributes at a time. Furthermore, conceptual scaling

also gives a solution for dealing with many-valued attributes.

When modeling a problem in the form of objects having attributes, there is often the

case that attributes are not Boolean, but may have different values. In that case, the

context is called a multi-valued context. Formally, a multi-valued context, also called

many-valued context, is defined as follows:

Definition 2.1.14 A multi-valued context (G,M,W, I) contains besides the set of objects

G and the set of attributes M , a set W of attribute values. For the ternary relation I holds

that (g,m,w) ∈ I and (g,m, v) ∈ I ⇒ w = v. An element from the relation (g,m,w) ∈ I

is read as “attribute m has value w for object g”. This justifies to write m(g) = w for

(g,m,w) ∈ I.

18

Chapter 2 Preliminaries and State of the Art

In order to transform a multi-valued context into a one-valued context it has to be

transformed by a process called conceptual scaling [Ganter and Wille, 1999]. Conceptual

scaling involves a human expert that knows how to interpret the data, since each attribute

has to be interpreted using a conceptual scale.

Definition 2.1.15 A conceptual scale for a multivalued attribute is a one-valued context

(Gm,Mm, Im) with m(G) ⊆ Gm.

Intuitively, a conceptual scale is just a formal context that interprets a multi-valued

attribute. An example of a conceptual scale for an attribute that can have the following

values {verypoor, poor, good, excellent} is:

excellent good poor very poor

excellent × ×
good ×
poor ×
very poor × ×

Using this scale, an attribute from a multi-valued context can be transformed into the

derived one-valued context as seen in Figure 2.5.

Figure 2.5: Conceptual scaling

(a) multi-valued context

attribute1

good

excellent

good

poor

very poor

excellent

(b) one-valued context

attribute1

excellent good poor very poor

×
× ×

×
×
× ×

× ×

Intuitively, in the derived context every multi-valued attribute is replaced by the scale

attributes, while the objects remain unchanged. Formally, any context can be a scale, but

the most frequently used scales are the elementary scales introduced in what follows.

For the scales definition the following abbreviation is used: n = {1, ..., n}

19

Chapter 2 Preliminaries and State of the Art

• Nominal scales Nn = (n,n,=)

Nominal scales are used for scaling attributes, whose values are mutually exclusive,

like for example gender. Having attributes that exclude each other, the concept

extents build a partition of the object set. The nominal scale for such an attribute

with 4 values is represented in Figure 2.6

1 2 3 4

1 ×
2 ×
3 ×
4 ×

Figure 2.6: Nominal scale N4

• Ordinal scale On = (n,n,≤)

Ordinal scales are used for scaling attributes with ordered values, having the prop-

erty that each value implies the smaller value, for example expensive, very expensive,

extremely expensive. The concept extents form a ranking.

1 2 3 4

1 × × × ×
2 × × ×
3 × ×
4 ×

Figure 2.7: Ordinal scale O4

• Interordinal scale In = (n.n,≤) | (n.n,≥)

In the case of the interordinal scale, the concept intents are the intervals of scale

values.

≤ 1 ≤ 2 ≤ 3 ≤ 4 ≥ 1 ≥ 2 ≥ 3 ≥ 4

1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × ×

Figure 2.8: Interordinal scale I4

20

Chapter 2 Preliminaries and State of the Art

• Biordinal scale Mn,m = (n,n,≤) ∪ (m,m,≥)

Sometimes attributes with ordered values do not imply all the other smaller value.

In that case, usually a biordinal scale can be used, so that attributes are assigned to

one of two poles. For example, an attribute could have as values very cheap, cheap,

expensive, very expensive, extremely expensive. A biordinal scale is represented in

Figure 2.9.

≤ 1 ≤ 2 ≤ 3 ≤ 4 ≥ 5 ≥ 6

1 × × × ×
2 × × ×
3 × ×
4 ×
5 ×
6 × ×

Figure 2.9: Biordinal scale M4,2

• Dichotomic scale D = ({0, 1}, {0, 1},=)

The dichotomic scale is a special case that is used for attributes that have values

similar to yes/no

Conceptual scaling is usually a necessity in the preprocessing part, where the context

is built, because it is often the case that attributes have multiple values. Therefore, a

lot of the examples and experiments there will be presented in the thesis will be derived

contexts that have undergone the process of conceptual scaling. Obviously, the obtained

derived context is not unique, since it is a matter of interpretation and the transformation

depends on the chosen scale.

2.1.2.2 Existing Tools and Algorithms

There are several algorithms and tools for computing formal concepts and concept lattices

for a given dyadic context. The difficulty usually encountered in computing the concepts

is that different sets can have the same closure. Therefore, when naively computing

all the closures, one would have to check multiple times if a computed closure already

exists in the output or not. This would result in an exponential number of lookups and

would increase the complexity of the algorithm. Therefore, the main difficulty remains to

generate all concepts and, if possible, avoid repetitive generation. Some algorithms solve

this problem by generating concepts in a specific order or according to some rules that

21

Chapter 2 Preliminaries and State of the Art

ensure the uniqueness of a concept and others find efficient methods to check whether the

concept had already been generated or not.

One of the first and most popular algorithms that compute the concepts of a dyadic

context (but not the concept lattice) is Next-Closure [Ganter, 1984], an algorithm that

computes concepts sequentially. Its general, but simple form allows one to compute

all the closed sets for a chosen closure operator on a finite set. Furthermore, it allows

many useful modifications, which widen its field of application [Borchmann, 2012]. The

Next-Closure algorithm computes the formal concepts’ intents in lectic order. Intuitively,

for a set M = {1, ..., n} we say that A ⊆ M is lectically smaller than B ⊆ M if the two

sets are not equal and the smallest element with respect to some predefined order in which

they differ is included in B. In addition to the small time complexity of the Next-Closure

algorithm, another advantage is the linear space complexity.

However, there are cases where the concept lattice is too large to be represented in a

readable format. Particularly, in the worst case the size of the lattice grows exponentially

with the size of the context. One solution to this problem is to graphically represent

only frequent formal concepts. Frequent attribute sets are measured by comparing the

cardinality of the corresponding object set to a given minimum support value. Under

these conditions, a concept is considered frequent if its intent is frequent. The notion of

iceberg concept lattice is defined as the set of all frequent formal concepts. Intuitively,

the iceberg concept lattice only shows the top part of the original concept lattice. Such

iceberg concept lattices are particularly useful for strongly correlated data. These type

of lattices can be computed by a modified version of the Next-Closure algorithm or by

the algorithm Titanic.

Titanic [Stumme et al., 2002] is another efficient algorithm for computing concept

lattices that has a completely different approach than other existing algorithms. In its

general form, the algorithm computes closure systems for a closure operator with an

associated weight function. Although this algorithm can be used to compute the general

concept lattice, it has a different, improved version for computing the iceberg concept

lattice. Titanic tries to optimize the computation by addressing three issues:

• computing the closure of attribute sets using only support values

• obtaining the closure system by computing as few closures as possible

• deriving support values from already known support values, where possible

Compared to the Next-Closure algorithm, Titanic is more performant, especially when

applied on large datasets.

22

Chapter 2 Preliminaries and State of the Art

Two algorithms that are similar to the Next-Closure algorithm but more efficient,

are Close-By-One, also known as CbO [Kuznetsov, 1999] and FCbO [Krajca et al., 2008;

Krajca et al., 2010; Outrata and Vychodil, 2012], an extension of CbO. CbO computes

all concepts, as well as the concept lattice in linear time with respect to the number of

concepts and it is based on a depth-first search strategy. Krajca, Outrata and Vychodil

proposed in 2010 the algorithm FCbO as an extension to Kuznetsov’s algorithm CbO. They

tried to improve the efficiency of the algorithm first by reducing the number of concepts

computed multiple times and second, by suggesting preprocessing methods that would

increase the speed of the concepts’ computation. In this extension, they combined two

search strategies: depth-first and breadth-first search. Furthermore, it turns out that there

are algorithms, like Next-Closure, CbO, FCbO that benefit from a well-chosen ordering of

the attributes in the preprocessing phase. This reduces the number of formal concepts

that are computed multiple times and hence improves the performance of the algorithms.

In-Close proposed by Andrews [2009] is another algorithm for enumerating concepts

that uses incremental closure. Conceptually, In-Close is also based on the CbO algo-

rithm. An advantage of In-Close is that it requires no preprocessing. Andrews compares

In-Close to the predecessor of FCbO [Krajca et al., 2008], which is already more efficient

than the Next-Closure algorithm. He proves in some experiments that In-Close outper-

forms Krajca’s algorithms. However, the authors improve the efficiency of their alogrithm

in FCbO [Krajca et al., 2010] by suggesting a new canonicity test, so that it outperforms

In-Close, as well as other algorithms proposed by Lindig [2000] or Berry, Bordat and

Sigayret [2007]. Despite a relatively high time efficiency, In-Close had the disadvantage

of using exponential memory for generating concepts. An improved version In-Close2

was proposed in 2011 [Andrews], which adds new optimizations and data preprocessing

techniques to the previous version. Although the purpose of In-Close2 was to outper-

form FCbO, some argue that the latter still remained a more efficient algorithm [Pisková

and Horváth, 2013]. Still, Andrews argues that for some of the experiments, In-Close2

outperformed FCbO, but for other FCbO was more efficient [Andrews, 2011].

Another algorithm whose efficiency is comparable to FCbO and In-Close is AddIntent,

which appeared earlier under the name of AddAtom. AddIntent was first implemented

in 1996 and was improved in a later version by Merwe, Obiedkov and Kourie [2004]. It

is an incremental algorithm that computes not only the formal concepts, but also the

lattice structure. AddIntent uses the ordering of subconcept-superconcept unlike other

algorithms, hence being able to construct the relations between the concepts. Normally

one cannot have a fair comparing scale between an algorithm that computes the concept

set and the concept lattice and one that computes solely the concept set. Still, AddIntent

23

Chapter 2 Preliminaries and State of the Art

outperforms some of the existent algorithms that compute only the concept set. The

authors implemented also an attribute-incremental version of AddIntent, which is called

AddExtent. This version was compared to In-Close2 and FCbO and each of the three

algorithms outperforms the other two on some datasets [Andrews, 2011]. Obviously, if

one needs the concept lattice, the use of AddIntent is preferred. Otherwise, the other

two algorithms might prove to have better results.

There are a lot of other algorithms proposed for FCA that try to improve at least one

aspect of another algorithm. For example, Nourine and Raynaud proposed an algorithm

that has a better worst-case complexity compared to the Next-Closure algorithm, but

it needs exponential space, since it stores the whole lattice [Nourine and Raynaud, 1999].

Krajca, Outrata and Vychodil proposed also parallel versions of CbO and FCbO, called PCbO

[Krajca et al., 2008] and PFCbO [Krajca et al., 2010] that have different performances de-

pending on the method chosen for splitting the data for parallelization. Furthermore,

there are also a lot of algorithms that generate closed itemsets that can be adapted to

the FCA needs, namely to compute formal concepts. Different methods and approaches

of algorithms are the topic of several papers that try to compare algorithms, both the-

oretically (in the worst case scenario), as well as experimentally [Godin et al., 1995;

Kuznetsov and Obiedkov, 2002; Pisková and Horváth, 2013]. According to a more recent

comparison done by Pisková and Horváth [2013], FCbO is to date one of the most efficient

algorithms for computing the formal concept set. Still, there are datasets on which other

algorithms perform better. In general, the choice of the algorithm depends on the dataset

and particularly on its properties such as density and size. Another aspect that should be

taken into consideration is the comparison of the output of several algorithms, since it was

shown that some algorithms fail to compute the concepts correctly for specific datasets

[Pisková and Horváth, 2013].

There are several tools that implement the previously mentioned or new algorithms

for formal concept computation and/or lattice computation. A few of the most popular

tools are described in the next paragraphs.

The ToscanaJ Suite [Becker et al., 2002; Becker and Correia, 2005] is probably

one of the most comprehensive and popular project that relies on Ganter’s algorithm,

NextClosure. It includes tools to create a formal context, perform conceptual scaling

on a context, compute the formal concepts and the concept lattice. In addition to au-

tomating the process of concept lattice construction and formal concept computation,

ToscanaJ’s goal was to give users the possibility to use formal concept analysis methods

without having a mathematical background. ToscanaJ has several components: Elba,

Siena and Toscana. The first two components are responsible for creating and modifying

24

Chapter 2 Preliminaries and State of the Art

the conceptual schema, and the third component for reading it.

The tools for creating the conceptual scheme differ in the input type. Therefore, Elba

uses a relational database for the creation of the conceptual scheme, while Siena supports

input and management of the data without any connection to a database. However,

ToscanaJ can offer more functionalities when used with a relational database system.

After connecting to a database, Elba retrieves the information about available tables in

the database and the user can choose which tables to use for the data analysis, while in

Siena, one can define a context by introducing the object and attribute set and defining

the relation as a cross table.

Before creating the conceptual schema, ToscanaJ also offers the possibility of using

conceptual scaling. Therefore, when analyzing multi-valued datasets, the user can select

a scale, filter a certain subset of elements or even use nested scales. After building the

conceptual scale, the concept lattice can be visualized. There are also a few different

options available for the lattice labeling. Therefore, nodes representing formal concepts,

can be labeled by one of the following:

• the number of objects in the set

• a list of the items in the set

• the percentual distribution with respect to the current object set in the diagram

Furthermore, in the graph visualization, ToscanaJ represents the size of the extent through

a color gradient of the nodes, which offers more insight in the elements’ distribution. In

addition to the basic functionalities described in the previous paragraphs, ToscanaJ offers

other advanced functionalities and integrates with several data formats. Hence, it is a

comprehensive and largely used tool suite for formal concept analysis.

Another tool that computes the formal concepts as well as the concept lattice is ConExp

Explorer, also called ConExp, which is based on a new algorithm, Grail, proposed by

Yevtushenko [2000]. ConExp supports context processing, including clarification and re-

duction of the context and the typical FCA operations: computing the concept set and

the conceptual diagram. Furthermore, ConExp offers more advanced functionalities, such

as calculating the base of implications and association rules of the formal context and per-

forming attribute exploration. Similar to ToscanaJ, this tool also offers different layouts

for the lattice visualization.

The two tools described previously, are mainly used for performing FCA operations

on an already existent formal context. The only integrated method to build a context

from existing data, being the use of Elba which can connect to a database. However,

25

Chapter 2 Preliminaries and State of the Art

often available data is in different data formats and it is not trivial to transform it into

a formal context. The FcaBedrock tool is a context creator that can process large data

[Andrews and Orphanides, 2010]. It can process csv files and before creating the context,

it can convert many-valued attributes to formal attributes.

Another tool supporting the use of formal concept analysis and its interoperability with

other tools is FcaStone proposed by Priss [2008]. The purpose of this tool is to convert files

between different formats used either by FCA tools, such as ToscanaJ, ConExp or by other

graph visualization tools. Furthermore, FcaStone has also integrated a simple, though

not efficient, implementation of Ganter’s algorithm, so that it can convert a context file

to a lattice diagram.

All the mentioned algorithms and tools are supporting one or a more of the aspects

of the lattice life-cycle. However in order to get from a raw dataset to the concept

lattice, one must use more tools. That was the motivation of the Galicia project that

aims to support the entire process from data preprocessing and lattice construction to the

visualization and navigation in the concept lattice [Valtchev et al., 2003]. For this purpose,

the project, which is an open-source platform includes a series of existing algorithms and

offers the possibility to integrate other algorithms as well. Hence, Galicia aims to be a

complete tool supporting the theoretical, as well as practical aspects of FCA and offering

the possibility to integrate all proposed algorithms in one tool.

2.1.3 Triadic Formal Concept Analysis

2.1.3.1 Theoretical Foundations

Formal concept analysis has constantly developed in the last 30 years. One important

direction of evolution is the extension to triadic formal concept analysis (3FCA) proposed

by Lehmann and Wille [Lehmann and Wille, 1995; Wille, 1995].

Similar to the dyadic case, the fundamental structures used by 3FCA are those of a

triadic formal context and a triadic formal concept, also referred to as triadic concept.

Definition 2.1.16 A triadic formal context K = (K1, K2, K3, Y) is defined as a

quadruple consisting of three sets and a ternary relation Y ⊆ K1×K2×K3. K1 represents

the set of objects, K2 the set of attributes and K3 the set of conditions. The notation

for an element of the incidence relation is (g,m, b) ∈ Y or b(g,m) and it is read object

g has attribute m under condition b.

Triadic formal contexts can also be represented as cross tables on layers. Each layer

corresponds to one condition and is represented as a dyadic context, the rows of which

26

Chapter 2 Preliminaries and State of the Art

are objects and the the columns attributes. However, the cross-table representation is

sometimes difficult to visualize, already for contexts of medium size. The following is an

example of a triadic context represented as cross tables [Glodeanu, 2013]. The objects of

the triadic dataset are hostels, the attributes services provided by the hostels, while the

conditions are Web portals where the hostels can be rated.

Example 2.1.4 Hostels context

b0
m0:

character
m1:
safety

m2:
location

m3:
staff

m4:
fun

m5:
cleanliness

g0 : NuevoS. ×
g1 : Samay × × × ×
g2 : OasisB. × × × × ×
g3 : One × × × ×
g4 : OleB. × × × ×
g5 : GardenB. × × ×

b1
m0:

character
m1:
safety

m2:
location

m3:
staff

m4:
fun

m5:
cleanliness

g0 : NuevoS. × ×
g1 : Samay × × × ×
g2 : OasisB. × × × × × ×
g3 : One × × × × × ×
g4 : OleB. × × × × × ×
g5 : GardenB. × × × × × ×

b2
m0:

character
m1:
safety

m2:
location

m3:
staff

m4:
fun

m5:
cleanliness

g0 : NuevoS. × ×
g1 : Samay × × × × ×
g2 : OasisB. × × × × ×
g3 : One × × × × × ×
g4 : OleB. × × × × × ×
g5 : GardenB. × × × × ×

Definition 2.1.17 (Derived contexts) Every triadic context (K1, K2, K3, Y) gives rise

to the following dyadic contexts:

K(1) = (K1, K2 ×K3, Y
(1)) with gY (1)(m, b) :⇔ (g,m, b) ∈ Y ,

K(2) = (K2, K1 ×K3, Y
(2)) with mY (2)(g, b) :⇔ (g,m, b) ∈ Y , and

K(3) = (K3, K1 ×K2, Y
(3)) with bY (3)(g,m) :⇔ (g,m, b) ∈ Y .

K(ij)
Ak

= (Ki, Kj, Y
(ij)
Ak

), with {i, j, k} = {1, 2, 3} and Ak ⊆ Kk, where (ai, aj) ∈ Y
(ij)
Ak

if

and only if (ai, aj, ak) ∈ Y for all ak ∈ Ak.

27

Chapter 2 Preliminaries and State of the Art

Intuitively, the contexts K(i) represent “flattened” versions of the triadic context, ob-

tained by putting the “slices” of (K1, K2, K3, Y) side by side. Moreover, K(ij)
Ak

corresponds

to the intersection of all those slices that correspond to elements of Ak.

In triadic FCA, there are two extensions for the dyadic derivation operators.

Definition 2.1.18 ((i)-derivation operators) For {i, j, k} = {1, 2, 3} with j < k and

for X ⊆ Ki and Z ⊆ Kj ×Kk the (i)-derivation operators are defined by:

X 7→ X(i) = {(aj, ak) ∈ Kj ×Kk | (ai, aj, ak) ∈ Y for all ai ∈ X}.
Z 7→ Z(i) = {ai ∈ Ki | (ai, aj, ak) ∈ Y for all (aj, ak) ∈ Z}.

Obviously, these derivation operators correspond to the derivation operators of the dyadic

contexts K(i), i ∈ {1, 2, 3}.

Definition 2.1.19 ((i, j,Xk)-derivation operators) For {i, j, k} = {1, 2, 3} and Xi ⊆
Ki, Xj ⊆ Kj, Xk ⊆ Kk, the (i, j,Xk)-derivation operators are defined by

Xi 7→ X
(i,j,Xk)
i = {aj ∈ Kj | (ai, aj, ak) ∈ Y for all (ai, ak) ∈ Xi ×Xk}

Xj 7→ X
(i,j,Xk)
j = {ai ∈ Ki | (ai, aj, ak) ∈ Y for all (aj, ak) ∈ Xj ×Xk}.

The (i, j,Xk)-derivation operators correspond to those of the dyadic contexts (Ki, Kj, Y
(ij)
Xk

).

Similar to the notion of formal concepts in dyadic FCA, triadic concepts can be defined

[Wille, 1995]. A triadic concept is a maximal box of incidences and can be generated

using derivation operators. This is formally described in the following definition and

propositions [Wille, 1995].

Definition 2.1.20 A triadic concept (short: triconcept) of K = (K1, K2, K3, Y) is a

triple (A1, A2, A3) with Ai ⊆ Ki for i ∈ {1, 2, 3} and Ai = (Aj×Ak)
(i) for every {i, j, k} =

{1, 2, 3} with j < k. The sets A1, A2, and A3 are called extent, intent and modus of

the triadic concept, respectively. We let T(K) denote the set of all triadic concepts of K.

Proposition 2.1.4 The triconcepts of a triadic context (K1, K2, K3, Y) are exactly the

maximal triples (A1, A2, A3) ∈ P(K1) × P(K2) × P(K3) with A1 × A2 × A3 ⊆ Y , with

respect to the component-wise set inclusion.

Proposition 2.1.5 For Xi ⊆ Ki and Xk ⊆ Kk with {i, j, k} = {1, 2, 3}, let Aj =

X
(i,j,Xk)
i , Ai = A

(i,j,Xk)
j and Ak = (Ai × Aj)

(k) (if i < j) or Ak = (Aj × Ai)
(k) (if j < i).

Then (A1, A2, A3) is the triadic concept bik(Xi, Xk) with the property that it has the small-

est k-th component among all triadic concepts (B1, B2, B3) with the largest j-th component

satisfying Xi ⊆ Bi and Xk ⊆ Bk. In particular, bik(Ai, Ak) = (A1, A2, A3) for each triadic

concept (A1, A2, A3) of K.

28

Chapter 2 Preliminaries and State of the Art

In analogy to the dyadic case, triadic concepts have an ordinal structured that can

be graphically represented. Particularly, the set T(K) of all triadic concepts is structured

by three quasiorders given by the inclusion order within each of the three components

[Lehmann and Wille, 1995].

Definition 2.1.21 (Quasiorder) A quasiorder or preorder is a binary relation that is

reflexive and transitive.

Definition 2.1.22 (Partial order) A partial order is a binary relation that is reflexive,

transitive and antisymmetric.

Observation 2.1.5 The quasiorder is neither necessarily antisymmetric, nor symmetric,

therefore it is a weaker version of the partial order. A quasiorder that is antisymmetric

becomes a partial order. A quasiorder that is symmetric is an equivalence relation.

Proposition 2.1.6 For each of the three dimensions of the triadic context i ∈ {1, 2, 3}
there is a corresponding quasiorder .i and its corresponding equivalence relation ∼i:

(A1, A2, A3) .i (B1, B2, B3)⇔ Ai ⊆ Bi

(A1, A2, A3) ∼i (B1, B2, B3)⇔ Ai = Bi

Furthermore, each quasiorder has corresponding equivalence classes. Let [(A1, A2, A3)]i

denote the equivalence class of .i represented by the triadic concept (A1, A2, A3) .

Proposition 2.1.7 The quasiorder induces an order relation ≤i on the factor set of all

equivalence classes T(K)/ ∼i: [(A1, A2, A3)]i ≤i [(B1, B2, B3)]i ⇔ Ai ⊆ Bi

Unfortunately, in the triadic case, the set of extents, intents and modi do not form

a closure system as in the dyadic case [Lehmann and Wille, 1995]. However, the triadic

structure can still be represented graphically. According to Proposition 2.1.7, the extent,

intent and modi sets are ordered sets and can be represented as Hasse diagrams (line

diagrams). The three equivalence classes will be represented as parallel lines and together

with the three Hasse diagrams on the side a triadic diagram is obtained. In Figure 2.10

we can see the tradic diagram of the tricontext in Example 2.1.4 as represented by C.V.

Glodeanu [2013].

As mentioned before, the parallel lines represent the equivalence classes and the circles

at the intersection of the lines represent the triconcepts. On the right side of the triadic

diagram one can read the extents set, on the left side the intents set and on the upper side

the modi set. In order to deduce the extent of a triconcept one has to follow the interrupted

line and read all the objects attached to that level or to a level that is reachable going

downwards, similar to reading the components in the dyadic concept lattice. Intuitively,

29

Chapter 2 Preliminaries and State of the Art

K3

b1: hostelsb0: hostelworld

b2: hostelbookers

g2

g1

g5

g0

g3, g4

g5

g1

K1

m2

m3

m3,m5

m1

m0

m4

K2

Figure 2.10: Trilattice of the tricontext “Hostels”

extents get larger when reading the Hasse diagram from the lower to the upper part.

Similarly, the intents get larger from the upper to the lower part and modi get larger from

right to left.

For example, let’s consider the highlighted triconcept on the third horizontal line. This

triconcept has the following components:

({g1, g2, g3, g4, g5}, {m1,m2,m3,m5}, {b1, b2})

Observation 2.1.6 In the Hasse diagram of the extents, object g1 occurs twice. The

reason is that there is no smallest extent that contains the object g1. This might be

the case, because, as mentioned before, extents, respectively intents and modi, do not

necessarily form a closure system in the triadic case.

One can easily deduce that for medium sized tricontexts, the trilattice becomes very

difficult to draw. Furthermore, it is not trivial to navigate in a trilattice of considerable

sizes. For that reason one of the main directions of our research is to find new methods

for navigation in triadic as well as higher-dimensional datasets.

The theoretical aspects of clarification and reduction for tricontexts have not been ad-

dressed yet. Therefore, we propose later on a method to extend clarification and reduction

of dyadic contexts to triadic ones.

30

Chapter 2 Preliminaries and State of the Art

2.1.3.2 Existing Tools and Algorithms

Most of the dyadic algorithms for computing dyadic formal concepts, presented in sec-

tion 2.1.2.2, cannot be extended efficiently for the triadic case. Hence, new algorithms

have to be proposed for mining closed cubes in triadic contexts.

One of the most popular algorithms is Trias implemented by Robert Jäschke1. Jäschke

et al. proposed Trias as a solution to the problem of frequent closed itemset mining for

folksonomies [Jäschke et al., 2006]. Folksonomies are the core data structure of social re-

source sharing systems and the authors hoped for an increase of interest in triadic formal

concept analysis together with the increase of social network usage. Trias projects the

ternary relation and applies dyadic formal concept mining on the two obtained dyadic

contexts. In the dyadic contexts it uses the NextClosure algorithm (mentioned in sec-

tion 2.1.2.2) enhanced with frequency pruning and computes three-dimensional closed

itemsets, hence triconcepts. Trias offers the possibility to set the minimum support of

the components in the input configuration file. Intuitively, the minimum support relates

to the number of elements in the extent, intent and modus. Although any value can be

chosen for minimum support, multiple experiments that we ran on triadic data with Trias

proved that, when trying to include trivial triconcepts in the computation, i.e. choosing

the minimum support equal to zero, the results from the Trias output are not correct.

Despite this drawback, the most common scenario is to choose a higher minimum support

in order to compute larger conceptual components and ignore the marginal cases which

might just be exceptions. The strategy used for concept mining implies that Trias is

efficient when one of the dimensions of the context is small.

Two other algorithms proposed by Ji, Tan and Tung are Representative Slice

Mining (RSM) and CubeMiner [Ji et al., 2006]. RSM is one of the algorithms that tries

to build upon the dyadic case. In order to do that, the RSM algorithm first transforms

a triadic context into a set of dyadic datasets. Than it uses existing algorithms to mine

closed patterns in the dyadic datasets and prunes away the ones that are not closed in the

triadic context. Because of the strategy to split the triadic context in dyadic datasets, RSM

is efficient when one dimension of the triadic context is small. CubeMiner, on the other

hand, has a completely different approach. It computes the closed patterns directly in the

triadic datasets. The algorithm uses a recursive procedure based on so-called “cutters”,

which are partitions of the dataset containing triples that do not belong to the triadic

relation. However, the results obtained in the first phase of the algorithm contain also

unclosed sets. In order to obtain the triconcepts, namely the closed patterns, pruning

strategies have to be used. In addition to the two algorithms, the authors proposed

1https://github.com/rjoberon/trias-algorithm

31

https://github.com/rjoberon/trias-algorithm

Chapter 2 Preliminaries and State of the Art

parallel versions of both algorithms, which could reduce the time complexity.

Some algorithms try to address the generalized problem of closed pattern in n-ary

relations. One of these algorithms is Data-Peeler [Cerf et al., 2008; Cerf et al., 2009]

that proposes a method of computing closed patterns in sets of dimensions two or higher.

The enumeration strategy of possible patterns has a major impact on the efficiency of the

algorithm. The strategy used by Data-Peeler is to split the dataset into smaller parts

that can be studied independently, meaning the set of closed patterns will be composed

from the union of closed patterns of the different parts. Furthermore, in order to be more

efficient, the pruning of unclosed patterns is not performed at the end of the enumeration

phase, but as soon as possible. One disadvantage of Data-Peeler is the space complexity,

since the whole dataset must be stored in the main memory. The authors of Data-Peeler

compare the performances of Data-Peeler, RSM, CubeMiner and Trias and conclude that

Data-Peeler outperforms the other three algorithms.

Another algorithm that was recently proposed by Trabelsi, Jelassi and Yahia claims

to outperform all the previously mentioned algorithms for triadic concept computation

[Trabelsi et al., 2012]. The authors start by discussing the disadvantages of the other

algorithms. Obviously, Trias’ disadvantage is the use of projections into dyadic contexts,

which evolves in a computationally expensive algorithm. The disadvantage of CubeMiner

is the use of the so-called cutters, since the number of cutters can get very high and there-

fore lower the efficiency of the algorithm. Another disadvantage of both CubeMiner and

Data-Peeler is the depth-first strategy, which becomes ineffective for a large number of

elements. The authors propose a new scalable algorithm, Tricons, and for that purpose

they define a new closure operator. The closure operator splits the dataset into equiva-

lence classes and hence enables the computation of tri-generators, defined by the authors

to enable computing the triconcepts. After extracting the tri-generators, the modus and

intent of the triconcepts can be computed. The experiments run showed an efficiency in-

crease of 33.57% compared to Trias and it followed that Tricons outperforms CubeMiner

and Data-Peeler as well. Furthermore, they contradict the result of Cerf et al. [Cerf et

al., 2009] and state that Trias outperforms Data-Peeler. From the space complexity

point of view, Tricons has an advantage, since it is the only algorithm that does not

store the dataset in memory before computing the triconcepts.

Besides the algorithms for computing triadic formal concepts, there are other ap-

proaches that try to relax the condition of formal contexts, by admitting some “zeros”

in the clusters, i.e. some elements that are not in relation with all the pairs from the

other two dimensions of the cluster. Such algorithms [Gnatyshak et al., 2013] might be

more efficient than the one above, but usually they cannot be used for computing formal

32

Chapter 2 Preliminaries and State of the Art

concepts. Moreover, Cerf et al. extend Data-Peeler to a new algorithm called Fenster,

which deals with noisy datasets and at the same time add constraints such as closed-

ness and completeness to the outputted patterns [Cerf et al., 2013]. Fenster uses the

enumeration strategy of Data-Peeler, which is the main efficiency strategy used by the

initial algorithm. However, in order to remain scalable and efficient for noisy data, it uses

other strategies as well. Moreover, the authors state that one can add a large variaty of

constraints when running the algorithm in order to search for patterns satisfying certain

properties. Cerf et al test Fenster on synthetic as well as real datasets and compare the

results to similar algorithms that compute noise tolerant patterns. The main observed

advantage of Fenster is the fact that it can enforce the closedness constraint, i.e. it can

compute formal concepts, and hence show fewer and more relevant patterns.

When using triadic formal concept analysis on certain datasets which do not have

a triadic structure initially, a preprocessing phase is necessary in order to obtain the

triadic subset to be analyzed. With this purpose we used a preprocessing tool called

Toscana2Trias, which was developed at Babeş-Bolyai university as a previous student

project and represents an extension of the dyadic tool ToscanaJ [Becker and Correia,

2005]. Toscana2Trias allows the selection of triadic data starting from a given set of

scales, if the data has been preprocessed with ToscanaJ. As the name of the tool already

suggests, the output can be further processed with Trias [Jäschke et al., 2006] in order

to compute the triconcepts.

2.1.4 Polyadic Formal Concept Analysis

Polyadic formal concept analysis introduced in the general form by Voutsadakis [2002],

describes conceptual hierarchies arising from n-ary relations. An n-adic formal context

can be defined as follows:

Definition 2.1.23 An n-context is an (n+1)-tuple K = (K1, . . . , Kn, R) with K1, . . . , Kn

being sets, and R ⊆ K1 × . . .×Kn the n-ary incidence relation.

In the n-adic case, the derivation operators are quite complex and more difficult to un-

derstand. For that reason and since we don’t use these operators in our future work, we

give an alternative definition to the n-adic formal concepts.

Definition 2.1.24 An n-concept of an n-context K is an n-tuple (A1, . . . , An) satisfying

A1× . . .×An ⊆ R and for every n-tuple (C1, . . . , Cn) with Ai ⊇ Ci for all i ∈ {1, . . . , n},
satisfying C1 × . . .× Cn ⊆ R holds Ci = Ai for all i ∈ {1, . . . , n}.

33

Chapter 2 Preliminaries and State of the Art

As mentioned previously, the n-adic case has not been studied intensively and there

are few algorithms for computing formal concepts in n-ary datasets, such as Data-Peeler

[Cerf et al., 2008; Cerf et al., 2009] and Fenster [Cerf et al., 2013]. Moreover, to the best

of our knowledge, there are no navigation or visualization methods for the general case.

2.2 Complexity Theory

In this chapter, we introduce some notions of Boolean logic, first-order logic and com-

plexity classes [Papadimitriou, 1994; Arora and Barak, 2009]. For modeling complexity

and efficiency in complexity theory, we use Turing machines. In what follows we assume

the reader to be familiar with Turing machines and for a deeper understanding we refer

to the references [Papadimitriou, 1994; Arora and Barak, 2009].

First, we introduce a general definition of complexity classes, followed, in the next

paragraphs, by the definitions of several complexity classes such as P, NP and AC0.

Other related complexity classes, such as coNP, EXP or NEXP, will not be introduced

here, since they are not relevant for understanding the next chapters.

Definition 2.2.1 A complexity class is a set of functions that can be computed within

a given resource.

One important complexity class is the class P of decision problems that are solvable by

Turing machines in polynomial time.

Definition 2.2.2 (Boolean function) An n-ary Boolean function is a function

f{true, false}n 7→ {true, false}. Often the numerical values 1 and 0 are used instead of

the Boolean values true, respectively false.

Definition 2.2.3 (Class P)

P =
∪
p≥1

DTIME(np)

where DTIME(T (n)) is the set of Boolean functions computable in c · T (n)-time with

c > 0 constant.

The classNP can be similarly defined using non-deterministic Turing machines, i.e. ma-

chines that have two different transition functions. Hence, NP is the class of problems

solvable by a non-deterministic Turing machine in polynomial time. Proving that P ̸=NP

is still an open problem in complexity theory, however, until proven otherwise, we con-

sider the conjecture P̸=NP. Formally, NP-hardness and NP-completeness are defined as

follows:

34

Chapter 2 Preliminaries and State of the Art

Definition 2.2.4 A decision problem A is NP-hard if for every problem B ∈NP, there

is a polynomial-time reduction from B to A.

A problem A is NP-complete if A ∈NP and A is NP-hard.

Intuitively, NP-hard problems are at least as hard as the other NP problems. The

method usually used for proving the complexity of a problem is reducing it to another

problem that has a known complexity. Since our research was based on the complexity of

some problems from Boolean logic, the following represents a brief introduction into the

topic.

Boolean logic is based on Boolean expressions that contain variables combined using

Boolean connectives such as logical or ∨, logical and ∧ and negation ¬. A Boolean variable

x1 or its negation ¬x1 are called literals. Furthermore, literals combined only with the ∨
operator, respectively the ∧ operator, are called disjunctions, respectively conjunctions.

Each variable can take one of the truth values true or false and, depending on the values

of the variables, the whole expression is evaluated to true or false.

It is a known fact that expressions containing other Boolean connectives such as⇒ or

⇔ can be equivalently converted to expressions that contain only the previously mentioned

Boolean operators ∨, ∧ and ¬ using the De Morgan’s laws and other logical equivalences.

Formulas of propositional logic are built up using variables and the basic Boolean opera-

tors ∨, ∧ and ¬. Furthermore, we can define standardized forms for formulas as follows.

Definition 2.2.5 A Boolean expression ϕ is in conjunctive normal form (CNF) if

ϕ = ∧n
i=1Ci, where each Ci is the disjunction of one or more literals and n ≥ 1.

Furthermore, ϕ is in k-CNF if it has at most k literals per clause.

Definition 2.2.6 A Boolean expression ϕ is in disjunctive normal form (DNF) if

ϕ = ∨n
i=1Di, where each Di is the conjunction of one or more literals and n ≥ 1.

It was proven that every Boolean expression has an equivalent expression in conjunctive

normal form, as well as one in disjunctive normal form.

An essential notion in complexity theory is the property of satisfiability for a Boolean

expression.

Definition 2.2.7 A Boolean expression is called satisfiable if there is a truth assignment

for its variables such that the whole expression is evaluated to true. Furthermore, if the

Boolean expression is true for all the possible truth assignments, then it is called valid or

a tautology.

The fact that a Boolean expression is unsatisfiable, i.e. there is no truth assignment for

which it is true, is equivalent to the fact that its negation is valid. As mentioned before,

35

Chapter 2 Preliminaries and State of the Art

when studying certain properties of an expression, that expression is usually rewritten in

one of the canonical forms. Hence, the satisfiability problem SAT is defined as deciding

whether a Boolean expression in conjunctive normal form is satisfiable or not.

problem: SAT

input: family L = {L1, . . . , Ln} of sets Li of literals of the form p or ¬p.
output: yes in case the Boolean formula φL =

∧
L∈L

(
∨
ℓ∈L

ℓ) is satisfiable, no otherwise.

In order to be able to study particular cases of the satisfiability problem, the notation

kSAT with k ≥ 1 denotes a SAT problem for a formula in k-CNF. Obviously, different

particular cases of SAT problems have been studied, however the relevant one for our

research is the case n = 3.

problem: 3SAT

input: family L = {L1, . . . , Ln} of 3-element sets Li of literals of the form p or ¬p.
output: yes in case the Boolean formula φL =

∧
{ℓ1,ℓ2,ℓ3}∈L

(ℓ1 ∨ ℓ2 ∨ ℓ3) is satisfiable, no

otherwise.

The following represents an example of a satisfiable 3SAT problem.

Example 2.2.1 Consider L = {L1, L2, L3} with L1 = {r, s,¬q}, L2 = {s,¬q,¬r}, and
L3 = {¬q,¬r,¬s}. The corresponding 3SAT problem amounts to checking if φL = (¬q ∨
r ∨ s) ∧ (¬q ∨ ¬r ∨ s) ∧ (¬q ∨ ¬r ∨ ¬s) is satisfiable. We deduce that the 3SAT problem

is satisfiable (the output is yes), since, for the valuation v = {q 7→ true, r 7→ false, s 7→
true}, the formula φL evaluates to true.

The following theorem has been proven for SAT [Papadimitriou, 1994; Arora and Barak,

2009].

Theorem 2.2.1 (Cook-Levin Theorem) SAT is NP-complete.

Using polynomial reduction from SAT to 3SAT it can be shown that 3SAT is NP-hard

and furthermore, 3SAT proves to be also NP-complete [Papadimitriou, 1994; Arora and

Barak, 2009].

Theorem 2.2.2 3SAT is NP-complete.

It can be shown that every NP problem can be reduced to a 3SAT problem. We will use

3SAT later to show NP-hardness of certain problems.

In what follows, we will introduce Boolean circuits, which is a generalization of Boolean

formulae, as an alternative model of computation. Boolean circuits represent a model

36

Chapter 2 Preliminaries and State of the Art

for nonuniform computation, i.e. a different algorithm is used for each input size, in

constrast to the uniform computation of Turing machines where the same algorithm is

used regardless of the input size. Intuitively, a Boolean circuit is just a graph showing

the different combinations that can be used to obtain the output using the basic Boolean

operations ∨, ∧ and ¬. Formally, a Boolean circuit is defined as follows:

Definition 2.2.8 A Boolean circuit is a directed acyclic graph that contains input

nodes, i.e. with no incoming edges, labeled with the input variables, output nodes, i.e. nodes

with no outgoing edges, and several other nodes called gates, which are labeled with one

of the logical operations ∨, ∧ and ¬. The length of the longest directed path from an

input node to an output node is called depth of the circuit. The special case of Boolean

circuits, where each node has at most one outgoing edge is called Boolean formula or

propositional formula.

Intuitively, a Boolean circuit with n input nodes and m output nodes represents a

function {0, 1}n → {0, 1}m. The next complexity class we introduce is AC0, the class of

problems solvable by Boolean circuits of polynomial size and constant depth.

Definition 2.2.9 (class AC0)

AC0 is the class of problems solved by a family of circuits {Cn} where Cn has the depth

O(1), the size O(nc), where c is a constant, and gates ∨ and ∧ of unbounded fan-in.

We assume the reader to be familiar with first order logic.

Remark 2.2.1 It is known that the complexity class AC0 coincides with expressibility

by first-order formulae [Immerman, 1999]. Therefore, we can prove that a problem is in

AC0, by finding an equivalent first-order formula.

2.3 Answer Set Programming

Answer Set Programming (ASP) [Gebser et al., 2012] is a logic programming language

and hence uses a declarative approach to solve NP-hard problems. This approach differs

from the imperative approach in the sense that the programmer does not tell the computer

what steps to follow in order to solve the problem, but rather describes the problem and

lets the computer decide how to solve it. Mainly, in ASP one has to express the problem

in a logic programming format consisting of facts and rules, so that the solutions of the

problem correspond to models of the logic program.

37

Chapter 2 Preliminaries and State of the Art

In what follows, we briefly introduce the syntax and semantics of propositional nor-

mal logic programs under the stable model semantics [Gebser et al., 2012; Gelfond and

Lifschitz, 1988]. We will present directly the syntax used in the source code in order to

avoid a translation phase from one syntax to the other.

Let D denote the domain, i.e. a countable set of elements, also called constants. Next,

we define an atom as an expression of the type p(t1, . . . , tn), where p is a predicate of arity

n ≥ 0 and every ti is an element from the domain or a variable, denoted by an upper case

letter. An atom is called ground if it is variable-free. The set of all ground atoms over D
is denoted by GD. A (normal) rule ρ is defined as:

a1 : − b1, . . . , bk, not bk+1, . . . , not bm

, where a1, b1, . . . , bm are atoms or a count expression, m ≥ k ≥ 0 with the observation

that the left or the right part of the rule might be missing, but not both at the same

time. Count expressions have the form #count{c : c1, . . . , ci} ◦ u, where c is an atom,

u is a non-negative integer, cj = dj or cj = not dj, for all 1 ≤ j ≤ i and for an atom

dj, and ◦ denotes one of the operations ≤, <,=, >,≥. The left part of the rule, i.e. the

part before “: −” is called head, denoted H(ρ) = {a1}, while the right part is the body

of the rule, denoted B(ρ) = {b1, . . . bk, not bk+1, . . . , not bm}. As mentioned previously a

rule does not necessarily contain a non-empty head and body, namely, when the head of

the rule is empty, we call the rule a constraint and, when the body of the rule is missing

and a1 is ground, it is called a fact. In case the rule is a fact, we usually omit the sign

“: −” and write just the atom in the head of the rule. In the definition of the rule,

not denotes default negation, which refers to the absence of information as opposed to

classical negation (¬a) which implies that the negated information is present. Intuitively,

“not a” means that a /∈ I, while ¬a implies ¬a ∈ I, for an interpretation I, where I ⊆ GD
can be understood as the set of ground atoms which are true. Furthermore, we denote

B+(ρ) = {b1, . . . , bk} and B−(ρ) = {bk+1, . . . , bm}. A rule ρ is called safe if each variable

in ρ occurs in B+(ρ). Finally, we define a propositional normal logic program as a finite

set of normal rules.

In order to define when a program Π is satisfied by an interpretation I, let UΠ denote

the subset of constants from the domain that appear in the program Π and Gr(Π) the

grounded program, i.e. the set of grounded rules obtained by applying all the possible

substitutions from the variables to the constants in UΠ, for all the rules ρ ∈ Π. We

say that an interpretation I ⊆ GD satisfies a normal ground rule ρ ∈ Π (that is not a

count-expression) if and only if the following implication holds:

B+(ρ) ⊆ I, B−(ρ) ∩ I = ∅ ⇒ H(ρ) ⊆ I.

38

Chapter 2 Preliminaries and State of the Art

Then the interpretation I satisfies a non-groud rule if it satisfies all the possible groundings

of the rule. In case the rule contains a count-expression {c|c1, . . . , cn} ◦ u, we compute

the number n of instantiations for c that satisfy {c|c1, . . . , cn} and also belong to the

interpretation I, and say that I satisfies the count-expression if n ◦ u, where u is a

non-negative integer and ◦ denotes one of the operations ≤, <,=, >,≥. Finally, the

interpretation I satisfies a program Π if it satisfies all its rules, i.e. it satisfies the grounded

program Gr(Π).

An interpretation I ∈ GD is called an answer set or a stable model [Gelfond and

Lifschitz, 1988] of the program Π if and only if it is the ⊆-minimal model satisfying the

reduct ΠI defined by ΠI = {H(ρ) : −B+(ρ) | I ∩ B−(ρ), ρ ∈ Gr(Π)}. Furthermore, we

define cautious entailement as the intersection of all answer sets.

ASP solving is split in two phases. In the first phase, a grounder has to be used in

order to process the logic program into a finite variable-free propositional representation

of the problem encoding. In the next phase, a solver uses as input the output of the

grounder and computes the solutions, i.e. the answer sets of the problem.

Despite the fact that ASP is classified as logic programming, it was especially devel-

oped for solving problems related to knowledge representation and reasoning and it differs

from other logic programming languages such as Prolog. The main difference is that, in

ASP, the user has almost no control over the algorithm used to compute the solution,

whereas in Prolog the user can exercise some control over the solving process.

Researchers from the University of Potsdam developed a project called Potassco2,

which is a collection of answer set solving tools. In our research we used the solving tools

from the Potassco collection [Gebser et al., 2011], since it is currently the most prominent

solver leading the latest competitions [Calimeri et al., 2016]. In what follows we will

describe these tools in more details.

The first tool, gringo is a grounder that can be used in the first phase in order

to transform the initial encoding into an equivalent variable-free, i.e. ground, program.

Gringo has a simple, but comprehensive syntax that can express different types of rules

(normal, choice, cardinality, etc.), constraints (integrity, cardinality, etc.), but also op-

timization statements. Intuitively, a constraint expresses a “forbidden” behavior of the

models, i.e. if the body of the constraint is true then the model is not a stable model.

The output of gringo is in the smodels format, which is an intermediate format used for

the ASP solver input.

The second tool, clasp, is a solver that uses the smodel format for the input and

computes the answer sets of the program. The output of clasp can be configured by

2http://potassco.sourceforge.net/

39

http://potassco.sourceforge.net/

Chapter 2 Preliminaries and State of the Art

the user and shows all or some of the following details: the number of solutions and

whether the problem is satisfiable, i.e. it has at least one stable model, or unsatisfiable,

the solutions and the detailed time of the execution. The format of the answer sets is also

configurable by adding to the encoding which predicates to print in the output.

Both the tools, gringo and clasp, were combined into one tool, called clingo, in

order to avoid processing the ASP program with gringo and then further process the

output with clasp. Avoiding the intermediate step is particularly useful if the grounded

program is not of interest and the only results needed are the answer sets of the program.

Furthermore, in case one needs to compute the execution time of the whole ASP solving

process, the integrated tool shows the cumulative duration of the two phases, grounding

and solving.

Clingo supports numerous options that can configure the final output, including an

option regarding cautious entailment, which iteratively computes the intersection over all

answer sets, in the order in which they are computed. However, no matter the order in

which they are computed, the last outputted solution when using the cautious option is

always the intersection of all answer sets of the program. In Chapter 3.4 we describe the

tool that we built based on ASP as well as the encoding used for modeling the problem.

For the implementation of this tool, the cautious option serves the purpose of optimization

and it turns out to have a great impact on the execution time of the tool we developed.

40

3. Visualization, Navigation and

Exploration in Polyadic Datasets

3.1 Formal Concept Analysis for Web Usage Mining

3.1.1 Web Usage Mining and Web Analytics Metrics

In this chapter we apply formal concept analysis to Web usage mining of an educational

portal. The analysis and experiments described in Section 3.1.4 and Section 3.1.5 were

published as a conference and a journal paper in 2014 [Dragoş et al., 2014a; Dragoş

et al., 2014b].

Web mining is a research field that uses data mining techniques in order to discover

and extract knowledge from Web data. It is often used in order to deal with information

overload problems as well as to analyze and extract relevant knowledge from the available

Web data such as content of Web pages, link structure or logs [Kosala and Blockeel, 2000].

Web mining can be divided in three different categories [Romero et al., 2009]:

• Web content mining, which deals with extracting knowledge from the documents

themselves, by analyzing either their content or their description

• Web structure mining, which deals with inferring knowledge from the structure of

the Web and the links

• Web usage mining, which deals with extracting knowledge from Web access logs

and analyzing potential patterns

In this chapter we will address the third type, namely Web usage mining. A large

amount of secondary data about Web usage is stored in databases or Web server logs.

Statistics and data mining techniques are used to discover and extract useful information

from these logs. When data mining techniques are being used, the whole process is called

Web usage mining. Web usage mining has different goals, such as extracting knowledge in

41

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

order to identify potential patterns, predicting the behavior of users interacting with the

website, optimizing and personalizing the structure of the website. Changing the structure

of the website can benefit the user as well as the owner of the website depending on the

type of the changes:

• allowing the user to find the information he is looking for easier and faster

• intentionally adding a page the user usually does not visit on a path that he is likely

to follow, i.e. changing the structure to satisfy the goals of the website by forcing

the user to visit a page he is not necessarily interested in

• making information more accessible and effective by changing the structure to be

more intuitive according to the navigational patterns of the users

All the enumerated aspects of the Web usage mining are topic of numerous research

papers [Srivastava et al., 2000; Kosala and Blockeel, 2000; Romero et al., 2013; Eirinaki

and Vazirgiannis, 2003; Romero et al., 2009]. Considering the fact that Web usage mining

focuses on pattern analysis, usage profiles, system improvement and business intelligence,

it is not surprising that there are several tools supporting one or more of these aspects.

One of the more complex tools is WUM which provides also a mining query language MINT

that allows the expert to guide the discovery of navigational patterns [Spiliopoulou and

Faulstich, 1998]. We will not go into details about all the existing Web usage mining

tools, since they are out of focus in this analysis. We do however need to introduce the

analytics metrics used by these tools, which are also the metrics used in our work based

on formal concept analysis.

The analytics metrics that analytics tools are based on, are usually defined by organi-

zations such as JICWEBS (The Joint Industry Committee for Web Standards in the UK

and Ireland), ABC (Audit Bureau of Circulation) or DAA (Digital Analytics Association,

former Web Analytics Association - WAA). The main analytics metrics are defined based

on the following notions [Dragoş, 2011]:

• Website - a set of Web pages interrelated by links

• Page view/ Page request - the rendering of one page, including all its elements and

resources such as images, javascripts and others

• Visitor/ User - a uniquely identified client that requests Web pages; a user is iden-

tified most accurately via a registered account, but more often it is only identified

(not always accurately) via it’s computer using cookies, the IP or the user agent

42

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

• Visit/Session - a sequence of pages visited by the same user within a website and

during a period of time of maximum 30 minutes, which is the usual limit of a session

duration

• Bounce - a visit that consists of a single page view

• Visit Duration - the average time spent by a user on a site during one visit and

computed using the timestamps of the first and the last accessed page; bounces as

well as the last pages visited in a longer sequence are not taken into consideration

since it cannot be determined how much time they spent on these pages

• Visit Depth - the average number of pages accessed during one visit

• Frequency - the average number of visits per unique users

• Recency - the period of time since the last visit

One of the main problems in Web usage mining is identifying unique users and sessions.

As mentioned before, the most common methods for user identification are IP-, user-

agent- or cookies-based. For the case of IP-based identification there are several problems.

First of all, users can access a website from different IPs, by using different devices.

Furthermore, there can also be multiple users using the same device (for example more

students using the same laboratory’s computer), hence having the same IP. The user-agent

is also not an accurate method of identification since a user may use different browsers.

Cookies on the other hand, are often blocked and hence cannot offer relevant information

for user or session identification. In fact, the only accurate solution for user identification

is a registered account where users have to log in at the beginning of a session.

When trying to identify the session, there is usually a time limit taken into consider-

ation by restricting a session to 30 minutes. Another approach uses the structure of the

visits within a session and considers that the accessed pages within a session all have to

be linked directly by the referer-access file relation. Depending on the type of the system

and the purpose of the analysis, the right identification method has to be chosen.

However, even if the identification methods are adapted to the available data, Web

usage mining fails to offer sufficient support in some use cases. For example, Norguet et al.

[2007] mention an example from the industry, where the executive level of an organization

often requires summarized and conceptual information in order to take important decisions

in an informed and effective manner. For this purpose, the results produced by Web

analytics fail to provide the necessary support, since the Web analytics tools usually

provide information targeted at Web developers and designers of websites. We believe that

43

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

another example where available Web analytics tools cannot offer relevant or sufficient

information is the case of educational platforms. In order to understand why and to

improve these results, first we need to analyze the different phases of the Web usage

mining process.

The process of Web usage mining comprises three phases:

• preprocessing

• pattern discovery

• pattern analysis

The preprocessing phase is essential, since, at this stage, the data is cleaned and

prepared for pattern discovery. In the data preparation phase, some entries need to be

removed and some need to be enhanced. The most common example of information that

should be filtered out before pattern analysis is crawler activity. These entries, obviously,

do not give any insight in the user’s activity on the website and should not be considered

for further analysis. On the other hand, there can be missing information due to caching.

In order to deal with this problem the logs can be enhanced by adding the missing page

references. This process was called by Cooley et al. path completion [Cooley et al., 1999].

After cleaning and completing the data, the users, sessions and page views should be

identified. Sometimes, for this purpose the website topology has to be known and if

available also a page classification which has to be provided by the domain expert. The

expert usually has some predictions about how the site will be used and organizes the

structure accordingly, hence he can provide an accurate classification of the websites.

In the second phase, different data mining techniques such as clustering, classification

and association rules can be applied in order to identify navigational patterns. For each

of these techniques numerous methods have been proposed and applied over the years.

The most common techniques that have been used for classifying data are the following:

neural networks, genetic algorithms, regression techniques, discriminant function analysis.

However, among the previously mentioned data mining techniques, clustering seems to

be the most straight-forward and also efficient technique, since it can detect items having

similar characteristics. Eirinaki and Vazirgiannis highlight that in Web mining there are

two cases of clustering: user clustering and page clustering [Eirinaki and Vazirgiannis,

2003]. In addition to detecting navigational patterns, basic statistics, such as the number

of requests for each page or the average time spent on a page can be inferred in this phase.

The patterns stored in the previous phase can be further analyzed in the third phase

and the results can be applied to user profiling, website personalization and website im-

provement. While website improvement regards changing the website for all users, site

44

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

personalization means taking the user’s characterization into account and dynamically

changing the website to better suite each user’s needs. An important feedback for the

domain expert is to see if the website is being used as predicted. In case there is un-

predicted behavior it can mean several things: the design and structure of the website is

not intuitive or efficient, the website is not of great interest to the users or it does not

serve the needs of the users. However, the obtained information can be used to address

all these problems and to further analyze and predict the users’ behavior.

3.1.2 Web Usage Mining for E-learning Systems

In the last years research focused on applying data mining techniques to help teachers and

administrators of e-learning platforms improve the educational system. Cristóbal Romero

et al. have been studying knowledge discovery in e-learning systems for a long time and

they call it Educational Data Mining (EDM) [Romero and Ventura, 2007; Romero et al.,

2009; Romero et al., 2013]. A few of the problems in e-learning that researchers try

to address are: students’ assessment, adapting the course to the user’s needs, offering

recommendations of learning paths to students, characterizing students’ behavior and

classifying students, offering feedback to the instructors so they can improve the courses.

Learning management systems facilitate the communication between teachers and

students. On the one side, teachers can distribute new content, assignments, quizzes or

news to the students, on the other side, students can, besides benefit from the available

information, use forums and chats to collaborate amongst each other or a contact form to

communicate with the teacher. During the learning process, a lot of additional information

can be gathered from the logs containing the activities of the students. Furthermore,

for using an e-learning platform, registration is required, so personal information about

each student’s account is also available. However, for browsing some public parts of the

platform, usually containing general information about courses, it is not required to be

logged in. This means the user identification problem is not completely solved, but if

one wants to analyze the navigational paths containing pages with course content, then

information about user identification is usually available.

Nevertheless, when analyzing the data logs of an e-learning platform, it turns out that

some of the usual techniques of Web usage mining cannot be successfully applied. The

reason behind this is that most of the Web usage mining techniques were developed for

e-commerce websites or catalogs which share some basic functionality principles since the

users have similar goals. There are several Web analytics tools based on Web analytics

metrics, which have proven to give a good insight into analyzed commercial websites.

However, in e-learning the same principles do not apply and the same tools prove to be

45

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

rather inefficient. The main reason is that the goals of the users are completely different,

since the behavior of users in e-learning environments is driven by the desire of acquiring

information. This is a subjective goal which is hard to measure. The learning process

takes time and therefore the heuristics used by most analytics instruments do not apply

to a visit on an educational site [Dragoş, 2011]. For example, on many websites it can

be considered that during a limited period of time requests coming from the same host

correspond to the same user. This is not the case for e-learning systems, since they

are used for teaching and the portal is often accessed from the university laboratories,

meaning that for a fixed period of time several students can access the portal. Hence,

new Web usage mining approaches and techniques have to be researched for e-learning

systems.

The preprocessing of the data of an e-learning system usually takes place at the end of

a course or semester and has a few aspects that differ from other systems. As mentioned

previously most of these systems are used by registered users. This does not only simplify

the user identification, but also the session identification especially in the cases when the

user logs out, although there are users accessing some pages of the system without logging

in or users that log in but end their visit by closing the browser instead of logging out.

Moreover, many e-learning systems save the usage data not only in log files, but also in

databases. This gives the advantage of a better and more reliable analysis of the usage

behavior.

In our research ([Dragoş et al., 2014a; Dragoş et al., 2014b]), we apply Web

usage mining to an e-learning system called PULSE [Dragoş, 2007; Dragoş, 2009; Dragoş,

2010]. PULSE was previously studied by S. Dragoş, R. Dragoş and C. Săcărea using

different techniques and tools such as Web analytics [Dragoş and Dragoş, 2009a], Web

mining [Dragoş, 2011], visualization using force directed graphs [Dragoş and Beldean,

2013] and formal concept analysis [Dragoş and Săcărea, 2012]. The first tools the authors

implemented with the purpose of analyzing the usage data of PULSE were WATEC (Web

Analytics Tool for Educational Content), a PHP tool that creates a database with the

usage data and generates statistics about the logged data, and GAL (Google Analytics-

Like) [Dragoş and Dragoş, 2009a; Dragoş and Dragoş, 2009b; Dragoş, 2011]. GAL is based

on Google Analytics, but adapted to handle educational data usage. WATEC and GAL differ

in the Web analytics metrics used, such as identification of unique visitors and visits.

When comparing the two tools, WATEC proved to be more efficient in analyzing Web usage

for educational systems. In 2012, S. Dragoş and C. Săcărea tried to analyze the log data of

the e-learning portal by visualizing it with ToscanaJ [Becker et al., 2002], a formal concept

analysis tool [Dragoş and Săcărea, 2012]. The learning management system PULSE is

46

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

described in more details in the following section.

3.1.3 PULSE - a PHP Utility used in Laboratories for Student

Evaluation

PULSE is a learning management system developed by S. Dragoş in 2007 and extended in

the following years [Dragoş, 2007; Dragoş, 2009; Dragoş, 2011]. It was specifically designed

for managing the work of students during laboratory sessions and therefore supports both

students and professors in this process with functionalities specific to each role. Hence, a

user logged in as a student has a personalized view and can see information strictly linked

to his account such as:

• tasks assigned to him

• personal attendance records

• grades for the submitted tasks

The only common information for all student accounts is the general course documentation

or news. This solves the problem of confidentiality regarding grading, since it is often

required that grades are not made public.

When logged in as a professor, the user can find information regarding each student

registered in the courses linked to the professor’s account, such as:

• submitted tasks

• attendance

• student’s grades

Furthermore, the instructor has the possibility to order the students’ list alphabetically

or by different criteria regarding the grades (final grade, average grade).

Many learning management systems offer methods of automatic evaluation, however

this is not possible for the laboratory tasks because not only the solution itself has to be

evaluated, but also the knowledge gained by the student while resolving the task. Hence

the student has to explain the implemented solution and answer additional question that

verify his level of understanding [Dragoş, 2007]. The only process that can be automated

for the support of laboratory activities is the assignment of tasks. The professor needs

to provide a list of tasks, which are then randomly and automatically assigned to the

students.

47

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

PULSE logs all the usage data in a MySQL database, which contains the following

data fields [Dragoş, 2011]:

• the time stamp of the request

• the IP address of the originating Web page request

• full request-URI, including the domain, the requested URL, and any applicable

query parameters

• full unmodified user-agent string

• referrer URL

• login id

• cookie id

3.1.4 Applying Formal Concept Analysis on PULSE Usage Data

3.1.4.1 Data Preprocessing and Pattern Discovery

In the Web usage mining research field, a lot of different methods and techniques were

applied. However, it was observed that the most efficient techniques for educational Web

usage mining are classification and clustering. Clustering can actually be considered as

an unsupervised method of classification. Researchers that applied classification methods

to educational Web usage mining proposed different methods and algorithms, such as

PageGather, an algorithm based on clustering that determines groups of pages visited

together [Perkowitz and Etzioni, 1997] and many others. We decided to use formal concept

analysis, which is a clustering technique that has, to the best of our knowledge, not been

used before in educational Web usage mining [Dragoş et al., 2014a; Dragoş et al.,

2014b].

The analysis was performed on the data collected from the second semester of the

academic year 2012-2013, i.e. from the beginning of February to the end of July 2013. For

the analyzed time interval there were 40768 PULSE accesses. The data fields from the

collected information used in the current investigation are:

• full request-URI

• referrer URL

• login id

48

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

• the time stamp of the request

• cookie id

The data to be analyzed contains 751 distinct request-URIs, i.e. access files, 471 dis-

tinct referrers, 130 distinct login IDs, 25798 distinct timestamps and 3472 distinct cookie

IDs. In the preprocessing phase, in order to obtain a more coarse granularity, scales had

to be defined for some of the data fields. We performed the scaling process with the

tool ToscanaJ, which uses SQL statements to gather the required information from the

databases. The request-URI represents the address of the accessed Web page along with

all query information used for that actual request. Although we value the information

contained in this field, the granularity of the accessed Web pages is too fine for our intent,

since there are 751 distinct access file entries in the database. Therefore, the accessed

Web pages have been divided into 9 classes according to the pages’ utility. As mentioned

previously, the PULSE portal was intended to be used mainly during laboratory sessions

for students to consult theoretical support provided by the teacher, to access appointed

assignments and check their grades and attendance records. The pages corresponding to

these activities belong to the classes Lecture and Lab. Given the authentication phase

to the educational portal, we define two more classes: Home corresponding to the lo-

gin phase and Logout corresponding to the logout phase. Moreover, PULSE offers a

set of other utilities which are split into classes as follows: the TeacherAdm class con-

taining administrative utilities for the teachers, the FAQ class which contains a section

for frequently asked questions, the Feedback class, the News class and the Change

class which contains data about the course from the previous academic years. The access

files have been nominally scaled based on these classes and the nominal scale has been

visualized in ToscanaJ as represented in Figure 3.1.

Figure 3.1: Nominal scale for access file

On the other side, the referrer URLs represent the Web page from which the current

access file was accessed. These Web pages may be among the access files and they usually

are if the user had a continuous navigation path through the websites. The number

49

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

of these referrers is also high, 471 distinct referrers, hence classes have been defined in a

similar manner. Overall we recognize two different categories of referrers: inside PULSE

for accesses from within the PULSE portal and outside PULSE for accesses that were

made from pages not belonging to the educational portal. Each of the two categories of

referrers was separately divided into classes. The classes corresponding to the referrers

inside of PULSE are the same as the corresponding classes of the access files as depicted

in Figure 3.2a. The classes outside of PULSE are described in Table 3.1 and the ToscanaJ

visualization of their nominal scale is depicted in Figure 3.2b.

Figure 3.2: Nominal scales for the referrers

(a) Nominal scale for the referrers within PULSE

(b) Nominal scale for the re-

ferrers outide of PULSE

Table 3.1: Referrer classes outside of PULSE

Class Description

sanda teacher personal site

cs & scs faculty site & student site

google accesses from google search, and/or google mail

direct direct accesses from bookmarks or by typing the

URL of that Web page directly on the browser

The next step in the preprocessing phase, after defining the scales, was to use the

Toscana2Trias tool. As mentioned in Section 2.1.3.2, after preprocessing the data with

ToscanaJ, Toscana2Trias allows selecting triadic data starting from a given set of scales.

In our experiments we extracted and analyzed different triadic structures, which will be

presented later in the experiments section.

For the pattern discovery, we used the Trias algorithm [Jäschke et al., 2006] to gen-

erate all the triconcepts of the previously described triadic context. However, for the

pattern analysis phase, we needed a visualization tool that can effectively represent a

50

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

relatively high number of triconcepts. Since the problem of visualizing triadic data has

not yet been satisfactory solved, we tried to find alternative ways to visualize the results.

Trilattices could not be considered in this case, since it would be almost impossible to

design a trilattice for a large number of triconcepts. Hence, we considered Circos, a

visualization tool which is described in more detail in the following section.

3.1.4.2 Pattern Analysis and Visualization using Circos

Circos1 is a tool developed by Martin Krzywinski with the purpose of visualizing data in

a circular layout. The tool was initially designed to investigate structural patterns arising

in bioinformatics, mainly to visualize genomic data. However, it has since been used on

data from various fields. As Krzywinski mentions in several of his presentations, graphical

displays of the data are very important and while “large data sets hide patterns”, a “good

visualization reveals patterns”. The circular layout of Circos emphasizes patterns in the

dataset, showing connections between represented data, which makes it suitable also for

a formal context.

The input format of Circos is a two-dimensional table with numerical data. Therefore,

the triadic structure has to undergo a preprocessing phase in order to be transformed in

a valid Circos input table. We decided to represents the triadic structure in such a way

that the two dimensions of the table correspond to two of the three dimensions of the

analyzed data, while the third dimension of the data will be involved in computing the

numerical values of the table [Dragoş et al., 2014a; Dragoş et al., 2014b]. In what

follows we will describe this procedure in more detail.

Let the input table for Circos be represented by the function R × C 7→ V , where

R is the set of row indicators,C the set of column indicators and V the set of values for

the corresponding table cells. The triadic context containing the data to be analyzed

is denoted by K = (G,M,B, Y). The set C of column indicators is represented by the

set of attributes described by the following projection prM(Y) = {m ∈ M | ∃(g, b) ∈
G × B, (g,m, b) ∈ Y }, i.e. all attributes that can be found in the incidence relation.

Similarly, the set R of row indicators is represented by the set of conditions from the

projection prB(Y), i.e. all conditions from the ternary relation.

In order to compute the numerical values v ∈ V of the table, first we consider the

dyadic projection of the context K(1) = (G,M×B, Y (1)) with gY (1)(m, b)⇔ (g,m, b) ∈ Y .

For each pair (m, b) ∈M ×B that can also be found in the table, i.e. (m, b) ∈ C ×R, we

compute the corresponding attribute concept µ(m, b) = ((m, b)′, (m, b)′′) of the context

K(1). The numerical value of the table cell corresponding to the row m and the column b

1http://circos.ca/

51

http://circos.ca/

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

is the cardinality of the extent (m, b)′ of the computed attribute concept µ(m, b). So we

have that (m, b) 7→ |(m, b)′|. Hence, the elements of V can be computed using the table

representation of the triadic context, by counting the elements of the object set which are

in relation with attribute m and condition b 2.

The final step before using Circos to graphically represent the data is to create a

configuration file, which controls the creation of the images. The configuration file contains

numerous options that can change different aspects of the layout and coloring of the

represented data. To conclude the analysis, we visualize our data by running Circos

and obtaining an output in png or svg format [Dragoş et al., 2014a; Dragoş et al.,

2014b].

3.1.5 Circos Interpretations of Triadic Data

For the first analysis we were interested in investigating temporal patterns of Web usage

behavior within PULSE [Dragoş et al., 2014a; Dragoş et al., 2014b]. Hence, we

restricted our focus to the access files, the referrers and the timestamps of the system. This

is a natural triadic structure wherefrom we can extract user dynamics related knowledge

structures in form of triadic concepts. As we have seen in the preprocessing phase, access

files and referrers were divided into different classes according to the scope of the pages

and scales were built on these classes. However, for this analysis we wanted to study

the user dynamics within the educational portal, hence the referrer classes outside of

PULSE were ignored. We used the scale in Figure 3.1 for the access files and the scale in

Figure 3.2a for the referrers and extracted the following triadic structure:

• objects are represented by the students’ login id

• attributes are represented by pairs of the form (referrer class, access file class)

• conditions are represented by the timestamps

The motivation behind the choice of student login id as object type is the fact that the

password-based authentication solves the problem of user identification in the usage data.

Moreover, the attributes were chosen to model the navigation from one page to another

in order to obtain in the end results about the navigational patterns.

Using the algorithm described in Section 3.1.4.2 the triadic structure was transformed

in a data input table for Circos. Then we ran Circos to obtain a graphical representation

2In the articles we published on this topic [Dragoş et al., 2014a; Dragoş et al., 2014b] we used

a different algorithm for computing |(m, b)′|. However, a different, more efficient algorithm is presented

here.

52

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

of the data. However, for this first attempt one single circular representation did not

manage to show the data in a meaningful and readable way or to reveal any patterns.

The reason behind is that the volume of the represented data as well as its density were

too high. Hence, as a next step we reduced the volume of the analyzed data using different

methods:

• choosing a different triadic structure with a lower density of the data

• filtering the data using different criterias:

– the program in which students are enrolled and their year of study

– different time granulations: one semester, one third of a semester, a week

Next we tried to analyze navigational patterns among the sessions. While the user

identification was solved by the authentication method, sessions were identified using

cookies. Hence, for this analysis we chose the following triadic structure:

• cookie ids as objects

• referrer classes inside PULSE as attributes

• access file classes as conditions

Using the same algorithm in the preprocessing phase, the data was structured as a

table having referrer classes as the column indicators and access file classes as the row

indicators. The Circos representation of this dataset can be seen in Figure 3.3. We

added additional information on the sides of the Circos representation in Figure 3.3 in

order to explain how the elements of the figure can be interpreted. Elements that are

related are joined by links in the form of ribbons. In this particular case, each ribbon

corresponds to a pair (referrer class, access file class). However, since the referrer and

the access file classes are the same in this case, the classes are only represented once, but

can play the role of both referrer and access file class. The quantitative part of the table,

i.e. the numerical values corresponding to one of the three dimension of the original data

can be deduced from the thickness of the ribbons.

For a better understanding we represented in Figure 3.4 the same relation between

referrer and access file classes in the form of a directed graph. The nodes of the graph

have the same colors as the corresponding segments in the Circos representation. Just

as in Figure 3.3, here we can also observe loops, since both sets are divided into the same

classes.

53

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Figure 3.3: Navigational patterns for user sessions

Next, we tried to reduce the volume of the data and aggregate the student login ids

into student groups according to the program that students were enrolled in and their

year of study. We continued our tests treating each group of students separately and

analyzing their behavior in time [Dragoş et al., 2014a; Dragoş et al., 2014b]. For

this purpose we considered the following triadic structure:

• timestamps as objects

• referrer classes as attributes

• access file classes as conditions

A time granularity of one third of a semester did not provide any significant patterns,

therefore we fine tuned the time granularity to a week and added an additional filter

regarding the activity for specific courses. The analyzed data was gathered for an entire

54

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Figure 3.4: Graph visualization of the connections between referrer and access file classes

semester during which students were enrolled in two courses from the PULSE platform:

operating systems (SO1), which is a compulsory course, and Web design optimization

(WDO), which is an elective course. Two student groups were enrolled in the SO1 course,

mathematics-computer science in Romanian language denoted “ar” and software engi-

neering in Romanian language denoted “ri”. On the other hand, for WDO there were

students from five different groups enrolled, but not all the students from these groups

were enrolled since it was an elective course. Some of these groups were poorly represented,

so we chose to study the behavior of two student groups which had a higher number of

attendees: software engineering in English language denoted “ei” and computer science

in English language denoted “ie”.

We observed from our analysis and the circular visualizations of data subsets that there

are three types of behaviors, which we denote: relaxed, intense and normal [Dragoş et

al., 2014a; Dragoş et al., 2014b]. The relaxed behavior occurs mainly during the

holiday, for example in the 10th week, but also after final exams or between the final

exam and the reexamination: 18th and 20th week for group “ar”, 18th and 19th week for

group “ri” and after the 14th week for groups “ei” and “ie”. The reason why the weeks

differ for each student group is that the structure of the courses also differs depending on

the group. The pattern for this type of behavior is depicted in Figure 3.6b and Figure 3.7c

55

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

and can be distinguished by fewer accesses and a reduced number of access file classes

visited (usually only the main classes are visited). For the elective course WDO the

results showed a generally more relaxed behavior than for the compulsory course due

to the fact that this type of course implies personal research. Therefore, the teaching

material provided is less visited that in the case of the compulsory course SO1.

The intense behavior occurs during examination periods. The pattern depicted in

Figure 3.6c and Figure 3.7b shows an increase in the number of accesses. The pattern

can be observed even in the weeks preceding the exam, its peek however occurs during

the week of the exam. This behavior could be observed for the compulsory course in the

following weeks: 17th week for the “ar” and “ri” groups, 19th week for the “ar” group

and 20th week for the “ri” group. The elective course had a different evaluation method,

namely students had to develop three projects. This projects were due in the 7th, 9th

and 13th week, which were also the weeks with intense behavior.

The normal behavior occurs during the semester when there is no examination period,

but also no holiday. The pattern for this type of behavior, as depicted in Figure 3.6a

and Figure 3.7a, shows that almost all access file classes are visited. The three main

classes, HOME, LAB and LECTURE, were still the most visited, while the next most

visited class was NEWS. These results are to be expected as PULSE is mainly intended

to provide support for laboratory and lectures.

When comparing the different behavior types, for example for group “ar” as depicted

in Figure 3.6, one can notice that during intense behavior the Web pages from the LEC-

TURE class are visited the most as the students prepare for the examination, while in

the normal period the Web pages from the LAB class are visited more as students need

to solve their laboratory assignments, that is if we ignore the class HOME which is the

transition class given the login step.

Figure 3.5: Number of accesses for the “ar” student group

56

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

The different triadic conceptual landscapes of the analyzed data provide a large amount

of information that is suitable for a large variaty of interpretations and visualizations. In

order to have a better view of the evolution in terms of number of accesses per week

we plotted the results of the “ar” group for different access file classes using histograms.

Some of these plots are depicted in Figure 3.5. This representation however, presents only

the quantitative aspect of the navigation, namely the number of accesses. The circular

visualizations presented so far provide a more qualitative view of the navigational patterns

by comprising more details about how the students navigate through the educational

platform [Dragoş et al., 2014a; Dragoş et al., 2014b].

3.2 Clarification and Reduction of Triadic Contexts

In the next two chapters we will introduce two navigation paradigms for triadic datasets

that try to deal with the complexity of the triadic structure of a tricontext. For that

purpose, the preprocessing phase of the data plays an important role. While in the

dyadic setting there are well-known methods to reduce the size of the data without af-

fecting its underlying structure, these methods are missing in the triadic case. Therefore,

driven by practical requirements, we discuss in this chapter triadic extensions of the pre-

viously introduced notions from dyadic formal concept analysis: clarification, reduction

and object/attribute concepts. Furthermore, we analyze the effects of the clarification

and reduction processes on a medical dataset. The results presented in this chapter were

published in a workshop paper in 2015 [Rudolph et al., 2015b].

As we have seen in Section 2.1.2.1, for dyadic contexts, reducible objects and attributes

can be deleted, without affecting the underlying conceptual structure. Clarifying and

reducing is thus a preprocessing stage, in order to reduce the dimensions of the context,

i.e. the number of elements of each component set of the context, for further analysis. We

deduce from Definition 2.1.11 and Observation 2.1.2 that, in the dyadic case, a context is

called clarified if there are no identical rows and columns in its cross-table representation.

In the triadic case, we can make use of the same idea applied on the “flattened” projection

of the tricontext. Since a triconcept (A1, A2, A3) is a maximal triple of triadic incidences,

removing identical “slices” in the tricontext does not alter the structure of triconcepts.

Clarification in triadic contexts is formally described in the following definition.

Definition 3.2.1 A triadic context (K1, K2, K3, Y) is clarified if for every i ∈ {1, 2, 3}
and every u, v ∈ Ki, from u(i) = v(i) follows u = v. The derivation ()(i) is the correspond-

ing derivation in the triadic context.

The other important operation performed in the dyadic case is context reduction. This

57

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

consists in the removal of reducible objects and attributes, an operation that has no effect

on the conceptual structure of the context. Reducible elements in the dyadic case are

precisely those elements that can be written as combination of other elements from the

corresponding set.

Remark 3.2.1 As we have seen in Definition 2.1.12, we call a clarified context (G,M, I)

row-reduced if every object concept is ∨-irreducible and column reduced if every attribute

concept is ∧-irreducible. Due to the symmetry of the context, if we switch the role of

the objects with that of the attributes and look at the context (M,G, I−1), then the new

context is row reduced if every object concept (attribute concept in the former context) is

∨-irreducible. So we can consider only ∨-irreducible concepts, first in the dyadic context

(G,M, I) and then, by switching the perspective, in (M,G, I−1).

Similar to the dyadic case, objects, attributes, and conditions which can be written as

combinations of others have no influence on the structure of the trilattice of K, so they can

be reduced. Considering that for dyadic contexts, reducible elements are defined using

object and attribute concepts, we might ask if there are similar notions in the triadic case.

Due to the structure of triconcepts, it turns out that a triadic object concept should be

defined as a set of triconcepts. Taking this into consideration, we deduce that it would be

difficult to find a reduction characterization for tricontexts using triadic object concepts,

since we cannot define ∨-irreducibility for a triadic object concept. However, using the

idea described in Remark 3.2.1, we can define the reduction of a tricontext using object

concepts in appropriately defined dyadic contexts [Rudolph et al., 2015b].

Definition 3.2.2 A clarified tricontext (K1, K2, K3, Y) is called object reduced if every

object concept of the dyadic context (K1, K2×K3, Y
(1)) is ∨-irreducible, attribute reduced

if every object concept of the dyadic context (K2, K3 × K1, Y
(2)) is ∨-irreducible, and

condition reduced if every object concept of the dyadic context (K3, K1 × K2, Y
(3)) is

∨-irreducible. An element a ∈ Ki is called irreducible, respectively reducible, if a is

irreducible, respectively reducible, in the corresponding dyadic projection K(i).

Example 3.2.1 In the following tricontext we can see an example of an element that can

be reduced.

b1 m1 m2 m3

g1 ×
g2 ×
g3

b2 m1 m2 m3

g1 × ×
g2 ×
g3 ×

58

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

b3 m1 m2 m3

g1 ×
g2 × ×
g3 ×

b4 m1 m2 m3

g1 ×
g2 × ×
g3 ×

The non-trivial triconcepts of the described tricontext are:

({g1}, {m1}, {b1, b2, b3, b4})
({g2}, {m3}, {b1})
({g1, g2, g3}, {m1}, {b2, b3, b4})
({g1}, {m1,m3}, {b2})
({g2}, {m1,m2}, {b3, b4}).

First, we observe that the slices corresponding to the two condition b3 and b4 are iden-

tical, so in the clarification process we can eliminate condition b4. Moreover, we can

see that by reducing g3, the number of triconcepts remains unchanged and the trilattice

will not change, since the behavior of object g3 is the same as the common behavior (the

“intersection”) of the group of objects g1 and g2.

Similarly to the dyadic case (see Proposition 2.1.2), we obtain the following charac-

terization for reducible elements.

Proposition 3.2.1 Let K = (K1, K2, K3, Y) be a tricontext and ai ∈ Ki, i ∈ {1, 2, 3}.
Then the element ai is reducible if and only if there exists a subset X ⊆ Ki with ai /∈ Ki

and Y
(jk)
X = Y

(jk)
ai , where Y

(jk)
X = {(bj, bk) ∈ Kj × Kk | ∀bi ∈ X. (bi, bj, bk) ∈ Y }, for

{i, j, k} = {1, 2, 3}.

Proof. The element ai ∈ Ki is by definition reducible in K if it is reducible in K(i)

and from Proposition 2.1.2 we have that ai is reducible if and only if there exists a subset

X ⊆ Ki with ai /∈ Ki, s.t. they have the same derivative in K(i), i.e. a
(i)
i = X(i). Now we

have the following equivalence chain:

(aj, ak) ∈ Y
(jk)
ai ⇔ (ai, aj, ak) ∈ Y ⇔ (aj, ak) ∈ a

(i)
i = X(i) ⇔ (x, aj, ak) ∈ Y, ∀x ∈ X ⇔

(aj, ak) ∈ Y
(jk)
X . 2

Remark 3.2.2 Finite tricontexts can be represented as slices consisting of dyadic con-

texts. Moreover, this representation has a sixfold symmetry. In order to represent the

triadic context in a plane, we just put these slices one next to each other (see previous

example). This proposition states that ai is reducible if and only if the slice of ai is the

intersection of some slices corresponding to the elements of a certain subset X ⊆ Ki. This

has a striking similarity to the dyadic case, where, for example, an object is reducible, if

59

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

its row is the intersection of the rows from a certain subset X of objects. This also gives

us an algorithmic approach to the problem of finding all reducible elements in a tricontext.

Finally, we implement the described clarification and reduction processes for tricon-

texts and apply them on a cancer registry database comprising information about several

thousand patients [Rudolph et al., 2015b]. The cancer registry database, in its origi-

nal form, contains 25 characteristics for each patient, including an identification number

and other characteristics such as tumor sequence, topography, morphology, behavior, ba-

sis of diagnosis, differentiation degree, surgery, radiotherapy, hormonal therapy, curative

surgery, curative chemotherapy, etc. The described database has been previously analyzed

and interpreted by Săcărea using formal concept analysis [Săcărea, 2014]. Therefore, all

the characteristics available for a patient are interpreted as conceptual scales and rep-

resented as conceptual landscapes for an enhanced knowledge retrieval. This enables us

to use the tool Toscana2Trias, described in Section 2.1.3.2, in order to obtain triadic

structures from the original dataset and analyze it as a tricontext. However, we will not

go into details about interpreting the data, since the purpose of this application is solely

to analyze the effect of the clarification and reduction processes on the size of the context.

In our tests, we selected two different tricontexts that have patients as objects. For

the first example, the selection was restricted to specific types of tumors (as attributes)

and their stages (as conditions). After the clarification process, we obtained a small

tricontext with 13 objects, 5 attributes and 8 conditions, and 23 triconcepts. In the

reduction process, three more objects, one attribute and one condition could be further

reduced.

For the next example, we selected a number of 4686 objects, 11 attributes (all 8 degrees

of certainty in the oncological decision process, in-situs carcinoma and tumor sequence =

1, i.e. just one tumor) and three conditions (gender = male, age < 59, and survival >

30 months). This selection generated a relation with 44545 tuples (crosses in the tricon-

text) and 63 triconcepts, and a clarified tricontext with 61 objects. Herefrom, 38 objects

could be reduced as well as 7 attributes (all of them being certainty-related, due to the

specific selection we have made), resulting in a relation with 77 tuples.

These applications show how the clarification and reduction processes can eliminate

redundant information, hence increasing the efficiency in determining the underlying con-

ceptual structure [Rudolph et al., 2015b]. We observe that in real datasets, often

a large number of elements can be reduced. Clarification and reduction play an im-

portant role, not only for optimizing further analysis of the data, but also to have an

initial insight into the structure of data, considering that elements that can be elim-

inated in these processes are grouped into subsets of elements with identical or simi-

60

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

lar behavior. In conclusion, clarification and reduction are important processes for the

preprocessing phase of a dataset and should be performed, for optimization reasons,

before starting to navigate through the conceptual landscape of the context. We will

continue, in the next chapters, by introducing two different navigation paradigms that

we propose for triadic datasets [Rudolph et al., 2015c; Rudolph et al., 2015a;

Rudolph et al., 2016]. Moreover, as we will see, one of the proposed navigation

paradigms can be easily extended to higher-adic datasets.

3.3 A Triadic Navigation Paradigm based on Reach-

ability Relations

3.3.1 Motivation

Formal concept analysis becomes increasingly popular for its capabilities addressing knowl-

edge processing and knowledge representation as well as offering reasoning support for

understanding the structure of large datasets, especially in the dyadic case. As we have

shown in Section 2.1.2.1, dyadic datasets can be graphically represented as concept lat-

tices, which offer an intuitive visualization and hence understanding of the dataset’s struc-

ture. Moreover, in a dyadic lattice, navigation among concepts is straight forward due to

the order relations that are defined on the two dimensions of the context.

For cases where the concept lattice gets too big to be represented in a readable way,

“local” navigational paradigms have been proposed, where only one concept and its di-

rect neighbor concepts are visualized and the user can explore the concept lattice by

successively moving to neighboring concepts [Ferré and Ridoux, 2004; Godin et al., 1993].

In the triadic case, however, trilattices which are the current graphical representation

of triadic contexts are hard to obtain, i.e. to graphically represent, even for small datasets

and can also be hard to read. Moreover, navigation in a trilattice is not trivial, considering

that on each of the three dimensions of the context only quasiorders can be defined and

the sets of extents, intents and modi do not form closure systems as in the dyadic case

(see Observation 2.1.6). Considering that there are a lot of data collections that map

perfectly to a triadic representation, especially in the field of collaborative tagging and

folksonomies [Jäschke et al., 2008], we consider that it is essential to have a navigation

paradigm suitable for triadic contexts.

Driven by the previously mentioned practical requirements, we propose in this chapter

a new navigation paradigm for triadic conceptual landscapes based on a neighborhood

notion arising from appropriately defined dyadic concept lattices. For this purpose, we

61

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

intend to locally display a smaller part of the space of triconcepts, instead of displaying

all of them at once, and then find an intuitive navigation strategy that allows for moving

from one such local view to other adjacent ones. Furthermore, we will formally analyze

the properties of this strategy and ultimately suggest algorithms for producing the struc-

tures necessary for browsing the space of triconcepts using theoretically well-understood

methods. The results presented in this section were published in a conference paper in

2015 [Rudolph et al., 2015c].

The navigation strategy we propose makes use of the elegance and the expressive power

of dyadic concept lattices. Navigation starts locally, with a triconcept. Herefrom, we fix

what we call a perspective, i.e., one of the three dimensions (extent, intent or modus)

and then collect all so-called directly reachable triconcepts. For each perspective, the

triconcepts directly reachable via this perspective can be arranged in a dyadic concept

lattice, hence navigating among them benefits from all advantages concept lattices are

offering. After selecting a directly reachable triconcept, one may change the perspective

and move towards another set of reachable triconcepts, exploring again another concept

lattice. Given the local character of the navigation, this approach allows to cope with

large sets of triconcepts. Moreover, the local navigation strategy discussed in this chapter

gives rise to a list of theoretical questions: reachability of all triconcepts, the existence

and the number of sets of mutually reachable concepts, their structure and a method to

navigate from one to another. Understanding these clusters proves to be not trivial and

gives interesting insights about the inherent conceptual structure of triadic data.

3.3.2 Proof of Concept

Before introducing the theoretical aspects of the navigation paradigm we will present

a small example aiming at explaining how the local navigation paradigm works in a

set of triconcepts. Therefore, we will describe a few navigation steps using different

graphical representations, since it is easier to understand the navigation while visualizing

the concepts and the relation between them.

For this purpose, we consider the hostels tricontext from Example 2.1.4 and its trilat-

tice diagram as represented by Glodeanu [2013]. The objects of the triadic dataset are

hostels, the attributes are services provided by the hostels, while the conditions are Web

portals where the hostels can be rated.

In the triadic graphical representation from Figure 3.8 one can observe, as mentioned

earlier, that the complexity of the trilattice structure and that of the order diagrams of

the extents, intents and modi sets make a global navigation approach quite difficult. On

the other hand, the local navigation paradigm avoids such complexity issues by taking

62

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

advantage of dyadic context lattices, representing local views of the triadic context.

The local navigation paradigm starts from a triconcept (A1, A2, A3) and the first step

is to select one of its dimensions, i.e. the dimension of the extent, intent or modus, as

a perspective. This perspective (k) is the one chosen for the dyadic projection K(ij)
Ak

.

Moreover, the dyadic projection is the local view for this navigation step. Each dyadic

concept in the dyadic projection corresponds to a triadic concept that has either Ak as

the third component or a larger set, depending on the maximality constraint. These

triconcepts are called directly reachable and navigation among them is performed in the

underlying dyadic concept lattice.

Let the triconcept T1 = ({g3, g4, g5}, {m0,m1,m2,m3,m5}, {b1, b2}) be a starting point

for the local navigation and consider perspective (3), i.e. modus dimension, for the first

step. By projecting along {b1, b2}, we obtain the concept lattice displayed in Figure 3.9,

where triconcept T1 corresponds to the rightmost dyadic concept. The extent and intent

of the triconcepts can be read from the concept lattice, while the modus is computed using

the corresponding derivation operator (·)3 in the tricontext. It follows, as mentioned previ-

ously, that all dyadic concepts correspond to triconcepts, having either the same modus or

a larger one. The navigation can be continued herefrom by choosing one of the triconcepts

directly reachable from T1, i.e., one of the concepts of K(12)
{b1,b2}, and a perspective in order

to navigate within the new concept lattice. For example, the leftmost concept of this lat-

tice diagram corresponds to the triconcept T2 = ({g2, g3, g4}, {m2,m3,m4}, {b1, b2}). By

choosing T2 and perspective (1), i.e. extent dimension, the triconcepts reachable herefrom

are represented in Figure 3.10. Here, the extent of the triconcepts is computed using the

corresponding derivation operator (·)1 in the tricontext, while intent and modus can be

read from the dyadic lattice.

63

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Figure 3.9: Directly reachable tricon-

cepts from T1 using perspective (3)

Figure 3.10: Directly reachable tricon-

cepts from T2 using perspective (1)

This example shows how we can navigate from one triconcept to another and how

triconcepts can be clustered according to their reachability. Motivated by this example,

we introduce, in the following sections, the theoretical aspects and considerations of the

proposed navigation paradigm [Rudolph et al., 2015c]. Moreover, we discuss some the-

oretical questions arising from the described navigation method, like for example whether

all concepts are reachable from any starting point.

3.3.3 Reachability Relations among Triconcepts

This section aims to define the exploration paradigm exemplified in the previous section.

In order to better understand the connection between the triconcepts and the dyadic

contexts used for the local navigation, we present some properties of the triconcepts,

which are a direct consequence of Proposition 2.1.5 [Rudolph et al., 2015c].

Proposition 3.3.1 Let (A1, A2, A3) ∈ T(K) be a triadic concept.

Then (A1, A2) ∈ B(K(12)
A3

).

Proof. Let (A1, A2, A3) be a triconcept. By definition, K(12)
A3

= (K1, K2, Y
(12)
A3

),

where, for g ∈ K1 and m ∈ K2, (g,m) ∈ Y
(12)
A3

if and only if (g,m, b) ∈ Y, ∀b ∈ A3.

We want to prove that (A1, A2) ∈ B(K(12)
A3

) ⇔ A1 = A
(1,2,A3)
2 and A2 = A

(1,2,A3)
1 . On

the one hand, A
(1,2,A3)
1 = {m ∈ K2 | ∀g ∈ A1, ∀b ∈ A3. (g,m, b) ∈ Y }. On the

other, since (A1, A2, A3) is a triconcept, it follows from the triconcept definition that

64

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

A2 = (A1 × A3)
(2) = {m ∈ K2 | ∀g ∈ A1, ∀b ∈ A3. (g,m, b) ∈ Y }. We conclude that

A2 = A
(1,2,A3)
1 and similarly A1 = A

(1,2,A3)
2 . 2

Proposition 3.3.2 Let (A1, A2, A3)∈T(K) be a triadic concept. Let (B1, B2)∈B(K(12)
A3

).

Then (B1, B2, (B1 ×B2)
(3)) ∈ T(K).

Proof. From (B1, B2) ∈ B(K(12)
A3

) it follows that B1 = B
(1,2,A3)
2 and B2 = B

(1,2,A3)
1 .

Now we can apply Proposition 2.1.5 for i = 1, j = 2, k = 3, X1 = B1, X3 = A3 and hence

the computed triconcept is exactly (B1, B2, B3) with B3 = (B1 ×B2)
(3). 2

Proposition 3.3.1 shows that, by projecting along one of the dimensions, we obtain

a formal dyadic context, where the projection of the triconcept is a dyadic concept of

the corresponding concept lattice. Moreover, Proposition 3.3.2 proves that every dyadic

concept of the projected context generates a triconcept in the tricontext. Hence, given

a triconcept (A1, A2, A3), fixing either its extent, intent or modus, gives rise to a dyadic

concept lattice, every concept of which can be deterministically turned into a triconcept

by computing the missing component using the appropriate derivation operator. Taking

this into consideration, we define the reachability relation as follows.

Definition 3.3.1 (Direct reachability) For (A1, A2, A3) and (B1, B2, B3) triadic con-

cepts of the tricontext K = (K1, K2, K3, Y), we say that (B1, B2, B3) is directly reachable

from (A1, A2, A3) using perspective (1) and we write (A1, A2, A3) ≺1 (B1, B2, B3) if and

only if (B2, B3) ∈ B(K(23)
A1

). Analogously, we can define direct reachability for perspectives

(2) and (3).

We say that (B1, B2, B3) is directly reachable from (A1, A2, A3) if it is directly reach-

able using at least one of the three perspectives, that is, formally:

(A1, A2, A3) ≺ (B1, B2, B3)⇔
[(A1, A2, A3)≺1(B1, B2, B3)] ∨ [(A1, A2, A3)≺2(B1, B2, B3)] ∨ [(A1, A2, A3)≺3(B1, B2, B3)].

By Proposition 3.3.1, two triconcepts having the same extent, intent, or modus are

always mutually directly reachable. Hence, in a trilattice diagram, all triconcepts aligned

on the same line (i.e., being equivalent with respect to one of the three preorders) are

mutually directly reachable:

Proposition 3.3.3 Let (A1, A2, A3), (B1, B2, B3) be two triconcepts of the context K =

(K1, K2, K3, Y). If Ai = Bi for an i ∈ {1, 2, 3} then (A1, A2, A3) ≺i (B1, B2, B3) and

(B1, B2, B3) ≺i (A1, A2, A3).

Definition 3.3.2 (Reachability) We define the reachability relation between two tri-

concepts as being the transitive closure of the direct reachability relation ≺. We denote

this relation by ▹.

65

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Definition 3.3.3 (Reachability cluster) The equivalence class of a triconcept

(A1, A2, A3) with respect to the preorder ▹ on T(K) will be called a reachability cluster

and denoted by [(A1, A2, A3)]. The corresponding equivalence relation is denoted by ∼.

Intuitively, the reachability cluster of (A1, A2, A3) contains all triconcepts which are

mutually reachable from (A1, A2, A3). However, when a triconcept T2 is reachable from

a triconcept T1 it is not necessarily the case that T1 is also reachable from T2, since the

reachability relation is not symmetric. The following definitions briefly introduce some

notions of directed graphs which are necessary in order to describe the structure of the

reachable triconcepts.

Definition 3.3.4 (Directed graph) A directed graph G = (V,E) is an ordered pair

comprising a set of vertices V and a set E of directed edges E ⊆ V × V .

Definition 3.3.5 (Subgraph) A graph G′ = (V ′, E ′) is a subgraph of graph G = (V,E)

if and only if V ′ ⊆ V and E ′ ⊆ E, i.e. its vertices, respectively edges, are a subset of the

vertices, respectively edges, of the other graph.

Definition 3.3.6 (Strongly connected) A directed graph G = (V,E) is called strongly

connected if between any two vertices x, y ∈ V there is a path from x to y as well as a

path from y to x. The path is defined as a sequence of distinct edges with the property

that the starting point of an edge is the ending point of the previous edge, i.e. the edges

connect a sequence of vertices.

Definition 3.3.7 (Strongly connected component) A strongly connected component

of a directed graph G = (V,E) is a strongly connected subgraph which is maximal with

this property, i.e. there is no way of adding other vertices v ∈ V or edges e ∈ E which

results in a new strongly connected subgraph. The set of strongly connected components

of a graph form a partition of the set of vertices V .

Observation 3.3.1 Let K be a tricontext and G the graph with T(K) as vertices and

the edges given by the direct reachability relation. Then, the reachability clusters of K
are identified by the strongly connected components of G. Furthermore, for triconcepts

T1, T2 ∈ T(K), we have that T1 ▹ T2 if, in graph G, there is a directed path from T1 to

T2. Hence, we can deduce the transitive closure of the direct reachability relation from the

previously defined triconcept graph G.

The following results provide a better understanding of the reachability clusters and

their structure. We prove that there exist triconcepts which are always reachable (Propo-

sition 3.3.4). Moreover, the induced order on the set of reachability clusters always has a

greatest element.

66

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Proposition 3.3.4 Let K = (K1, K2, K3, Y) be a tricontext. Then, the trivial/non-

proper triconcepts θ1 = ((K2 × K3)
(1), K2, K3), θ2 = (K1, (K1 × K3)

(2), K3) and θ3 =

(K1, K2, (K1×K2)
(3)) are always reachable. Moreover, they are always directly reachable.

Proof. Let us first assume that (K2 ×K3)
(1) = (K1 ×K3)

(2) = (K1 ×K2)
(3) = ∅. Let

(A1, A2, A3) ∈ T(K) be a triconcept. Using perspective (3), we navigate in B(K(12)
A3

). The

greatest and the lowest elements of K(12)
A3

are (K1, ∅) and (∅, K2), respectively. But the

corresponding triconcepts of (K1, ∅) and (∅, K2) are (K1, ∅, K3), respectively (∅, K2, K3).

It follows that (A1, A2, A3) ▹ θ1 = (∅, K2, K3) and (A1, A2, A3) ▹ θ2 = (K1, ∅, K3). By

choosing one of the other two perspectives, θ3 is directly reached from (A1, A2, A3).

In particular, if (A1, A2, A3) = θ1, then the trivial triconcepts θ2 and θ3 are reachable

using perspective (1).

If (K2×K3)
(1) = M1 ̸= ∅, then the lowest element of K(12)

A3
would be (M1, K2) instead

be of (∅, K2) and again it follows that all the trivial triconcepts are directly reachable. It

works analogously if (K1 ×K3)
(2) ̸= ∅ or (K1 ×K2)

(3) ̸= ∅. 2
Corollary 3.3.4.1 The ordered set of equivalence classes (T(K)/ ∼,≤) has always a

greatest element, the reachability cluster of the trivial concepts. We denote this cluster by

∇.

Observation 3.3.2 The same graph G, having the triconcepts T(K) as vertices and the

edges given by the direct reachability relation, can be used to deduce the order relation

between the clusters. In Section 3.3.5 we show that the order relation between clusters is

a partial order. If T1 ∈ C1 and T2 ∈ C2 are two triconcepts from different clusters s.t.,

in graph G, there is a path from T1 to T2, then we have that C1 ≤ C2. Observe that,

considering T1 and T2 belong to different clusters, in the case that there is a path from T1

to T2, we cannot also have a path from T2 to T1.

Proposition 3.3.5 If (A1, A2, A3) is a triconcept with either A1 = K1, or A2 = K2, or

A3 = K3, then (A1, A2, A3) ∈ ∇.

Proof. Every trivial concept is directly reachable from (A1, A2, A3), so (A1, A2, A3)▹θ3.

Let us assume that A1 = K1. Take now θ3 = (K1, K2, (K1×K2)
(3)) and choose perspective

(1). We obtain the context K(23)
K1

= (K2, K3, Y
(23)
K1

). We want to prove that (A2, A3) ∈
B(K(23)

K1
).

We know that A2 = (K1 × A3)
(2) = {m ∈ K2 | ∀g ∈ K1, ∀b ∈ A3. (g,m, b) ∈ Y }.

Also, by definition, A3
(2,3,K1) = {m ∈ K2 | ∀g ∈ K1, ∀b ∈ A3. (g,m, b) ∈ Y }, hence

A2 = A3
(2,3,K1). Analogously, A3 = A2

(2,3,K1), so (A2, A3) ∈ B(K(23)
K1

).

67

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

It follows that (A1, A2, A3) and θ3 are mutually reachable, so they belong to the same

cluster, i.e. (A1, A2, A3) ∈ ∇ 2
Remark 3.3.1 Let (A1, A2, A3), (B1, B2, B3) ∈ T(K) be two triconcepts.

If (A1, A2, A3) ∈ ∇ and (A1, A2, A3) ▹ (B1, B2, B3) then (B1, B2, B3) ∈ ∇. The converse

does not hold, i.e. if (B1, B2, B3) ▹ (A1, A2, A3) and (A1, A2, A3) ∈ ∇ it does not follow

that (B1, B2, B3) ∈ ∇. In fact, this is always true, since we showed earlier that the trivial

concepts are reachable from any triconcept, hence all triconcepts in ∇ are reachable from

any other triconcept.

Intuitively, this remark suggests that a tricontext can have more than one reachability

cluster. Consider, for example, the following triconctext: K1 = {g1, g2}, K2 = {m1,m2},
K3 = {b1, b2} with Y = {(g1,m1, b1)}. In this context there are exactly two reachability

clusters, ∇ = {θ1, θ2, θ3} and {(g1,m1, b1)}.
In the next section, we will discuss in more detail the number of reachability clusters

of a tricontext, but first, we will present some examples of artificial tricontexts that show

that, in general, triconcepts might be structured in more than one cluster.

Example 3.3.1 (Tricontexts with more than two clusters)

b1 m1 m2

g1 ×
g2 ×

b2 m1 m2

g1

g2 ×

b3 m1 m2

g1

g2

The concepts are partitioned in clusters the following way:

C1 = {({g1}, {m1}, {b1})}
C2 = {({g2}, {m2}, {b1, b2})}
C3 = {({g1, g2}, {m1,m2}, ∅), ({g1, g2}, ∅, {b1, b2, b3}), (∅, {m1,m2}, {b1, b2, b3})}
The order relation on the clusters is C1 ≤ C2 ≤ C3.

b1 m1 m2 m3

g1 ×
g2

g3

b2 m1 m2 m3

g1 × ×
g2 × ×
g3

b3 m1 m2 m3

g1 × × ×
g2 × × ×
g3 × × ×

The concepts are partitioned in clusters the following way:

C1 = {({g1}, {m1}, {b1, b2, b3})}

68

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

C2 = {({g1, g2}, {m1,m2}, {b2, b3})}
C3 = {({g1, g2, g3}, {m1,m2,m3}, {b3}), ({g1, g2, g3}, ∅, {b1, b2, b3}),
(∅, {m1,m2,m3}, {b1, b2, b3})}

The order relation on the clusters is C1 ≤ C2 ≤ C3.

b1 m1 m2 m3

g1 ×
g2

g3

b2 m1 m2 m3

g1 ×
g2 ×
g3

b3 m1 m2 m3

g1 ×
g2 ×
g3 ×

The concepts are partitioned in clusters the following way:

C1 = {({g3}, {m3}, {b3})}
C2 = {({g2}, {m2}, {b2, b3})}
C3 = {({g1}, {m1}, {b1, b2, b3}), ({g1, g2, g3}, {m1,m2,m3}, ∅),

({g1, g2, g3}, ∅, {b1, b2, b3}), (∅, {m1,m2,m3}, {b1, b2, b3})}
The order relation on the clusters is C1 ≤ C2 ≤ C3.

We can observe that the triconcepts ({g3}, {m3}, {b3}) and ({g2}, {m2}, {b2, b3}) have
disjoint extents and intents, but ({g3}, {m3}, {b3}) ≺3 ({g2}, {m2}, {b2, b3}) .

b1 m1 m2 m3

g1 ×
g2

g3

b2 m1 m2 m3

g1

g2

g3 ×

b3 m1 m2 m3

g1 × ×
g2

g3

The concepts are partitioned in clusters the following way:

C1 = {({g3}, {m2}, {b2})}
C2 = {({g1}, {m1}, {b1.b3}), ({g1}, {m1.m2}, {b3})}
C3 = {({g1, g2}, {m1,m2}, ∅), ({g1, g2}, ∅, {b1, b2, b3}), (∅, {m1,m2}, {b1, b2, b3})}
The order relation on the clusters is C1 ≤ C2 ≤ C3.

Example 3.3.2 (Tricontext with two clusters)

69

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

b1 m1 m2

g1 ×
g2 ×

b2 m1 m2

g1

g2 ×

b3 m1 m2

g1

g2 ×

The concepts are partitioned in clusters the following way:

C1 = {({g1}, {m1}, {b1}), ({g2}, {m2}, {b1, b2}), ({g2}, {m1}, {b3})}
C2 = {({g1, g2}, {m1,m2}, ∅), ({g1, g2}, ∅, {b1, b2, b3}), (∅, {m1,m2}, {b1, b2, b3})}
The order relation between the clusters is C1 ≤ C2.

Example 3.3.3 (Tricontexts with one cluster)

b1 m1 m2 m3

g1 × × ×
g2

g3

b2 m1 m2 m3

g1 × ×
g2 × ×
g3

b3 m1 m2 m3

g1 ×
g2 ×
g3 ×

The concepts are the following:

C = {({g1}, {m1}, {b1, b2, b3}), ({g1, g2, g3}, {m1}, {b3}), ({g1, g2}, {m1,m2}, {b2}),
({g1}, {m1,m2}, {b1, b2}), ({g1, g2}, {m1}, {b2, b3}), ({g1}, {m1,m2,m3}, {b1}),
({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅, {b1, b2, b3}),
(∅, {m1,m2,m3}, {b1, b2, b3})}

b1 m1 m2 m3

g1 ×
g2

g3

b2 m1 m2 m3

g1 × ×
g2 ×
g3

b3 m1 m2 m3

g1 × × ×
g2 × ×
g3 ×

The concepts are the following:

C = {({g1}, {m1}, {b1, b2, b3}), ({g1, g2}, {m1}, {b2, b3}), ({g1, g2}, {m1,m2}, {b3}),
({g1}, {m1,m2}, {b2, b3}), ({g1, g2, g3}, {m1}, {b3}), ({g1}, {m1,m2,m3}, {b3}),
({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅, {b1, b2, b3}),
(∅, {m1,m2,m3}, {b1, b2, b3})}

70

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

b1 m1 m2 m3

g1 ×
g2

g3

b2 m1 m2 m3

g1 ×
g2 × ×
g3

b3 m1 m2 m3

g1 ×
g2 × ×
g3 × × ×

The concepts are the following:

C = {({g1}, {m1}, {b1, b2, b3}), ({g1, g2}, {m1}, {b2, b3}), ({g1, g2, g3}, {m1}, {b3}),
({g2}, {m1,m2}, {b2, b3}), ({g2, g3}, {m1,m2}, {b3}), ({g3}, {m1,m2,m3}, {b3}),
({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅, {b1, b2, b3}),
(∅, {m1,m2,m3}, {b1, b2, b3})}

b1 m1 m2 m3

g1 ×
g2 ×
g3

b2 m1 m2 m3

g1 × ×
g2 × ×
g3

b3 m1 m2 m3

g1 × ×
g2

g3

The concepts are the following:

C = {({g1}, {m1}, {b1, b2, b3}), ({g1, g2}, {m1}, {b1, b2}), ({g1}, {m1,m2}, {b2, b3}),
({g1, g2}, {m1,m2}, {b2}), ({g1, g2, g3}, {m1,m2,m3}, ∅),
({g1, g2, g3}, ∅, {b1, b2, b3}), (∅, {m1,m2,m3}, {b1, b2, b3})}

b1 m1 m2 m3

g1 ×
g2

g3

b2 m1 m2 m3

g1 ×
g2

g3 ×

b3 m1 m2 m3

g1 × ×
g2

g3

The concepts are the following:

C = {({g1}, {m1}, {b1, b3}), ({g1}, {m2}, {b2, b3}), ({g1}, {m1,m2}, {b3}),
({g3}, {m2}, {b2}), ({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅, {b1, b2, b3}),
(∅, {m1,m2,m3}, {b1, b2, b3})}

This is an example of a tricontext with two concepts that have disjoint extents, intents

and modi, but are in the same cluster: ({g1}, {m1}, {b1, b3}) and ({g3}, {m2}, {b2})

71

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

3.3.4 Reachability in Composed Tricontexts

In this section we investigate whether there is a correlation between the dimensions of

the tricontext and the number of reachability clusters. For this purpose, we study what

happens with the reachability clusters in the case of a composition of tricontexts and

we show that there is a way of composing several tricontexts such that the reachability

clusters of the composed tricontext coincide with the union of the reachability clusters of

the constituents, except for the greatest cluster ∇ [Rudolph et al., 2015c].

Definition 3.3.8 (Composition of tricontexts) Given tricontexts

K1 = (K1
1 , K

1
2 , K

1
3 , Y

1), . . . ,Kn = (Kn
1 , K

n
2 , K

n
3 , Y

n), with Ki
j and Ki

k being disjoint for

all j ̸= k and all i ∈ {1, 2, 3}, their composition K1 ⊎ . . . ⊎Kn is the tricontext

K = (K1, K2, K3, Y) with Ki =
∪n

k=1K
k
i and Y =

∪n
k=1 Y

k.

Observation 3.3.3 From the definition of the composed tricontext it follows that there

cannot be a triple in the relation Y that has elements from more than one of the component

contexts, i.e. if (g,m, b) ∈ Y with g ∈ Ki
1,m ∈ Kj

2 , b ∈ Kk
3 then i = j = k.

Proposition 3.3.6 Let (K1, K2, K3, Y) = K1 ⊎ . . . ⊎ Kn be a composed tricontext with

n ≥ 2 and all Ki
j being non-empty. Then (A1, A2, A3) is a triconcept of (K1, K2, K3, Y)

if and only if

• A1, A2, A3 are all non-empty and (A1, A2, A3) is a triconcept of some Kj or

• (A1, A2, A3) is one of (∅, K2, K3) or (K1, ∅, K3) or (K1, K2, ∅).

Proof. “If”: First, consider a triconcept (A1, A2, A3) of some Kj with A1, A2, and

A3 nonempty. Now suppose (A1, A2, A3) were not a triconcept of K, i.e., at least one of

A1, A2, A3 can be enlarged. Without loss of generality assume some a ∈ K1 \ A1 with

(A1 ∪ {a}) × A2 × A3 ⊆ Y . Now, for a2 ∈ A2 and a3 ∈ A3, we have (a, a2, a3) ∈ Y .

Observation 3.3.3 implies that a ∈ Kj and thus (A1 ∪ {a})×A2 ×A3 ∈ Yj, contradicting

the maximality condition of the triconcept (A1, A2, A3) of Kj.

Second, (A1, A2, A3) = (∅, K2, K3) is a triconcept of K if it satisfies the maximality

condition, i.e. unless for some a holds {a} × K2 × K3 ⊆ Y . Yet this contradicts the

construction of Y . The cases of (K1, ∅, K3) and (K1, K2, ∅) follow by symmetry.

“Only if”: For any triconcept (A1, A2, A3) of (K1, K2, K3, Y) with nonempty A1, A2,

A3, we find an (a1, a2, a3) ∈ A1 × A2 × A3. By construction, for every such (a1, a2, a3)

must exist some j with a1 ∈ Kj
1 and a2 ∈ Kj

2 and a3 ∈ Kj
3 . Consequently, A1 ⊆ Kj

1 and

A2 ⊆ Kj
2 and A3 ⊆ Kj

3 . Moreover, maximality of (A1, A2, A3) in (K1, K2, K3, Y) implies

maximality in Kj.

72

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Finally if one of the components of (A1, A2, A3) is empty, the other two must be

maximal by definition. 2
Proposition 3.3.7 Let K = (K1, K2, K3, Y) = K1⊎ . . .⊎Kn with n ≥ 2 and all Ki

j being

non-empty, and (A1, A2, A3), (B1, B2, B3) ∈ T(K) . Then (B1, B2, B3) is directly reachable

from (A1, A2, A3) in K if and only if

• they are triconcepts of the same Kj and (B1, B2, B3) is directly reachable from

(A1, A2, A3) in Kj or

• one of B1, B2, B3 is empty, i.e. (B1, B2, B3) is one of the trivial triconcepts.

Proof. “If”: First assume (B1, B2, B3) is directly reachable from (A1, A2, A3) in

Kj and both are are triconcepts of the same Kj. Without loss of generality let (1) be

the corresponding perspective. Then A1 ⊆ B1. Moreover, none of A1, A2, A3 is empty,

otherwise (A1, A2, A3) cannot be a triconcept of Kj due to Proposition 3.3.6. We find

that (B2, B3) ∈ B(Kj
(23)
A1

). However, due to the composition process, K(23)
A1

= Kj
(23)
A1

. This

implies (B2, B3) ∈ B(K(23)
A1

), thus (B1, B2, B3) is directly reachable from (A1, A2, A3) in

K.

Next, assume that one of B1, B2, B3 is empty and without loss of generality let B1 = ∅.
By Proposition 3.3.6, this entails B2 = K2 and B3 = K3. Then (∅, K3) ∈ B(K(13)

A2
)

whenever A2 ̸= ∅ and (∅, K2) ∈ B(K(12)
A3

) whenever A3 ̸= ∅ (it is not possible that

A2 = ∅ = A3), therefore (A1, A2, A3) ≺ (B1, B2, B3) holds in K.

“Only if”: Assume (A1, A2, A3) ≺i (B1, B2, B3) inK and all ofB1, B2, B3 are nonempty.

Without loss of generality assume i = 1, i.e., (B2, B3) ∈ B(K(23)
A1

). Proposition 3.3.6 im-

plies that (B1, B2, B3) must be a triconcept of some Kj. Then, due to ∅ ̸= A1 ⊆ B1 ⊆ Kj
1

we find that (A1, A2, A3) cannot be a trivial triconcept, thus it is a triconcept of Kj. Then

(B2, B3) ∈ B(K(23)
A1

) implies (B2, B3) ∈ B(Kj
(23)
A1

) thus (A1, A2, A3) ≺1 (B1, B2, B3) holds

in Kj. 2
Corollary 3.3.7.1 Let K = (K1, K2, K3, Y) = K1 ⊎ . . .⊎Kn with n ≥ 2 and all Ki

j being

non-empty. Then (B1, B2, B3) is reachable from (A1, A2, A3) in K iff

• they are triconcepts of the same Kj and (B1, B2, B3) is reachable from

(A1, A2, A3) in Kj or

• one of B1, B2, B3 is empty.

Proof. This is a straightforward consequence of the previous proposition and the

fact that all trivial triconcepts (those having one empty component) are together in the

maximal cluster. 2
73

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Using the above results, we investigate if there is any correlation between the cardinal-

ity of the three sets of a tricontext and the number of the reachability clusters we obtain.

The first observation was that we can find qubic tricontexts with |K1| = |K2| = |K3| = n,

where the number of clusters equals n+ 1. This observation is formally described in the

following Proposition.

Proposition 3.3.8 Let K = (K1, K2, K3, Y) be a tricontext of size n× n× n with

K1 = {k1
i | 1 ≤ i ≤ n}, K2 = {k2

i | 1 ≤ i ≤ n}, K3 = {k3
i | 1 ≤ i ≤ n}. Let the relation

Y be the spatial main diagonal of the tricontext, meaning that a triple (k1
i , k

2
j , k

3
l) ∈ Y ⇔

i = j = k. Then there are n+1 clusters, namely n minimal clusters and the maximal

cluster.

Proof. Considering Proposition 3.3.7, the conclusion is immediate, since

K = ({k1
1}, {k2

1}, {k3
1}, {(k1

1, k
2
1, k

3
1)}) ⊎ . . . ⊎ ({k1

n}, {k2
n}, {k3

n}, {(k1
n, k

2
n, k

3
n)}) 2

Based on this example, we assume next that the number of clusters is bounded by the

minimal dimension of the tricontext plus one. However, this assumption is contradicted

by the following example.

Example 3.3.4 Consider the following 4× 6× 6 tricontext K466.

b1 m1 m2 m3 m4 m5 m6

g1 ×
g2 ×
g3 ×
g4

g5

g6

b2 m1 m2 m3 m4 m5 m6

g1 ×
g2

g3

g4 ×
g5 ×
g6

b3 m1 m2 m3 m4 m5 m6

g1

g2 ×
g3

g4 ×
g5

g6 ×

b4 m1 m2 m3 m4 m5 m6

g1

g2

g3 ×
g4

g5 ×
g6 ×

Besides the maximal cluster, we have six minimal ones which are all singletons consisting

of the following triconcepts:

74

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

C1 = ({g1},{m1},{b1, b2}),
C2 = ({g2},{m2},{b1, b3}),
C3 = ({g3},{m3},{b1, b4}),
C4 = ({g4},{m4},{b2, b3}),
C5 = ({g5},{m5},{b2, b4}),
C6 = ({g6},{m6},{b3, b4}).

Hence, the 4 × 6 × 6 tricontext has the smallest dimension equal to 4, but contains 7

reachability clusters.

Another assumption that follows naturally from the previous example is that the

number of cluster does not exceed the maximal dimension of the tricontext plus one.

This assumption, however, is also disproven by the following example.

Example 3.3.5 Given the tricontext K466 = (G,M,B, Y) from Example 3.3.4 and con-

sidering that the sets of objects, attributes and conditions are disjoint (for the purpose of

composition), we define K646 = (B,G,M, {(b, g,m)|(g,m, b) ∈ Y }) as well as
K664 = (M,B,G, {(m, b, g)|(g,m, b) ∈ Y }).
Intuitively, we obtain K646 and K664 by rotating K466 twice. We now let

K163 = K466 ⊎K646 ⊎K664 be the 16× 16× 16 context built by composing the three. Com-

bining Example 3.3.4 with Corollary 3.3.7.1, we obtain that K163 has 19 clusters, namely

the maximal one and 6 + 6 + 6 = 18 minimal ones.

Remark 3.3.2 The issue of whether the total number of clusters or the number of min-

imal clusters is bounded and what could be an estimation of that bound remains an open

question, since our initial conjectures about upper bounds had to be refuted by counterex-

amples, which nevertheless provided some interesting structural insights. As of yet, the

only (and trivial) upper bound for the number of reachability clusters is the number of

triconcepts, which may be exponential in the size of the tricontext. We, however, still

conjecture that there is a polynomial bound.

3.3.5 Properties of Reachability Clusters

This section is devoted to the study of several properties of reachability clusters. With this

purpose, we study the dyadic context having the set of triconcepts as object and attribute

set with the reachability relation as incidence relation [Rudolph et al., 2015c]. This

dyadic context is formally described in the next definition.

Definition 3.3.9 (Dyadic context of reachability)

Let K = (K1, K2, K3, Y) be a triadic context. Then we denote with K▹ = (T(K),T(K), ▹)

the formal context of triconcepts with the reachability relation.

75

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

We observe that the concepts of K▹ are exactly the pairs (M,N), whith M,N being

sets of triconcepts, having the property that every triconcept from N is reachable from

any triconcept of M and (M,N) is maximal with this property. In what follows, we study

some properties of the reachability clusters using the reachability context K▹.

Proposition 3.3.9 Let (A1, A2, A3), (B1, B2, B3) ∈ T(K) be two triconcepts for which

(A1, A2, A3) ≺3 (B1, B2, B3). Then Y 12
B3
⊆ Y 12

A3
.

Proof. Let (g,m) ∈ Y 12
B3
. Then, for every b ∈ B3, we have (g,m, b) ∈ Y . From

(A1, A2, A3) ≺3 (B1, B2, B3) we have that A3 ⊆ B3, so for every b ∈ A3, (g,m, b) ∈ Y ,

hence (g,m) ∈ Y 12
A3
. 2

Proposition 3.3.10 Let (M,N) ∈ K▹ be a concept and denote by C = M ∩N . If C ̸= ∅,
then C is a reachability cluster.

Proof. Let T1, T2 ∈ C be two triconcepts. Since C = M ∩N , on the one side we have

that T1 ∈ M,T2 ∈ N , so T1 ▹ T2 and on the other T1 ∈ N, T2 ∈ M , so T2 ▹ T1. It follows

that all triconcepts from C are mutually reachable and there exists a reachability cluster

C ′ s.t. C ⊆ C ′. Assume that C ̸= C ′ and let T3 ∈ C ′ \ C. From T1 ∈ C ⊆ C ′ we deduce

that T1 ▹ T3 and T3 ▹ T1. From the transitivity of the reachability relation and the fact

that (M,N) is a concept, it follows that T3 ▹ T1 ▹ T, ∀T ∈ N and T ▹ T1 ▹ T3,∀T ∈ M .

This contradicts the maximality condition of the dyadic concept (M,N). We conclude

that C = C ′ and the intersection M ∩N is a reachability cluster. 2
Observation 3.3.4 If we denote with C the set of reachability clusters from K and with

I = {M ∩N | (M,N) ∈ B(K▹),M ∩N ̸= ∅} the set of all dyadic concepts of K▹ having

non disjoint extent and intent, then the previous proposition states that I ⊆ C.

One might expect that there exists a one-to-one correspondence between dyadic con-

cepts in the context of reachability K▹ and reachability clusters from K. This would mean

that the structure of reachability clusters is a concept lattice. However, the following

example shows that there exist dyadic concepts in K▹, having disjoint extent and intent,

meaning they do not correspond to a reachability cluster.

Example 3.3.6 Consider the following 4× 4× 4 tricontext:

b1 m1 m2 m3 m4

g1 ×
g2

g3 ×
g4 ×

b2 m1 m2 m3 m4

g1

g2

g3 ×
g4 ×

76

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

b3 m1 m2 m3 m4

g1 ×
g2 ×
g3

g4

b4 m1 m2 m3 m4

g1 ×
g2 ×
g3

g4 ×

We have the following reachability relations among the nontrivial triconcepts:

({g1}, {m1}, {b1}) ▹ ({g1, g2}, {m3}, {b3, b4})
({g1}, {m1}, {b1}) ▹ ({g3, g4}, {m2}, {b1, b2})
({g4}, {m4}, {b4}) ▹ ({g1, g2}, {m3}, {b3, b4})
({g4}, {m4}, {b4}) ▹ ({g3, g4}, {m2}, {b1, b2})

The dyadic context of reachability K▹ is given by:

T1 T2 T3 T4 T5 T6 T7

T1 = ({g1}, {m1}, {b1}) × × × × × ×
T2 = ({g4}, {m4}, {b4}) × × × × × ×
T3 = ({g1, g2}, {m3}, {b3, b4}) × × × ×
T4 = ({g3, g4}, {m2}, {b1, b2}) × × × ×
T5 = ({g1, g2, g3, g4}, {m1,m2,m3,m4}, ∅) × × ×
T6 = ({g1, g2, g3, g4}, ∅, {b1, b2, b3, b4}) × × ×
T7 = (∅, {m1,m2,m3,m4}, {b1, b2, b3, b4}) × × ×

We observe that the dyadic concept ({T1, T2}, {T3, T4, T5, T6, T7}) has disjoint extent and

intent.

Intuitively, this suggests that, considering the dyadic concepts of the reachability con-

text K▹, their intersection of extent and intent is either the empty set or a reachability

cluster. Conversely, we can show that every reachability cluster from K corresponds to

the intersection of extent and intent of exactly one dyadic concept in K▹.

Proposition 3.3.11 Let C be a reachability cluster of triconcepts from K▹. Then there

exists a concept in (M,N) ∈ K▹ with C = M ∩N .

Proof. Consider (C ′′, C ′) where ()′ is the derivation operator of the dyadic context

K▹. 2
Furthermore, there are no two dyadic concepts of K▹ that correspond to the same

reachability cluster, i.e. that have the same intersection of extent and intent. This is

formally described in the following Proposition.

77

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Proposition 3.3.12 If (M1, N1), (M2, N2) ∈ B(K▹) are two different concepts of the

context K▹ of reachable triconcepts with M1 ∩N1 ̸= ∅ and M2 ∩N2 ̸= ∅, then M1 ∩N1 ̸=
M2 ∩N2.

Proof. Let K▹ = {T(K),T(K), I}, s.t. (T1, T2) ∈ I ⇔ T1 ▹ T2 in K, be the dyadic

reachability context and (M1, N1), (M2, N2) ∈ B(K▹) two different dyadic concepts. We

assume M1 ∩N1 = M2 ∩N2 = P ̸= ∅. Since they are different concepts, we can conclude

that they have different extents and intents, so M1 ̸= M2 and N1 ̸= N2. It follows that

at least one of the extents and one of the intents is larger than P .

If M1 ̸= P , N1 ̸= P , M2 = P and N2 = P , it contradicts the fact that (M2, N2) ∈
B(K▹) because it is not maximal since it could be extended to (M1, N1). We can conclude

that at least the extent of one concept and the intent of the other concept are larger than

P . Without loss of generality, we assume M1 ̸= P and N2 ̸= P . Let T1 ∈ M1 \ P, T2 ∈
P, T3 ∈ N2 \ P . Since T2 ∈ P ⊆ N1 it follows (T1, T2) ∈ I ⇒ T1 ▹ T2. Since T2 ∈ P ⊆ M1

it follows (T2, T3) ∈ I ⇒ T2 ▹ T3. From the transitivity of the relation ▹ we have T1 ▹ T3.

Herefrom we conclude that for every T ∈M1 \ P , we have (T, T3) ∈ I, but since P ⊆M2

and T3 ∈ N2, we also have that for every T ∈ P , we have (T, T3) ∈ I. It follows that

T3 is reachable from any triconcept in M1, so T3 should be in the intent of the concept

(M1, N1), i.e. T3 ∈ N1. Since T3 ∈ N2 ⇒ T3 ∈ N1 ∩ N2 = P which contradicts the fact

that we chose T3 ∈ N2 \ P . Therefore, the two different concepts in B(K▹) cannot have

the same intersection of the extent and intent. 2
We can go further and state that for dyadic concepts of K▹, their intersections of

extent and intent are not just distinct, but disjoint.

Proposition 3.3.13 Let (M1, N1), (M2, N2) ∈ B(K▹). Let P = M1 ∩N1 ̸= ∅ and
Q = M2 ∩N2 ̸= ∅. Then P ∩Q = ∅.

Proof. This is a direct consequence of Proposition 3.3.10 and the fact that two reach-

ability clusters are disjoint. Obviously if two clusters would have a common triconcept,

then it would result due to the transitivity of ▹ that they have to be merged into the same

cluster.

2
Proposition 3.3.14 The sets defined in Observation 3.3.4, C and I, are equal, i.e.

C = I.

Proof. The first part of the equivalence, C ⊆ I was proven in Proposition 3.3.11,

while the second part I ⊆ C in Proposition 3.3.10. It follows C = I.

78

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

2
Intuitively, the previous Proposition states that there is a one to one correlation be-

tween reachability clusters of K and the nonempty intersections of the extent and the

intent of dyadic concepts from the reachability context K▹.

Observation 3.3.5 We can deduce from Proposition 3.3.14 that there is a partial order

relation on the cluster set.

In what follows, we will study object concepts of the dyadic reachability context K▹

and their correlation to the reachability clusters.

Proposition 3.3.15 Let T1, T2 ∈ T(K) be two triconcepts of the same cluster. Then

T ′
1 = T ′

2 with respect to the dyadic derivation operator of the context K▹.

Proof. Assume T ′
1 ̸= T ′

2 and without loss of generality let T3 ∈ T ′
2 \T ′

1 be a triconcept.

It follows from the derivation definition that T2 ▹ T3. But T1 and T2 belong to the same

cluster, so T1 ▹ T2 and from the transitivity of ▹ we have that T1 ▹ T3. This means that

T3 ∈ T ′
1 which is in contradiction with the choice of T3. We can conclude that T ′

1 = T ′
2. 2

Observation 3.3.6 We can deduce from the previous proposition that triconcepts

T ∈ T(K) from the same reachability cluster generate the same object concept

γT = (T ′′, T ′) in K▹.

Proposition 3.3.16 Let T ∈ T(K) be a triconcept. Then the cluster [T] of T is generated

by the object concept γT = (T ′′, T ′) of K▹ by T ′′ ∩ T ′ = [T].

Proof. “ ⊆ ”: For the first part T ′′ ∩ T ′ ⊆ [T] consider T1 ∈ T ′′ ∩ T ′. From

T1 ∈ T ′ ⇒ T ▹ T1. From T1 ∈ T ′′ = (T ′)′ ⇒ T1 ▹ T2,∀T2 ∈ T ′ and it follows that also

T1 ▹ T . Hence, the two triconcepts T and T1 are mutually reachable, i.e. T1 ∈ [T].

“ ⊇ ”: For the second part [T] ⊆ T ′′∩T ′, let T3 ∈ [T]. It follows that T ▹T3 and T3 ▹T .

From T ▹ T3 ⇒ T3 ∈ T ′. Moreover, we know that the reachability relation is reflexive,

so T ∈ T ′′ ⇒ T ▹ T4,∀T4 ∈ T ′. But T3 ▹ T and from the transitivity of ▹ it follows that

T3 ▹ T ∈ T ′′ ⇒ T ▹ T4, ∀T4 ∈ T ′, hence T3 ∈ T ′′. We conclude that T3 ∈ T ′ ∩ T ′′. 2
Observation 3.3.7 We can conclude from Proposition 3.3.15 and Proposition 3.3.16 that

clusters are generated by object concepts of (T(K),T(K), ▹). Moreover, after computing

one cluster using element T ∈ T(K), we do not have to compute the object concepts of the

other elements of the cluster, since they would generate the same cluster. Furthermore,

from Proposition 3.3.10 and Proposition 3.3.12 we can conclude that for all the other

79

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

proper concepts (M,N) ∈ B(K▹), i.e. concepts which are not object concepts, we have

M ∩N = ∅. The intuition behind is that we cannot have two different concepts of K▹ with

the same intersection of extent and intent and since all the clusters are generated by the

object concepts, any other proper concepts must have disjoint extents and intents.

We will demonstrate these results on an example, using one of the tricontexts with

more than two reachability clusters, presented earlier.

Example 3.3.7 (Generating clusters with object concepts)

b1 m1 m2 m3

g1 ×
g2

g3

b2 m1 m2 m3

g1

g2

g3 ×

b3 m1 m2 m3

g1 × ×
g2

g3

We recall that the concepts are partitioned in clusters the following way:

C1 = {({g3}, {m2}, {b2})}
C2 = {({g1}, {m1}, {b1.b3}), ({g1}, {m1.m2}, {b3})}
C3 = {({g1, g2}, {m1,m2}, ∅), ({g1, g2}, ∅, {b1, b2, b3}), (∅, {m1,m2}, {b1, b2, b3})}

In order to compute K▹ we denote all the triconcepts as follows:

T1 = ({g3}, {m2}, {b2})
T2 = ({g1}, {m1}, {b1.b3})
T3 = ({g1}, {m1.m2}, {b3})
T4 = ({g1, g2}, {m1,m2}, ∅)
T5 = ({g1, g2}, ∅, {b1, b2, b3})
T6 = (∅, {m1,m2}, {b1, b2, b3})

Then, we represent K▹:

K▹ T1 T2 T3 T4 T5 T6

T1 × × × × × ×
T2 × × × × ×
T3 × × × × ×
T4 × × ×
T5 × × ×
T6 × × ×

Now we compute the object concepts:

µT1 = ({T1}, {T1, T2, T3, T4, T5, T6})
µT2 = µT3 = ({T2, T3}, {T2, T3, T4, T5, T6})
µT4 = µT5 = µT6 = ({T1, T2, T3, T4, T5, T6}, {T4, T5, T6})

80

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

When computing the intersection of their extent and intent we observe that for µT1

we obtain cluster C1, for µT2 and µT3 we obtain cluster C2 and for µT4, µT5 and µT6 we

obtain cluster C3.

The results presented in this section give rise to a display method of all reachability

clusters, along with a navigation support in a concept lattice, by highlighting the object

concepts and ignoring all the others.

3.3.6 Exploration Strategy

Considering the theoretical aspects introduced in the previous sections, we propose a

strategy for navigating among triconcepts inside a reachability cluster as well as between

clusters [Rudolph et al., 2015c]. The purpose of this approach is to obtain a tool that

can be used for navigation and local visualization of a triadic context. Basically, starting

from a triconcept, a navigation step consists of navigating to another directly reachable

triconcept. By following a navigation path of several navigation steps one can explore the

triadic conceptual knowledge landscape.

The only preprocessing step necessary for the navigation is to compute all triconcepts,

for example using Trias [Jäschke et al., 2006]. Once we have the triconcept set, one can

choose a triconcept as a starting point and navigate by choosing one perspective. The

local navigation paradigm is described by the following steps:

• choose a triconcept T = (A1, A2, A3) and a perspective (i) with i ∈ {1, 2, 3}

• compute the derived context K(jk)
Ai

of the triadic relation with j, k ∈ {1, 2, 3} \ {i}
s.t. j < k

• generate the concept lattice of K(jk)
Ai

• attach as labels to the dyadic concepts in the lattice the corresponding triconcepts

by adding the third component

• the user can choose one of the triconcepts that are represented by the nodes in the

dyadic lattice as a next step

For computing the derived context K(jk)
Ai

one must select from the triadic relation the

pairs of elements (aj, ak) ∈ Aj × Ak which are in relation with all elements from Ai,

i.e. (ai, aj, ak) ∈ Y, ∀ai ∈ Ai, assuming without loss of generality that i < j < k. After-

wards, the third step consisting of generating the concept lattice of the derived context

81

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

can be done using one of the existing tools for dyadic formal concept analysis, for exam-

ple the ToscanaJ suite [Becker et al., 2002; Becker and Correia, 2005]. In the next step,

assuming w.l.o.g. that i < j < k, for a dyadic concept (Bj, Bk) of the derived context

K(jk)
Ai

we must identify the corresponding triconcept (Bi, Bj, Bk) ∈ T(K). Theoretically,

this would be done by using the corresponding derivation operator to compute the third

component of a triconcept. However, considering we have already computed all tricon-

cepts it is more efficient to select the triconcept having the two components Bj and Bk

from the triconcept set.

The previously described local navigation and visualization paradigm solves the prob-

lem of navigation in triadic contexts. However, it is sometimes helpful to have an overall

view of the navigation clusters in order to understand whereto one can navigate, since we

have seen that not every triconcept can be reached from every other triconcept, although

this seems to be the case in most practical scenarios. With that purpose, we use the lattice

structure of the dyadic reachability context K▹ = (T(K),T(K), ▹) defined in Section 3.3.5

as follows:

• compute the direct reachability relation between triconcepts

• compute the transitive closure of the direct reachability relation

• represent the dyadic lattice of clusters

For the first step we can use Algorithm 3.1 that outputs whether triconcept (B1, B2, B3)

is directly reachable from triconcept (A1, A2, A3) or not. The derivations used in the de-

scription of the algorithm are the simple dyadic derivations and the index was added just

to highlight that each dyadic derivation corresponds to a different dyadic context. For

example, (B2)
′
Pe

= B3 uses the dyadic derivation operator of the context Pe.

82

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Listing 3.1: Procedure directlyReachable((A1, A2, A3), (B1, B2, B3))

I f A1 = B1 or A2 = B2 or A3 = B3 then

Return true

I f A1 ⊂ B1 then

Pe = K(23)
A1

I f (B2)
′
Pe

= B3 and (B3)
′
Pe

= B2 then

Return true

I f A2 ⊂ B2 then

Pi = K(13)
A2

I f (B1)
′
Pe

= B3 and (B3)
′
Pe

= B1 then

Return true

I f A3 ⊂ B3 then

Pm = K(12)
A3

I f (B1)
′
Pe

= B2 and (B2)
′
Pe

= B1 then

Return true

Return fa l se

For the second step, the transitive closure of the direct reachability relation can

be computed using one of the existing algorithms: Warshall algorithm, Warren algo-

rithm, Schnorr’s algorithm, Schmitz’s algorithm, Blocked Warshall algorithm, Blocked

Warren algorithm and many others [Agrawal and Jagadish, 1987].

After computing the reachability context K▹, we can compute the clusters and the

partial order on the cluster set using the concept lattice of K▹. It follows from Propo-

sitions 3.3.10, 3.3.11 and 3.3.12 that each reachability cluster is uniquely identified by

the intersection of extent and intent of exactly one dyadic concept of K▹. Hence, we can

compute the concept lattice of K▹ and label each node with the corresponding cluster

when the corresponding intersection of extent and intent is not empty. In the obtained

lattice one can visualize the partial order between the clusters.

For example, the lattice corresponding to the reachability context K▹ from Exam-

ple 3.3.7 is represented in Figure 3.11. In this lattice, the upper concept corresponds to

cluster C3 = {T4, T5, T6}, the one in the middle to cluster C2 = {T2, T3} and the lower

concept to cluster C1 = {T1}. The partial order between the clusters can be read from the

lattice the following way: if one can navigate from cluster C1 to cluster C2 going upwards,

83

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

then C1 ≤ C2.

Alternatively, we can make use of the directed graph having the triconcepts as vertices

and the edges given by the direct reachability relation. Here, we can identify the reach-

ability clusters, as well as deduce the transitive closure of the direct reachability relation

as described in Observation 3.3.1. Furthermore, we can compute the partial order rela-

tion on the cluster set (see Observation 3.3.2). However, this dos not give us the lattice

representation of clusters, hence a formal concept analysis tool has to be used if we want

to obtain a visualization of the cluster structure.

In conclusion, to support exploration through the dataset, we suggest using both the

local visualization method for triconcepts and the visualization of the cluster structure

as follows. We compute the lattice showing the cluster structure at the beginning of the

navigation and make it available to the user throughout the whole exploration process.

Then, at each step of the navigation, in the dyadic lattice showing the possible next steps

from a triconcept T , we highlight all the triconcepts belonging to the same cluster as T .

In that way, the user can easily choose to navigate within the same cluster or to a different

one. Furthermore, looking at the cluster structure in parallel, the user can navigate more

easily towards a potential goal of the navigation.

3.4 An n-adic Navigation Paradigm based on Mem-

bership Constraints

3.4.1 Motivation

As we have seen in the previous chapters, formal concept analysis provides a powerful and

elegant mathematical tool for understanding and investigating multi-dimensional datasets.

Although FCA is based on efficient and intuitive methods for knowledge representation,

acquiring and retrieval, the visualization and navigation developed so far have limitations

when it comes to datasets of arity higher than two. Therefore, the previous chapter

described a navigation method based on conveniently defined local projections of the

data in a dyadic setting. In this chapter, we consider a different approach, which focuses

on narrowing down the space of “interesting” concepts by applying different constraints

on the data. With that purpose, we consider the problem of satisfiability of membership

constraints, in order to determine if there is a formal concept that satisfies the given

constraints, i.e. whose components include or exclude particular elements. This is an

important feature of conceptual knowledge management applications, in order to enable

the user to focus on a subset of data he is interested in.

84

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Moreover, visualization of conceptual spaces in higher-adic datasets remained an open

problem so far. With this second approach, we try to offer a possible solution to this

problem by enabling the visualization of concepts based on elements lists, where the user

has the option of choosing elements he is interested in, hence narrowing down the space

of concepts. Although this visualization method has a local character, we believe that a

holistic graphical representation would be inefficient and too complex, since the number

of formal concepts is, in general, very large. Note that the number of concepts may be

exponential in the size of the formal context.

In the following chapters, we define membership constraints and the corresponding

satisfiability problems, and study the computational complexity of these problems in

general and for restricted forms of membership constraints. We perform this analysis for

dyadic, triadic and n-adic FCA. After introducing the theoretical aspects, we focus on

the implementation of memebership constraints. For that purpose, we present a generic

asnwer set programming encoding of membership constraints, allowing us to use ASP

tools, which are highly optimized to solve satisfiability problems.

Finally, we describe a navigation paradigm based on membership constraints in order

to highlight their importance in data analysis and implement the paradigm using two

different strategies. We compare the first strategy based on the previously mentioned

ASP encoding to the second approach based on an exhaustive search in the concept set.

The navigation paradigm based on ASP has the great advantage of being easily extendable

to any n-ary dataset, however, with the corresponding limitations of visualizing multiple

dimension on a single screen.

The results presented in this chapter are described partly in a conference paper pub-

lished in 2015 [Rudolph et al., 2015a] and partly in a second paper, which is currently

under review [Rudolph et al., 2016].

3.4.2 Membership Constraints

In this section, we introduce membership constraints for formal concepts and discuss

the computational complexity of different membership constraint satisfiability problems

[Rudolph et al., 2015a]. In the first subsection we discuss the case of dyadic formal

contexts, continuing in the other two subsections with triadic and finally general (n-adic)

contexts.

85

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

3.4.2.1 Membership Constraints in Dyadic Formal Concept

Analysis

A membership constraint on a dyadic formal context is defined as follows:

Definition 3.4.1 Let K = (G,M, I) be a dyadic formal context. We define a (dyadic)

membership constraint C on K as a quadruple C = (G+, G−,M+,M−) with G+ ⊆ G

being the set of required objects, G− ⊆ G the set of forbidden objects, M+ ⊆M the

set of required attributes, and M− ⊆M the set of forbidden attributes.

A formal concept (A,B) of K is said to satisfy such a membership constraint if all

the following conditions hold:

• G+ ⊆ A,

• G− ∩ A = ∅,

• M+ ⊆ B,

• M− ∩B = ∅.

Furthermore, a membership constraint is said to be (properly) satisfiable with respect

to the context K, if it is satisfied by one of its (proper) formal concepts.

Similar to the satisfiability problem SAT defined in Chapter 2.2, we define the (general)

decision problem of membership constraint satisfiability, denoted MCSAT.

problem MCSAT

input: dyadic formal context K = (G,M, I),

membership constraint C = (G+, G−,M+,M−)

output: yes if C satisfiable with respect to K, no otherwise.

Next, we study the complexity of MCSAT, considering different types of membership

constraints when one or more of the required or forbidden sets are missing, i.e. they are

the empty set. In the general case, the complexity of the problem 3MCSAT turns out to

be intractable as shown by the following theorem.

Theorem 3.4.1 MCSAT is NP-complete, even when restricting to membership con-

straints of the form C = (∅, G−, ∅,M−).

Proof. In order to prove that it is in NP, we consider the following statement: after

guessing a pair (A,B) from 2G× 2M (where 2G denotes, as usual, the set of all subsets of

86

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

G), it can be checked in polynomial time if (A,B) is a formal concept of the context K
and if it satisfies the membership constraint C.

We prove NP-hardness showing that the NP-hard 3SAT problem can be polynomially

reduced to our MCSAT problem. Let L = {L1, . . . , Ln} be a set of propositional literal

sets over the set {p1, . . . , pk} of propositional variables, and let P+ = {p1, . . . , pk},
P− = {¬p1, . . . ,¬pk} and P̃ = {p̃1, . . . , p̃k}, where P̃ represents a set of copies for the

literals {p1, . . . , pk} that helps us impose the necessary conditions. Now define the formal

context KL = (G,M, I) with

• G = L ∪ P+ ∪ P−

• M = P+ ∪ P− ∪ P̃

• I = {(Li,m) | Li ∈ L,m ∈M \ Li}
∪ L × P̃

∪ {(l1, l2) | l1, l2 ∈ P+ ∪ P−, l1 ̸= l2}
∪ {(pi, p̃j) | i ̸= j}
∪ {(¬pi, p̃j) | i ̸= j}

Furthermore, let CL denote the membership constraint (∅,L, ∅, P̃).

Note that both KL and CL can be computed in polynomial time and are of polynomial

size with respect to |L|.
We will now show that L is satisfiable exactly if C is satisfiable with respect to K.

“⇒”: If L is satisfiable, then there must be a valuation v : {p1, . . . pk} → {true, false}
under which L evaluates to true. Let Lv be the set of literals such that p ∈ Lv whenever

v(p) = true and ¬p ∈ Lv whenever v(p) = false. Next, we show that ((P+∪P−) \Lv, Lv)

is a formal concept of KL. On one hand we have, from the definition of the relation I:

((P+ ∪ P−) \ Lv)
′ = {m ∈ P+ ∪ P− | m ̸∈ (P+ ∪ P−) \ Lv}∪

{p̃ ∈ P̃ | p,¬p ̸∈ (P+ ∪ P−) \ Lv} = Lv ∪ ∅ = Lv.

On the other hand:

L′
v = {Li | Lv ⊆M \ Li} ∪ {l ∈ P+ ∪ P− | l ̸∈ Lv} = {Li | Li ∩ Lv = ∅}∪
{l | l ∈ (P+ ∪ P−) \ Lv} = ∅ ∪ (P+ ∪ P−) \ Lv = (P+ ∪ P−) \ Lv.

Next, we observe that this formal concept satisfies the membership constraint CL,

since none of the Li are contained in its extent and none of the p̃j are contained in its

intent. Therefore, we have found a concept that proves the satisfiability of CL with respect

to the context KL.

“⇐”: Assume that CL is satisfiable with respect to the context KL. Then there

must be a formal concept (A,B) of KL satisfying it, i.e. having L ∩ A = ∅ as well as

87

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

P̃ ∩B = ∅. Observe that A must contain one of p or ¬p for each propositional variable p,

since otherwise p̃ ∈ B would hold. Consequently B cannot contain both p and ¬p for any

propositional variable p. Moreover, for every Li ∈ L there must be one l ∈ B∩ (P+∪P−)

with l ∈ Li. Next, let B̂ = P+ ∩ B ∪ {¬p | p ̸∈ B}. By our observation above, we know

that B ⊆ B̂ therefore B̂ still contains at least one literal from every Li. On the other

hand, B̂ directly corresponds to a valuation vB̂ : {p1, . . . pk} → {true, false} mapping pi

to true if pi ∈ B̂ and to false if ¬pi ∈ B̂. Consequently, vB̂ is a valuation making φ true

and hence showing that it is satisfiable. 2
In what follows, we demonstrate the reduction of 3SAT to MCSAT on an example,

using the 3SAT problem described in Example 2.2.1.

Example 3.4.1 Consider the L = {L1, L2, L3} with L1 = {r, s,¬q}, L2 = {s,¬q,¬r},
and L3 = {¬q,¬r,¬s}. The corresponding 3SAT problem amounts to checking if φL =

(¬q ∨ r ∨ s) ∧ (¬q ∨ ¬r ∨ s) ∧ (¬q ∨ ¬r ∨ ¬s) is satisfiable. However, this 3SAT problem

can be reduced to the question if the membership constraint (∅, {L1, L2, L3}, ∅, {q̃, r̃, s̃}) is
satisfiable in the following context:

q r s ¬q ¬r ¬s q̃ r̃ s̃

{r, s,¬q} × × × × × ×
{s,¬q,¬r} × × × × × ×
{¬q,¬r,¬s} × × × × × ×
q × × × × × × ×
r × × × × × × ×
s × × × × × × ×
¬q × × × × × × ×
¬r × × × × × × ×
¬s × × × × × × ×

This encoding ensures that the intent of the formal concepts corresponds to a valid val-

uation for the formula φL, since it will not contain both p and ¬p for any propositional

variable p. Moreover, concepts satisfying the membership constraint, will not contain any

elements of P̃ either. We observe that there is a bijection between the valuations making

the formula true and the concepts satisfying the membership constraint. The correspond-

ing concept for the valuation v = {q 7→ true, r 7→ false, s 7→ true}, making φL true, is

({r,¬q,¬s}, {q, s,¬r}).

Corollary 3.4.1.1 It follows from the previous theorem that also membership constraints

of the form (G+, G−, ∅,M−), (∅, G−,M+,M−), (G+, G−,M+,M−) are NP-complete.

88

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

When analyzing the problem further, it turns out that the simultaneous presence

of forbidden objects and forbidden attributes in the membership constraint is the only

reason for the established intractability and in all other cases the complexity is lower. For

membership constraints where one of the forbidden sets becomes empty, the complexity

drops to AC0 and, for some cases, the problem even becomes trivially true.

Theorem 3.4.2 When restricted to membership constraints of the form (G+, ∅,M+,M−)

or (G+, G−,M+, ∅), MCSAT is in AC0.

Proof. We prove the statement for constraints of the form C = (G+, ∅,M+,M−), the

other case follows by duality. First observe that ((M+)′, (M+)′′) is a formal concept of K
and it is subset-maximal with respect to its extent and subset-minimal with respect to its

intent among all formal concepts whose intent contains M+. Therefore, (G+, ∅,M+,M−)

is satisfiable with respect to K if and only if it is satisfied by the concept ((M+)′, (M+)′′).

By definition, this is the case if and ony if:

• (1) G+ ⊆ (M+)′ and

• (2) (M+)′′ ∩M− = ∅.

Condition (1) can be rewritten as G+×M+ ⊆ I, while the second condition is equivalent

to the condition that for every m ∈M− there exists some g ∈ (M+)′ with (g,m) ̸∈ I.

We now define a first-order-logic interpretation IK,C = (∆, ()I) over the unary predi-

cates pG, pM , pG+ , pM+ , pM− and the binary predicate pI as follows: ∆ = G∪M , for every

X ∈ {G,M,G+,M+,M−} we let pIX = X, and pII = I. Obviously, I is an immediate

representation of the MCSAT problem.

Next we observe that condition (1) can be expressed by the first-order formula φ1

defined as:

∀x, y.(pG+(x) ∧ pM+(y)→ pI(x, y)),

while condition (2) can be expressed by φ2 defined as:

∀x.pM−(x)→ ∃y.(∀z.(pM+(z)→ pI(y, z)) ∧ ¬pI(y, x)).

Intuitively, the part ∀z.(pM+(z)→ pI(y, z)) from φ2 expresses that y ∈ (M+)′.

Consequently, satisfiability of C with respect to K coincides with the satisfaction of

the fixed first-order-logic formula φ = φ1 ∧ φ2 in IK,C. It follows from the corresponding

result from descriptive complexity theory (see Remark 2.2.1) that the considered restricted

version of MCSAT is in AC0. 2
As a consequence, all subclasses of the described membership constraint class from

Theorem 3.4.2 are also in AC0.

89

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Corollary 3.4.2.1 We can deduce that for membership constraints of the form

(G+, G−, ∅, ∅), (∅, ∅,M+,M−), (G+, ∅,M+, ∅), (G+, ∅, ∅,M−), (∅, G−,M+, ∅), (∅, G−, ∅, ∅),
(∅, ∅, ∅,M−), (G+, ∅, ∅, ∅), (∅, ∅,M+, ∅) the corresponding MCSAT problems are also in

AC0.

Proof. Considering that these are subclasses of the membership constraint class

described in Theorem 3.4.2, a proof would not be necessary. However, in the following,

we highlight the fact that membership constraints of these forms can be expressed by

the same or similar first-order formulae as in the previous theorem. For the first two

membership constraints, we consider the case of (∅, ∅,M+,M−), the other one follows from

duality. Following the same ideas from the previous proof, we deduce that this membership

constraint is satisfiable if and only if it is satisfiable by the concept ((M+)′, (M+)′′).

However, the only condition that needs to be checked now is that (M+)′′ ∩ M− = ∅,
which is identical to condition (2) from the previous proof, hence it can be expressed by

the first-order formula φ2.

Similarly, for membership constraints of the type (G+, ∅,M+, ∅), the only condition

that needs to be checked is equivalent to the previous condition (1) and can be expressed

by the first-order formula φ1.

For the membership constraints of the form (G+, ∅, ∅,M−), (∅, G−,M+, ∅), we ana-

lyze the second one, while the other follows from duality. Here, we cannot deduce that

(∅, G−,M+, ∅) is satisfiable if and only if it is satisfied by ((M+)′, (M+)′′), since this con-

cept is subset-maximal with respect to its extent among concepts whose intent contains

M+. Therefore, it can be the case that ((M+)′, (M+)′′) does not satisfy the constraint,

but there is a concept (A,B) with A ⊂ (M+)′ and (M+)′′ ⊂ B that satisfies it. How-

ever, the trivial concept (M ′,M) (we know that M = M ′′ since the attribute set can no

longer be extended) has the subset-minimal extent of all concepts. So we can deduce that

the membership constraint is satisfied if and only it is satisfied by (M ′,M). Obviously

M+ ⊆M , so the condition that needs to be checked is M ′ ∩G = ∅ which is equivalent to

the condition that for every g ∈ G− there exists some m ∈ M with (g,m) ̸∈ I. This can

be expressed by the following first-order formula φ3:

∀x.pG−(x)→ ∃y.(pM(y) ∧ ¬pI(x, y)).

For the membership constraint of the form (∅, G−, ∅, ∅), we use the same trivial concept

(M ′,M) which is minimal with respect to its extent among all concepts. Hence, the

membership constraint is satisfied if and only if it is satisfied by the concept (M ′,M).

The condition that needs to be checked is M ′ ∩ G− = ∅ which can be expressed by φ3.

The other case follows by symmetry.

90

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Finally, membership constraints of the form (G+, ∅, ∅, ∅) and (∅, ∅,M+, ∅) are satisfied
by the formal concepts ((G+)′′, (G+)′), respectively((M+)′, (M+)′′), without the need to

check additional conditions.

Using the result from descriptive complexity theory, we can conclude the proof that

for all types of membership constraints described in this corollary the MCSAT problems

are in AC0. 2
Finally, in some cases, namely when only required objects or only required attributes

are given, the MCSAT problem becomes trivial.

Theorem 3.4.3 When restricted to membership constraints of the form (G+, ∅, ∅, ∅) or

(∅, ∅,M+, ∅), MCSAT is trivially true.

Proof. For both types of membership constraints we observe that we have one

formal concepts always satisfying the constraint. This is the case for the formal concept

((G+)′′, (G+)′) for the first type of constraint, and ((M+)′, (M+)′′) for the second. Hence,

the two MCSAT problems become trivially true. 2
3.4.2.2 Membership Constraints in Triadic Formal Concept

Analysis

Next we define and investigate membership constraints and the corresponding satisfiability

problem for the triadic case, which was theoretically described in Section 2.1.3 [Rudolph

et al., 2015a].

Definition 3.4.2 Let K = (G,M,B, Y) be a triadic formal context. We define a triadic

membership constraint C on the tricontext K as a sextuple:

C = (G+, G−,M+,M−, B+, B−) with G+ ⊆ G called required objects, G− ⊆ G called

forbidden objects, M+ ⊆ M called required attributes, M− ⊆ M called forbid-

den attributes, B+ ⊆ B called required conditions, and B− ⊆ B called forbidden

conditions.

A triconcept (A1, A2, A3) of K is said to satisfy such a membership constraint if all

the following conditions hold:

• G+ ⊆ A1,

• G− ∩ A1 = ∅,

• M+ ⊆ A2,

• M− ∩ A2 = ∅,

91

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

• B+ ⊆ A3,

• B− ∩ A3 = ∅.

A triadic membership constraint is said to be (properly) satisfiable with respect to K,

if it is satisfied by one of its (proper) triconcepts.

problem TMCSAT

input: tricontext K = (G,M,B, Y),

triadic membership constraint C = (G+, G−,M+,M−, B+, B−)

output: yes if C satisfiable with respect to K, no otherwise.

When studying the complexity of TMCSAT, we observe that in the triadic case, anal-

ogously to the dyadic one, the membership constraint satisfiability problem can be NP-

complete or in AC0. However, in the triadic case there are two possible sources for

intractability. The first one, namely two nonempty forbidden sets, is tightly related to

the NP-complete case observed in dyadic MCSAT problems, while the other one, namely

a required and forbidden set of the same type, is tractable for classical FCA and becomes

intractable only when considering the triadic case.

Theorem 3.4.4 TMCSAT is NP-complete, even when restricting to triadic membership

constraints of the following form:

• (∅, G−,∅,M−,∅,∅), (∅, G−,∅,∅,∅, B−), (∅,∅,∅,M−,∅, B−),

• (G+, G−,∅,∅,∅,∅), (∅,∅,M+,M−,∅,∅), (∅,∅,∅,∅, B+, B−).

Proof. NP membership is straightforward: after guessing a triple (A1, A2, A3) from

2G × 2M × 2B, it can be checked in polynomial time if (A1, A2, A3) is a triconcept of K
and if it satisfies C.

We proceed by showing hardness for the restricted cases. As mentioned previously,

the first type of membership constraints, with two forbidden sets, are tightly related to

membership constraints in dyadic contexts. Therefore, we will show NP-hardness for

these types by proving that the corresponding NP-complete MCSAT problem can be

reduced to a TMCSAT problem.

Given some (dyadic) formal context K = (G,M, I), we define its triadic version

T(K) = (G,M, {∗}, I × {∗}). Then, the set of all triconcepts of T(K) is {(G,M, ∅)} ∪
{(A1, A2, {∗}) | (A1, A2) concept of K}. We deduce that every MCSAT problem of the

form (∅, G−, ∅,M−), defined on the context K, can be reduced to the TMCSAT problem

92

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

of the form (∅, G−, ∅,M−, ∅, ∅), defined on the tricontext T(K). Since the former problem

is NP-complete due to Theorem 3.4.1, the latter must be NP-hard. By symmetry, this ar-

gument carries over to constraints of the form (∅, G−, ∅, ∅, ∅, B−) and (∅, ∅, ∅,M−, ∅, B−).

Herefrom, we can conclude that the TMCSAT problem for constraints having two forbid-

den sets is NP-complete.

Next, we show NP-hardness for constraints of the form (G+, G−, ∅, ∅, ∅, ∅). In order to

prove this, we use a reduction from 3SAT. Given a set L = {L1, . . . , Ln} of propositional
literal sets over the set {p1, . . . , pk} of propositional variables, we define the tricontext

KL = (G,M,B, Y) with

• G = {∗} ∪ L,

• M = {∗, p1, . . . , pk}

• B = {∗,¬p1, . . . ,¬pk}

• Y = G×M ×B \
(
{(∗, pi,¬pi) | 1 ≤ i ≤ k} ∪ {(Lj, pi, ∗) | pi ∈ Lj}
∪{(Lj, ∗,¬pi) | ¬pi ∈ Lj}

)
Furthermore, let CL denote the membership constraint ({∗},L, ∅, ∅, ∅, ∅).
Note that both KL and CL can be computed in polynomial time and are of polynomial

size with respect to |L|.
We will now show that L is satisfiable exactly if C is satisfiable with respect to K.

“⇒”: If L is satisfiable, then there must be a valuation v : {p1, . . . pk} → {true, false}
under which L evaluates to true. Let Lv be the set of literals such that p ∈ Lv whenever

v(p) = true and ¬p ∈ Lv whenever v(p) = false. Next, we show that (A1, A2, A3) =

({∗}, {∗} ∪ (Lv ∩M), {∗} ∪ (Lv ∩ B)) is a triconcept of KL. First, A1 × A2 × A3 ⊆ Y ,

since Lv denotes a valuation and it cannot both contain some pi and its negation ¬pi. We

now show that (A1, A2, A3) is also maximal, i.e., no component can be extended while

maintaining A1 ×A2 ×A3 ⊆ Y . Since Lv already contains for every i ∈ {1, . . . , n} either
pi or ¬pi, extending A2 or A3 would lead to some i satisfying pi ∈ A2 and ¬pi ∈ A3

which contradicts (∗, pi,¬pi) ̸∈ Y . It remains to show that A1 cannot be extended. Let

us assume that it can be extended, i.e., for some Lj ∈ L we have Lj ∈ A1. It follows

that {Lj} × A2 × A3 ⊆ Y holds. However, by construction, we know that Lj ∩ Lv is

non-empty. On one hand, assuming there is some pi ∈ Lj ∩ Lv, we conclude pi ∈ A2 and

thus (Lj, pi, ∗) ∈ Y which contradicts the definition of the tricontext. On the other hand,

assuming there is some ¬pi ∈ Lj ∩ Lv, we conclude ¬pi ∈ A3 and thus (Lj, ∗,¬pi) ∈ Y

which, again, contradicts the construction of the tricontext. Hence A1 cannot be extended

either and (A1, A2, A3) is indeed a triconcept, which obviously also satisfies CL.

93

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

“⇐”: Assume CL is satisfiable with respect to KL. Then there must be a triconcept

of KL satisfying it, i.e. a triconcept of the form ({∗}, A2, A3). Since (∗, pi,¬pi) ̸∈ Y , we

know that for no pi holds pi ∈ A2 and ¬pi ∈ A3 at the same time. On the other hand, by

maximality, for every pi one of pi ∈ A2 and ¬pi ∈ A3 must hold. Therefore, we can define

a valuation v by letting v(pi) = true whenever pi ∈ A2 and letting v(pi) = false whenever

¬pi ∈ A3. We now show that v is a valuation mapping L to true and thus proving

the satisfiability of L. By assumption, ({∗}, A2, A3) is maximal, thus, by maximality of

the first component, for every Lj ∈ L must hold that {Lj} × A2 × A3 ̸⊆ Y . Then, by

construction of KL there must be either some pi ∈ Lj with pi ∈ A2 or there must be some

¬pi ∈ Lj with ¬pi ∈ A3. In any case, this means that Lj is mapped to true under v.

Since the same argument applies to every Lj ∈ L we find that v is indeed a valuation

proving the satisfiability of L. 2
In what follows, we use the same 3SAT problem (see Example 2.2.1) as in the previous

chapter, to demonstrate the reduction of 3SAT to TMCSAT.

Example 3.4.2 Consider L = {L1, L2, L3} with L1 = {r, s,¬q}, L2 = {s,¬q,¬r}, and
L3 = {¬q,¬r,¬s}. The corresponding 3SAT problem amounts to checking if φL = (¬q ∨
r∨s)∧(¬q∨¬r∨s)∧(¬q∨¬r∨¬s) is satisfiable. However, this 3SAT problem can be reduced

to the question if the membership constraint ({∗}, {L1, L2, L3}, ∅, ∅, ∅, ∅) is satisfiable in

the following tricontext:

∗ ∗ q r s

∗ × × × ×
¬q × × ×
¬r × × ×
¬s × × ×

L1 ∗ q r s

∗ × ×
¬q × × ×
¬r × × × ×
¬s × × × ×

L2 ∗ q r s

∗ × × ×
¬q × × ×
¬r × × ×
¬s × × × ×

L3 ∗ q r s

∗ × × × ×
¬q × × ×
¬r × × ×
¬s × × ×

This encoding ensures that for the union U of the intent and modus of the formal

concepts the following holds: for every pi, either pi ∈ U or ¬pi ∈ U . Hence, the union

U contains a valid valuation for the formula φL. Moreover, there is a bijection between

the valuations making the formula true and the triconcepts satisfying the membership

constraint. The corresponding triconcept for the valuation v = {q 7→ true, r 7→ false, s 7→
true}, making φL true, is ({∗}, {∗, q, s}, {∗,¬r}).

Corollary 3.4.4.1 If we add other required or forbidden sets to any of the membership

constraints described in Theorem 3.4.4, the satisfiability problem remains NP-complete.

Similar to the dyadic case, when excluding the critical cases, i.e. membership con-

straints described in Theorem 3.4.4 and Corollary 3.4.4.1, the satisfiability problem be-

comes tractable and, for some cases, even trivially true.

94

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Theorem 3.4.5 When restricted to membership constraints of the form

(∅, G−,M+, ∅, B+, ∅), (G+, ∅, ∅,M−, B+, ∅), and (G+, ∅,M+, ∅, ∅, B−), TMCSAT is in

AC0.

Proof. Let us consider membership constraints of the form (∅, G−,M+, ∅, B+, ∅). We

observe that the trivial triconcept (GU ,M,B) with GU = {g | {g} ×M × B ⊆ Y } is

maximal with respect to its intent and modus, and minimal with respect to its extent,

i.e. for every triconcept (A1, A2, A3) of K we have that GU ⊆ A1 and (trivially) A2 ⊆ M

as well as A3 ⊆ B. Therefore the membership constraint C is satisfiable with respect to K
if and only if (GU ,M,B) satisfies it. For checking this, it suffices to check if GU ∩G− = ∅
which amounts to checking if for every g ∈ G− there are m ∈ M and b ∈ B with

(g,m, b) ̸∈ Y . This, in turn is equivalent to IK,C satisfying the first-order formula

∀x.pG−(x)→ ∃y, z.(pM(y) ∧ pB(z) ∧ ¬pY (x, y, z)).

From the descriptive theory result stated in Remark 2.2.1, it follows that the considered

restricted version of TMCSAT is in AC0.

AC0 membership for the other forms of membership constraints follows by

symmetry. 2
Corollary 3.4.5.1 We can deduce that the satisfiability problems for membership con-

straints having one forbidden set and the corresponding required set empty are in AC0.

As subclasses of the membership constraint class described in Theorem 3.4.5, the following

types of membership constraints are also in AC0:

• (∅, G−,M+, ∅, B+, ∅), (G+, ∅, ∅,M−, B+, ∅), (G+, ∅,M+, ∅, ∅, B−),

• (∅, G−,M+, ∅, ∅, ∅), (∅, G−, ∅, ∅, B+, ∅), (G+, ∅, ∅,M−, ∅, ∅), (∅, ∅, ∅,M−, B+, ∅),
(G+, ∅, ∅, ∅, ∅, B−), (∅, ∅,M+, ∅, ∅, B−),

• (∅, G−, ∅, ∅, ∅, ∅), (∅, ∅, ∅,M−, ∅, ∅), (∅, ∅, ∅, ∅, ∅, B−),

• (∅, ∅,M+, ∅, B+, ∅), (G+, ∅, ∅, ∅, B+, ∅), (G+, ∅,M+, ∅, ∅, ∅),

• (G+, ∅, ∅, ∅, ∅, ∅), (∅, ∅,M+, ∅, ∅, ∅), (∅, ∅, ∅, ∅, B+, ∅).

As in the dyadic case, there are membership constraints which are trivially true,

since they already suggest the formal concept that satisfies the constraint. While for

membership constraints on dyadic contexts this was the case when they had one required

set, for triadic contexts this is the case when membership constraints contain at most two

required sets.

95

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Theorem 3.4.6 When restricting to membership constraints that have all forbidden sets

empty and at least one of the required sets empty, TMCSAT is trivially true. These

membership constraints have the following form:

• (∅, ∅,M+, ∅, B+, ∅), (G+, ∅, ∅, ∅, B+, ∅), (G+, ∅,M+, ∅, ∅, ∅), or

• (G+, ∅, ∅, ∅, ∅, ∅), (∅, ∅,M+, ∅, ∅, ∅), (∅, ∅, ∅, ∅, B+, ∅).

Proof. Let us consider the first membership constraint (∅, ∅,M+, ∅, B+, ∅), while the

other cases follow by symmetry. We observe that the trivial concept (GU ,M,B) with

GU = {g | {g} ×M × B ⊆ Y } satisfies any constraint of this form, thus satisfiability is

always ensured. 2
3.4.2.3 Membership Constraints in n-adic Formal Concept

Analysis

Classical FCA and triadic FCA, the two cases considered in the last sections, can be

seen as two instances of a general framework that we call n-adic FCA. The n-adic case

of formal concept analysis, also called polyadic FCA, was introduced in Section 2.1.4. In

this section, we consider the general case and observe that the already identified causes

of intractability are the only ones also when increasing the arity of the incidence relation

further [Rudolph et al., 2015a].

Definition 3.4.3 Let K = (K1, . . . , Kn, R) be an n-adic context. We define an n-adic

membership constraint C on the context K as a 2n-tuple C = (K+
1 , K

−
1 , . . . , K

+
n , K

−
n)

with K+
i ⊆ Ki called required sets and K−

i ⊆ Ki called forbidden sets.

An n-concept (A1, . . . , An) of K is said to satisfy such a membership constraint if the

following conditions hold:

• K+
i ⊆ Ai for all i ∈ {1, . . . , n} and

• K−
i ∩ Ai = ∅ for all i ∈ {1, . . . , n}.

Furthermore, we let Mod(K,C), respectively Modp(K,C), denote the set of all n-

concepts, respectively proper n-concepts, of K that satisfy C.
An n-adic membership constraint is said to be satisfiable with respect to K, if it is

satisfied by one of its n-concepts, that is if Mod(K,C) ̸= ∅.
Similarly, an n-adic membership constraint is said to be properly satisfiable with

respect to K, if it is satisfied by one of its proper n-concepts, that is if Modp(K,C) ̸= ∅.

96

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Let nMCSAT denote the decision problem of membership constraint satisfiability for

an n-adic context K:

problem nMCSAT

input: n-context K = (K1, . . . , Kn, R),

n-adic membership constraint C = (K+
1 , K

−
1 , . . . , K

+
n , K

−
n)

output: yes if C satisfiable with respect to K, no otherwise.

It turns out that the triadic case exhibits all necessary information needed to settle the

general case, taking into account some straightforward adaptations, hence the following

theorem is immediate.

Theorem 3.4.7 For a fixed n > 2, the nMCSAT problem is

• NP-complete for any class of constraints that allows for

– the arbitrary choice of at least two forbidden sets or

– the arbitrary choice of at least one forbidden set and the corresponding required

set,

• in AC0 for the class of constraints with at most one forbidden set and the corre-

sponding required set empty,

• trivially true for the class of constraints with all forbidden sets and at least one

required set empty.

Proof. Let us first observe that NP-membership for the general case is straightfor-

ward: we guess an n-uple (K1
+, . . . , Kn

+) from 2K1 × . . .× 2Kn and check (in polynomial

time) if it is a concept of K and if it satisfies the constraint.

For the first two types we can study membership constraints of the form

(∅, K1
−, ∅, K2

−, ∅, . . . , ∅,) and (K1
+, K1

−, ∅, . . . , , ∅). If these categories of membership

constraints are NP-hard, then membership constraints with more forbidden or required

sets remain NP-hard.

First, we study NP-completeness for membership constraints of the form

(∅, K1
−, ∅, K2

−, ∅, . . . , ∅,). We show NP-hardness by proving that the corresponding NP-

complete TMCSAT problem can be reduced to a nMCSAT problem of this type.

Given some triadic context K = (G,M,B, Y), we define the n-adic correspondent

Kn = (G,M,B, {∗}, . . . , {∗}, Y ×{∗} . . .×{∗}), where {∗} appears n−3 times. Herefrom

it follows that the set of all n-concepts of Kn is the union of {(A1, A2, A3, {∗}, . . . , {∗}) |
(A1, A2, A3) triconcept of K} and all the trivial n-concepts having all components maximal

97

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

and one of the sets at the position 4 ≤ i ≤ n empty. We deduce that every TMCSAT

problem of the form (∅, G−, ∅,M−, ∅, ∅) can be reduced to the nMCSAT problem of the

form (∅, K1
−, ∅, K2

−, ∅, . . . , ∅,), defined on the context Kn. Since the former problem is

NP-complete due to Theorem 3.4.4, the latter must be NP-hard. All the other cases of

membership constraints with at least two forbidden sets follow by symmetry.

Moreover, using the same argument, we can show that the NP-complete TMCSAT

problem (G+, G−, ∅, ∅, ∅, ∅) can be reduced to a nMCSAT problem of the type

(K1
+, K1

−, ∅, . . . , , ∅). It follows from Theorem 3.4.4 that the nMCSAT problem is NP-

complete when allowing for the arbitrary choice of at least one fortbidden set and the

corresponding required set.

For the class of constraints with at most one forbidden set and the corresponding

required set empty we consider constraints of the following form:

C = (∅, K1
−, K2

+, ∅, K3
+, ∅, . . . , Kn

+, ∅).

The other cases follow by symmetry. We observe that the trivial concept

(Kmin, K2, K3, . . . , Kn) with Kmin = {g | {g} × K2 × . . . × Kn ⊆ R} is minimal with

respect to its extent and maximal with respect to all the other components. Therefore,

the membership constraint C is satisfiable with respect to K if and only if it is satisfied by

(Kmin, K2, K3, . . . , Kn). For checking this, it suffices to check if Kmin ∩K1
− = ∅. As we

have seen in previous proofs, this condition is equivalent to IK,C satisfying the first-order

formula

∀x.pK1
−(x)→ ∃y2, . . . , yn.(pK2(y2) ∧ . . . ∧ pKn(yn) ∧ ¬pR(x, y2, . . . , yn)).

From the descriptive theory result stated in Remark 2.2.1, it follows that the considered

type of nMCSAT is in AC0.

Finally, for the class of constraints with all forbidden sets and at least one required

set empty, we observe that the trivial concepts (for example (Kmin, K2, K3, . . . , Kn) with

Kmin = {g | {g} × K2 × . . . × Kn ⊆ R} when the first required set is empty) always

satisfy the constraints, thus satisfiability is ensured. 2
3.4.2.4 A Discussion on Proper Satisfiability

We introduce the following decision problems for proper satisfiability.

problem MCSATp

input: dyadic formal context K = (G,M, I),

membership constraint C = (G+, G−,M+,M−)

output: yes if C properly satisfiable with respect to K, no otherwise.

98

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

problem TMCSATp

input: tricontext K = (G,M,B, Y),

triadic membership constraint C = (G+, G−,M+,M−, B+, B−)

output: yes if C properly satisfiable with respect to K, no otherwise.

problem nMCSATp

input: n-context K = (K1, . . . , Kn, R),

n-adic membership constraint C = (K+
1 , K

−
1 , . . . , K

+
n , K

−
n)

output: yes if C properly satisfiable with respect to K, no otherwise.

We observe that some of the results regarding satisfiability of memberships presented

so far, easily carry over to proper satisfiability.

Remark 3.4.1 The proper satisfiability problems MCSATp, TMCSATp and nMCSATp

having corresponding satisfiability problems which are NP-complete remain intractable for

proper satisfiaibility as well.

However, for some satisfiability problems which are trivial or in AC0, it is not straight

forward to show that the corresponding proper satisfiability problems remain tractable.

In the following we discuss the tractable cases (from simple satisfiability) for the MCSATp

problem. First, we observe that the trivial case of MCSAT satisfiability remains tractable,

however it is not trivial any more for proper satisfiability.

Example 3.4.3 Consider the following dyadic context:

m1 m2

g1

g2 ×

Now we analyze the satisfiability and proper satisfiability problems for the follow-

ing membership constraint: ({g1}, ∅, ∅, ∅). The formal concept generated by object g1

is (g1
′′, g1

′) = ({g1, g2}, ∅). We observe that, as stated in Thereom 3.4.3, the satifiability

problem is trivially true for concept (g1
′′, g1

′), while the proper satisfiability problem is

no longer true. Furthermore, in order to be able to state whether this concept properly

satisfies the problem or not, we need to compute it and check if g1
′ ̸= ∅, so, in general,

the proper satisfiability problem of this type is in AC0.

Lemma 3.4.8 When restricted to membership constraints of the form (G+, ∅, ∅, ∅) or

(∅, ∅,M+, ∅), MCSATp is in AC0.

99

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Proof. Similarly to the proof of the trivial MCSAT case, we observe that the mem-

bership constraints are properly satisfiable if and only if they are properly satisfied by the

formal concepts ((G+)′′, (G+)′), respectively ((M+)′, (M+)′′). However, as opposed to the

satisfiability case, here, it is not trivial since we still need to check that these are proper

concepts. Hence, the conditions that need to be checked are that (G+)′ ̸= ∅, respectively
(M+)′ ̸= ∅. The first condition can be expressed by the following first-order formula

(while the second condition by the dual formula):

∃y.(pM(y) ∧ (∀x.pG+(x)→ pI(x, y))).

Using the result from descriptive complexity theory, it follows that the described types of

MCSATp are in AC0. 2
Next we show that for all the types of membership constraints for which the (simple)

satisfiability problem is in AC0, the corresponding proper satisfiability problem remains

in AC0.

Theorem 3.4.9 When restricted to membership constraints of the form (G+, ∅,M+,M−)

or (G+, G−,M+, ∅), MCSATp is in AC0.

Proof. We prove the statement for constraints of the form C = (G+, ∅,M+,M−), the

other case follows by duality. For this purpose, we distinguish the following two cases:

M+ ̸= ∅ and M+ = ∅.
“M+ ̸= ∅”: In this case the idea is similar to the one used for proving (simple)

satisfiability. We observe that (G+, ∅,M+,M−) is properly satisfiable with respect to K
if and only if it is properly satisfied by the concept ((M+)′, (M+)′′). The conditions that

need to be checked are:

• (1) G+ ⊆ (M+)′,

• (2) (M+)′′ ∩M− = ∅ and

• (3) (M+)′ ̸= ∅ (which can be left out if G+ ̸= ∅).

All three conditions can be expressed by first-order formulae as we have seen in the proofs

of Theorem 3.4.2 and Remark 3.4.8.

“M+ = ∅”: In this case we have to find a different method for constructing the concept

satisfying the membership constraints. For that reason we need to check that ∃m ∈ M

with the following properties:

• (1) G+ ⊆ m′,

100

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

• (2) m′′ ∩M− = ∅ and

• (3) m′ ̸= ∅ (which can be left out if G+ ̸= ∅).

These conditions, being analog to the ones from the first case, can also be expressed by

first-order-formulae.

We can conclude (using the corresponding result from descriptive complexity the-

ory described in Remark 2.2.1) that for the described class of membership constraints

MCSATp is in AC0. 2
Similarly as for (simple) satisfiability, it follows that the subclasses of the previous

membership constraints class are in AC0 for proper satisfiability as well.

Corollary 3.4.9.1 We can deduce that membership constraints of the form (G+, G−, ∅, ∅),
(∅, ∅,M+,M−), (G+, ∅,M+, ∅), (G+, ∅, ∅,M−), (∅, G−,M+, ∅), (∅, G−, ∅, ∅), (∅, ∅, ∅,M−),

(G+, ∅, ∅, ∅), (∅, ∅,M+, ∅) are also in AC0 when considering the problem of proper satis-

fiability.

Proof. The types of membership constraints described here fall into one or both of

the cases (or their dual correspondent) described in the previous proof an hence similar

conditions need to be checked. It follows from the first-order expressibility that all the

subclasses are in AC0. 2
Observation 3.4.1 When considering triadic and n-adic membership constraints, it is

not clear whether the results from (simple) satisfiability carry over to proper satisfiability

for the tractable cases. We observe that for tractable TMCSAT or nMCSAT problems

we have used trivial concepts in order to show tractability. These proofs do not hold

for proper satisfiability, since the trivial concepts might not be proper. Furthermore, we

conjecture that some of these problems become intractable for proper satisfiability. In

conclusion, the computational complexities of these proper satisfiability problems need to

be further analyzed and remain an open question.

3.4.3 Encoding for Membership Constraints in Answer Set Pro-

gramming

Given that satisfiability of membership constraints can in general be NP-complete, it is

nontrivial to find efficient algorithms. However, the problem can be nicely expressed with

answer set programming. We present in what follows the encoding for the n-adic case

[Rudolph et al., 2015a]. We assume that the specific problem is given by the following

set of ground facts FK,C:

101

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

• seti(a) for all a ∈ Ki,

• rel(a1, . . . , an) for all (a1, . . . , an) ∈ R,

• requiredi(a) for all a ∈ K+
i , and

• forbiddeni(a) for all a ∈ K−
i .

Let P denote the following fixed answer set program (with rules for every i ∈ {1, . . . , n}):

ini(x) ← seti(x) ∧ ∼outi(x)

outi(x) ← seti(x) ∧ ∼ini(x)

←
∧

j∈{1,...,n} inj(xj) ∧ ∼rel(x1, . . . , xn)

exci(xi) ←
∧

j∈{1,...,n}\{i} inj(xj) ∧ ∼rel(x1, . . . , xn)

← outi(x) ∧ ∼exci(x)

← outi(x) ∧ requiredi(x)

← ini(x) ∧ forbiddeni(x)

|{x | ini(x)}| ≥ 1, for all i ∈ {1, . . . , n}

Intuitively, the first two lines “guess” an n-concept candidate by starting with an

empty constraint and stipulating for each element of each Ki if they are in or out, hence

reaching a membership constraint of the form C = (K+
1 , K

−
1 , . . . , K

+
n , K

−
n) with K+

i ∪
K−

i = Ki for every i. The third rule eliminates a candidate if it violates the condition

K+
1 ×K+

2 × . . .×K+
n ⊆ Y , while the fourth and fifth rule ensure the maximality condition

for n-concepts. The sixth and the seventh rule eliminate n-concepts violating the given

membership constraint by checking if the required and forbidden elements are assigned

correspondingly in the obtained membership constraint, i.e. required elements belong to

K+
i , forbidden elements belong to K−

j , for some i, j ∈ {1, . . . , n}. The last rule eliminates

non-proper concepts, hence it is optional and must be used only when dealing with proper

satisfiability.

An n-concept can be read from an answer set X as follows: ({a | in1(a) ∈ X}, . . . , {a |
inn(a) ∈ X}). There is a one-to-one correspondence between the answer setsX of FK,C∪P
and the n-concepts of K satisfying C, obtained as described previously. Consequently,

optimized ASP tools can be used for checking satisfiability but also for enumerating all

satisfying n-concepts.

102

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

3.4.4 Navigation in Conceptual Spaces based on Membership

Constraints

In this section we describe an interactive search scenario where membership constraints

can be put to use to support a user in finding a proper n-concept with desired properties

[Rudolph et al., 2015a; Rudolph et al., 2016]. This is particularly useful in cases

where the number of n-concepts is very large. In what follows, we explain in more detail

the intuition behind the approach and present the formal algorithms, as well as their

practical optimized versions for implementation.

First, let us remind that, given an n-context K = (K1, . . . , Kn, R) and a correspond-

ing membership constraint C, Modp(K,C) denotes the set of all proper n-concepts of

K that satisfy C. We observe that for the “zero-constraint” C∅ = (∅, . . . , ∅), the set

Modp(K,C∅) contains all proper n-concepts of K. Next, for two membership constraints

C1 and C2, let C1 ≼ C2 denote componentwise ⊆, read as C1 is “more general than”

C2, or C2 is “more specific than” C1. We observe that, from C1 ≼ C2 it follows that

Modp(K,C2) ⊆ Modp(K,C1). Finally, every proper n-concept C = (A1, . . . , An) of K
gives rise to the characteristic membership constraint CC = (A1, K1 \A1, . . . , An, Kn \An)

with Modp(K,CC) = {C}.
We now want to describe the identification of a proper n-concept by a user as an

iterated approximation process starting from C∅ and going along a chain of ever more

specific (but satisfiable) membership constraints until CC is reached for some n-concept

C. Non-proper concepts are considered out of scope for knowledge exploration, thus we

exclude them from our consideration. The described navigation would, however, also work

if these concepts were taken into account.

Given a current satisfiable constraint C = (K+
1 , K

−
1 , . . . , K

+
n , K

−
n), the next constraint

is determined by the user by picking some a ∈ Ki \ (K+
i ∪K−

i) for some i and adding it

either toK+
i orK−

i . Intuitively, for some element, whose set membership in the looked-for

n-concept is not yet determined, the user has to decide to include or exclude it. In order

to avoid that the membership constraint turns unsatisfiable as a consequence of the user’s

refinement decision, we will perform constraint propagation on C before the interaction:

for every a ∈ Ki\(K+
i ∪K−

i), for some i, if adding a to K+
i , respectively K−

i , would result

in an unsatisfiable constraint, we add it to K−
i , respectively K+

i . Note that not both can

be the case at the same time, since otherwise C itself would be unsatisfiable. Furthermore,

we deduce that an initial propagation phase is also necessary, i.e. a propogation of the

“zero-constraint” C∅ = (∅, . . . , ∅), in order to ensure that the first step of the user does

not lead to an unsatisfiable constraint.

The method is formally specified in Algorithm 1, which calls Algorithm 2. Algorithm 2

103

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

is based on an nMCSAT solving procedure called nmcsat, which relies on the ASP encod-

ing described in the previous section, including the constraint regarding the cardinality

of the concept’s components in order to ensure proper satisfiability.

Algorithm 1 interactive n-concept finding algorithm

function findNConceptInteractive(K)

Input: n-context K = (K1, . . . , Kn, R)

Output: n-concept searched by user

Data: membership constraint C=(K+
1 , K

−
1 ,. . ., K

+
n, K

−
n)

C = (∅, . . . , ∅)
C =propagate(K,C)
while Ki ̸= K+

i ∪K−
i for some i ∈ {1, . . . , n} do

have user pick one such i and a ∈ Ki \ (K+
i ∪K−

i)

have user pick some decision ∈ {in, out}
if decision = in then

update C by K+
i = K+

i ∪ {a}
else

update C by K−
i = K−

i ∪ {a}
end if

C =propagate(K,C)
end while

return (K+
1 , . . . , K

+
n)

end function

104

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Algorithm 2 propagation of user decisions

function propagate(K,C)
Input: n-context K = (K1, . . . , Kn, R),

membership constraint C=(K+
1 , K

−
1 ,. . ., K

+
n, K

−
n)

Output: updated membership constraint C
Data: membership constraint C′

for all i ∈ {1, . . . , n} do
for all a ∈ Ki \ (K+

i ∪K−
i) do

obtain C′ from C by adding a to K+
i

if nmcsat(K,C′) = no then

update C by adding a to K−
i

end if

obtain C′ from C by adding a to K−
i

if nmcsat(K,C′) = no then

update C by adding a to K+
i

end if

end for

end for

return C
end function

Algorithm 3 propagation of user decisions optimized

function propagateOptimized(K,C)
Input: n-context K = (K1, . . . , Kn, R),

membership constraint C=(K+
1 , K

−
1 ,. . ., K

+
n, K

−
n)

Output: updated membership constraint C
Data: L+

1 , L
−
1 , . . . , L

+
n , L

−
n

for all i ∈ {1, . . . , n} do
L+
i =

∩
(A1,...,An)∈Modp(K,C)

Ai

L−
i =

∩
(A1,...,An)∈Modp(K,C)

Ki \ Ai.

end for

C = (L+
1 , L

−
1 , . . . , L

+
n , L

−
n)

return C
end function

105

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Intuitively, Algorithm 2 determines for each element a ∈ Ki in an undetermined state,

i.e. a ̸∈ Ki
+ ∪ Ki

−, if adding this element either to Ki
+ or to Ki

− would result in an

unsatisfiable constraint. If this is the case, we propagate the opposite constraint, so that

the problem remains satisfiable regardless of the user’s next step.

Note that the interactive algorithm sketched here does not need to compute all (possi-

bly exponentially many) n-concepts upfront, however, it relies on polynomially many sub-

sequent nMCSAT checks. For that reason, implementing it as described in Algorithm 2,

would result in a slow and non-efficient algorithm, since we need to call the nmcsat

procedure multiple times in the propagation phase. Hence, we try to optimize the prop-

agation algorithm. First observe that the purpose of the propagation phase is to avoid

arriving at an empty “subspace” corresponding to a membership constraint C, meaning

that C is not satisfied by any proper n-concept, i.e. Modp(K,C) = ∅. Since the proper

n-concepts in the “subspace” associated with a constraint C are exactly the n-concepts

from Modp(K,C), we obtain the optimized version of Algorithm 2 as described in Algo-

rithm 3. It is then clear that after such an update, for every element e of some Ki which

is still undetermined by C′, there exist proper n-concepts (E1, . . . , En) and (F1, . . . , Fn)

in Modp(K,C′) with e ∈ Ei but e ̸∈ Fi. Consequently, whatever undetermined element

the user chooses to include or exclude in the next step, the resulting membership con-

straint will be properly satisfiable. If the updated constraint C′ = (L+
1 , L

−
1 , . . . , L

+
n , L

−
n)

determines for every element if it is included or excluded (i.e., if L+
i ∪ L−

i = Ki holds for

every i), the user’s navigation has narrowed down the space to the one proper n-concept

(L+
1 , . . . , L

+
n).

Example 3.4.4 We consider a triadic context (K1, K2, K3, Y) where the object set K1

consists of authors of scientific papers, the attribute set K2 contains conference names/jour-

nal names while the conditions K3 are the publication years. This context was formed using

a small selection of data from the dblp3 database. For this small selection we obtain the

2× 4× 2 triadic context from Figure 3.12.

There are exactly six triconcepts of this context, i.e. maximal 3D cuboids full of inci-

dences:

• ({Rumpe,Alouni}, {Corr}, {2014, 2015}),

• ({Alouni}, {Corr , ICC ,PIMRC}, {2014}),

• ({Alouni}, {Corr , ICC}, {2014, 2015}),

• ({Rumpe}, {Corr ,HICSS}, {2015}),
3http://dblp.l3s.de/dblp++.php

106

http://dblp.l3s.de/dblp++.php

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

• (∅, {Corr , ICC ,PIMRC ,HICSS}, {2014, 2015}) and

• ({Rumpe,Alouni},{Corr ,ICC ,PIMRC ,HICSS}, ∅).

The first four of these triconcepts are proper.

Let us assume that we start the navigation from this context. In the initial propagation

phase, i.e. propagation of the “zero-constraint” C∅, we need to compute:

L+
i =

∩
(A1,...,An)∈Modp(K,C∅)

Ai

and

L−
i =

∩
(A1,...,An)∈Modp(K,C∅)

Ki \ Ai.

Herefrom, we obtain the first updated constraint

C = (∅, ∅, {Corr}, ∅, ∅, ∅),

meaning that there is no proper concept that does not include the attribute Corr. Let us

assume that in the first step, the user specifies the exclusion of the attribute ICC from the

intent, i.e.,

C′ = (∅, ∅, {Corr}, {ICC}, ∅, ∅).

The proper 3-concepts of K satisfying C′ are

C1 = ({Rumpe,Alouni}, {Corr}, {2014, 2015}) and
C2 = ({Rumpe}, {Corr ,HICSS}, {2015}),

therefore, we would obtain the updated constraint

C′′ = ({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015}, ∅).

If the user now decides to additionally exclude 2014 from the modus, leading to the con-

straint

C′′′ = ({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015}, {2014}),

the only proper 3-concept satisfying this constraint is C2. Consequently, C′′′ will be updated

to

C′′′′ = ({Rumpe}, {Alouni}, {Corr ,HICSS}, {ICC ,PIMRC}, {2015}, {2014}),

which then represents the final state of the navigation.

107

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

3.4.5 Implementation of Exploration and Navigation Tool based

on Membership Constraints

Following the general scheme described in the previous section, we implement a navigation

and exploration tool using different strategies. The first, straightforward implementation

method is based on Answer Set Programming and the membership constraint encoding

presented in Section 3.4.3 [Rudolph et al., 2015a]. However, for evaluation purposes,

we analyze alternative implementation methods and present another strategy that uses an

exhaustive search in the formal concept set, which must be precomputed with a different

FCA tool [Rudolph et al., 2016].

The propagation described in Algorithm 2 tests for all elements, that are still in an

undetermined state, which of the possible decisions on that element (included or excluded)

give rise to a satisfiable membership constraint problem. In case one of the decisions

generates an unsatisfiable problem, the complementary choice is automatically made.

Remember that, as discussed in the previous sections, when starting from a satisfiable

setting, it cannot be the case that both choices generate an unsatisfiable program.

The alternative to explicitly testing all the possible choices for every element in an

undetermined state, as described in Algorithm 3, is to compute all the membership con-

straints corresponding to a formal concept, that additionaly satisfy the already added

constraints, and to obtain their intersection. This intersection contains the included and

excluded choices that need to be propagated, since their complementary constraints are

not contained in any membership constraint that satisfies the problem and hence, would

generate an unsatisfiable program. For the ASP approach we implement both propagation

algorithms and run experiments in order to compare them and prove that Algorithm 3

is the more efficient propagation algorithm. However, for the brute-force approach we

directly use the optimized version of the propagation.

The framework of the tools follows Algorithm 1. Moreover, for all implementations

(ASP approach with simple propagation, ASP approach with optimized propagation,

brute-force approach with optimized propagation) the user interface is the same: the

first column includes possible actions and information about the state of the navigation

process (intermediate or final), while the next columns each correspond to one dimension

i ∈ {1, . . . , n} of the context. These columns consist of labeled lists containing the

elements of Ki with elements from K+
i colored green and labeled with “in”, elements

from K−
i colored red and labeled with “out”, and elements from Ki \ (K+

i ∪K−
i) having

no particular label or color. By clicking on one of the “unknown” elements, the user may

switch it to “in” or “out”. Subsequent constraint propagation as described in Algorithm 2

or Algorithm 3 then will possibly turn other “unknown” labels into “in” or “out” as a

108

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

ramification of the user’s decision. When no more “unknown” labels are left, the target

concept has been identified and the state of the navigation becomes “DONE”. Until the

final state is reached, the navigation is considered to be in an “INTERMIDIATE” state.

Let us consider Example 3.4.4 again, where we navigate in a 2 × 4 × 2 context con-

taing data from the dblp database about authors, journals/conferences and the years

of publication. Figure 3.13 depicts a screenshot of the navigation example described

in Example 3.4.4, namely the step corresponding to the post propagation constraint

C′′ = ({Rumpe}, ∅, {Corr}, {ICC ,PIMRC}, {2015}, ∅). Here, we can see that required

elements, i.e. object Rumpe, attribute Corr and condition 2015, are marked with green,

forbidden elements, i.e. attributes ICC and PIMRC, with red, while elements in an un-

determined state are unmarked. Furthermore, required and forbidden elements have the

in, respectively the out column checked. In this step, the navigation is considered to be

in an intermediate state, since we did not reach a single formal concept and there still are

elements in an unknown state. Figure 3.14 shows the final state of the navigation, that

corresponds to the membership constraint:

C′′′ = ({Rumpe}, {Alouni}, {Corr ,HICSS}, {ICC ,PIMRC}, {2015}, {2014}).

Although the graphical interface and the general framework deduced from Algorithm 1

are the same in both approaches, the implementation of the propagation algorithm (either

the simple one or the optimized one) as well as the method for computing the formal

concepts, however, differ for each of the chosen strategies. In what follows we describe

the implementations of the ASP and the brute-force approach in more detail.

109

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Figure 3.13: Screenshot navigation tool: intermediate state

Figure 3.14: Screenshot navigation tool: final state

110

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

3.4.5.1 ASP Navigation Tool

The first navigation paradigm4 uses the capabilities of Answer Set Programming for

computing concepts and solving the corresponding membership constraint satisfaction

problem [Rudolph et al., 2016]. The encoding of membership constraints in ASP

([Rudolph et al., 2015a]), described in Section 3.4.3, is such that given K and C, an
answer set program is created, such that there is a one-to-one correspondence between

the answer sets and the n-concepts of K satisfying C. For grounding and solving in the

ASP navigation tool we used Clingo from the Potassco collection [Gebser et al., 2011]

(see Chapter 2.3 for more details about Clingo).

The simple propagation algorithm (Algorithm 2) needs to make multiple calls to the

ASP solver, namely for each element that is in an undetermined state, two membership

constraint satisfiability problems are generated, checking whether adding the element

to the required objects, respectively to the forbidden objects, generates an unsatisfiable

program. The end effect is a very long computation time for each propagation step.

However, the implementation of the ASP based tool can explore optimization strategies

offered by ASP. Therefore, when analyzing the optimized propagation algorithm (Algo-

rithm 3) we observe that cautious entailment with respect to the answer sets of an ASP

program, computes the intersection over all answer sets, which is exactly what is needed

for the propagation of the constraints. As a consequence, the implementation of the op-

timized propagation algorithm using the cautious option for Clingo requires a single call

to the ASP solver. In comparison to the simple propagation algorithm, the optimized

version proves to drastically decrease the computation time as well as the memory us-

age, hence improving the performance of the whole interactive navigation tool. Detailed

experimental results are described in the evaluation section.

One of the main advantages of the ASP navigation approach is that it can be easily

extended to any n-ary dataset. In order to prove this, we implement the ASP navigation

tool for the cases n ∈ {2, 3, 4}. In the implementation we observe that the only modifi-

cations that need to be made when extending the dyadic case to the triadic and tetradic

one are the following:

• update the ASP encoding for a specific n (easily done by following the general

encoding description or by symmetry from the other smaller-dimensional cases)

• update the context loader, which depends, besides on the dimension of the context,

also on the format of the n-adic context for a given n; for dimensions n ≥ 3 we use

the csv-format, however for dyadic contexts we use the common cxt-format

4tool available at https://sourceforge.net/projects/asp-concept-navigation

111

https://sourceforge.net/projects/asp-concept-navigation

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

• update the graphical interface to contain a column for each element set of the context

with similar functionalities, i.e. the option of choosing the state of each element as

“in” or “out”

Following the model of the tetradic case, which was implemented as a proof of concept

for extension, one can easily perform the necessary changes described here for navigating

in n-ary formal contexts for any n ≥ 2.

3.4.5.2 Brute Force Navigation Tool

The second approach is a brute force implementation based on an exhaustive search in the

whole formal concept space, therefore we call it brute force navigation [Rudolph et al.,

2016]. The first main difference lies in the method of computing the formal concepts as

well as in which navigation step the concepts are computed. Instead of computing them at

each step using a declarative approach, in the brute force approach all formal concepts are

computed in the preprocessing phase. Furthermore, the concept set is no longer computed

using ASP, but by one of the existing FCA tools. In a navigation step an exhaustive search

is necessary in order to select the subset of formal concepts that satisfy the constraints

and compute the intersection. This subset of formal concepts is successively pruned in

each navigation step until it contains a single concept, which represents the final state of

the navigation.

With the purpose of comparing the two approaches, we implement the triadic case

of the brute force navigation5 with optimized propagation and use Trias [Jäschke et al.,

2006] to compute the triadic formal concepts in the preprocessing phase. For that reason,

the input for the navigation tool is adapted to Trias’ output format.

The main disadvantage of the brute force approach is that a different tool has to

be available in order to compute the set of formal concepts. Furthermore, this tools

usually do not have a high performance and the time needed for the preprocessing phase

is drastically increased. A consequence of using an external FCA tool is the fact that

a possible extension to an n-adic dataset depends on the extension of the tool used to

compute the concepts. For Trias, the tool used in the triadic case, there is no extension

available for higher-adic cases. However, Cerf et al. propose two algorithms Data-Peeler

([Cerf et al., 2008; Cerf et al., 2009]) and Fenster ([Cerf et al., 2013]), claiming that

these can compute formal concepts of n-ary contexts. From the two algorithms the latter

was developed in 2013 as an extended, optimized version of the first. In our future work,

we plan to implement the brute force navigation using Fenster or the preprocessing

5https://sourceforge.net/projects/brute-force-concept-navigation

112

https://sourceforge.net/projects/brute-force-concept-navigation

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

phase and to analyze whether using this algorithm improves the extensibility of this

approach. However, if the computation time for the formal concepts can not be drastically

decreased, this approach becomes unusable, especially when dealing with dynamic and

rapidly changing datasets.

3.4.6 Evaluation and Comparison of the ASP and the Brute

Force Approach

In this section, we evaluate the performance of the ASP based and the brute force navi-

gation paradigms in terms of implementation and computation speed [Rudolph et al.,

2016]. In order to evaluate the implemented tools, we ran experiments on the dblp

database6. The dblp database indexes conference and journal publications and contains

information such as author, title, year, volume, and journal/conference name. In order

to compare the ASP navigation tool to the implemented brute force navigation

tool one needs triadic datasets. The triadic structure that we chose for the experiments

contains the author’s name, conference/journal name and year of the publication. We

extracted the described triadic dataset from the dblp mysql dump7 and selected subsets

of different dimensions. The subsets were selected by imposing restrictions on the number

of publications per journal/conference, publication year and number of publications per

author. For example, the dataset with 28 triples used in the following experiments can

be obtained by following the next steps:

• eliminate all journals/conferences having less than 15000 publications

• eliminate all publications before the year 2014

• eliminate all entries for authors that published less than 150 papers

After selecting a triadic data subset, no preprocessing phase for the ASP navigation

tool is needed, since its input must contain only the triadic relation. However, the brute

force navigation tool requires a preprocessing phase. First the triconcept set needs

to be computed with the Trias algorithm, hence the Trias tool8 needs to be installed

separately. If using the Trias algorithm without a database connection, the standard

input file requires numeric data. Hence, in order to format the data according to the

Trias tool input format, the elements of the dataset need to be indexed. After running

Trias to obtain the triconcepts, the output needs to be formatted again before using the

6http://dblp.uni-trier.de/
7http://dblp.l3s.de/dblp++.php
8https://github.com/rjoberon/trias-algorithm

113

http://dblp.uni-trier.de/
http://dblp.l3s.de/dblp++.php
https://github.com/rjoberon/trias-algorithm

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Table 3.2: Datasets used in the experiments

dataset
object

nr.

attribute

nr.

condition

nr.

triples

nr.

1 2 15 2 28

2 14 62 5 680

3 41 67 7 2514

4 68 67 8 4478

5 83 67 9 5987

6 108 67 10 8133

brute force navigation tool. Mainly the dimensions and encodings of the object,

attribute and condition sets need to be added, so that the navigation tool can output

the names of the elements and not their indexes in the user interface. Only after these

preprocessing steps can a user interactively navigate in the tricontext using the brute

force navigation tool. Obviously, different formats for the input of the navigation

tool can be implemented, but for the purpose of comparing the two tools we implemented

one single input format based on the standard Trias output.

For measuring the runtimes of the two navigation tools, we evaluated their perfor-

mance on six different datasets (obtained from the dblp database as described previously)

containing between 28 and 8133 triples. The datasets described in Table 3.2 contain

triples where objects are identified with author names, attributes with conferences/jour-

nal names and conditions with the publication years. For each dataset we chose some

random navigation paths through the data, which contain between 4 and 13 navigation

steps and end when a final state, i.e., a formal concept, is reached. By navigation step

we understand not only the action of a user choosing an element as in or out, but also

the subsequent propagation phase. In order to compare the approaches we computed the

average navigation step time (following the same navigation paths in all implementations)

for each dataset and measured the time used for loading the data. This information can

be obtained from the file statistics.log which is created as an output by the navigation

tools. Furthermore, for the brute force navigation, we also measured the preprocessing

time, i.e. the time that Trias needs to compute the triconcepts. Note that the time

needed to index the dataset for the Trias input, as well as to add the encodings to the

Trias output to obtain the input for the navigation tool, were excluded from this analysis,

since this processing phase could be avoided by implementing different input/output for-

mats for the Trias tool or for the brute force navigation tool. We denote the data

114

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

loading time plus the preprocessing time as offline time. In case of the ASP navigation

tool, the offline time equals the data loading time, since no preprocessing is needed. The

experiments were run on an Intel(R) Core(TM) I7-3630QM CPU @ 2.40 GHz machine

with 4 GB RAM and 6M Cache.

Figure 3.15: Average step time for ASP navigation with simple propagation vs optimized

propagation

First we compare the different propagation implementations for the ASP approach:

simple propagation vs. optimized propagation. The results are shown in Figure 3.15,

where the y-axis depicts the logarithmically scaled time of execution, while the x-axis

corresponds to the size of the relation. Besides the big difference in the execution time of

each step, the ASP navigation tool with simple propagation uses a lot of memory. For

the context with 8133 triples after a few navigation steps the execution was stopped by

the system because it reached the limit memory of 4 GB RAM, hence the average time

was computed on the steps executed so far. In comparison, this problem did not occur

for the navigation tool with optimized propagation.

115

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Table 3.3: ASP Navigator with optimized propagation experiments

object

nr.

attribute

nr.

condition

nr.

triples

nr.

ASP navigation

data loading

time (s)

ASP navigation

average step

time (s)

2 15 2 28 0.015 0.1873

14 62 5 680 0.109 0.2315

41 67 7 2514 0.374 0.3278

68 67 8 4478 0.546 0.593

83 67 9 5987 0.66 0.635

108 67 10 8133 1.07 1.194

Table 3.4: Brute Force Navigator with optimized propagation experiments

object

nr.

attribute

nr.

condition

nr.

triples

nr.

Trias

preprocessing

time (s)

brute force

navigation data

loading time (s)

brute force

navigation average

step time (s)

2 15 2 28 0.27 0.016 0.006

14 62 5 680 1.04 0.421 0.0047

41 67 7 2514 23.24 1.95 0.0219

68 67 8 4478 644.758 4.384 0.053

83 67 9 5987 2152.839 6.992 0.16

108 67 10 8133 > 2h

Next, we ran experiments on the same datasets (see Table 3.2) to compare the ASP

navigation tool to the brute force navigation tool, both with optimized propa-

gation. Table 3.3 describes the experimental results for the ASP navigation, while in

Table 3.4 we can see the results for the brute-force navigation. Moreover, Figure 3.16

depicts the offline time of the ASP navigation tool vs. the brute force navigation

tool on the logarithmically scaled y-axis in relation to the number of triples represented

on the x-axis. As the chart shows, the offline time for the brute force navigation has a

massive growth with respect to the size of the triadic relation, while the offline time for the

ASP navigation tool has a more linear growth. When comparing the average step time,

the brute force navigation tool has slightly better results than the ASP navigation

tool, but, as shown in Figure 3.17, for subsets with less than 6000 triples the average

step time is under 1 second for both approaches. Furthermore, from the experiments ran

on the larger dataset, containing 8133 triples, it follows that the ASP navigation tool

is still usable, with an average step time of 1.194 seconds, as opposed to the brute force

116

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

navigation tool, which turns out to have a very time consuming preprocessing phase:

the Trias algorithm does not manage to compute the triconcept set in two hours.

Figure 3.16: Offline time for ASP vs brute force navigation tool with respect to the

number of triples in the relation

117

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

The experiments lead us to believe that for larger datasets the ASP navigation tool

should be the preferred one, since it has a small execution time for loading the data,

as well as for each navigation step, both of which are important for an interactive tool.

Furthermore, in case of dynamic datasets that change frequently, it makes sense to use

the ASP navigation tool which requires no preprocessing of the data.

118

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Figure 3.6: Behavior types for the “ar” group in the SO1 course

(a) 1st week - normal behavior (b) 10th week - relaxed behavior

(c) 17th week - intense behavior

119

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Figure 3.7: Behavior types for the “ie” group in the WDO course

(a) 2nd week - normal behavior (b) 7th week - intense behavior

(c) 14th week - relaxed behavior

120

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

K3

b1: hostelsb0: hostelworld

b2: hostelbookers

g2

g1

g5

g0

g3, g4

g5

g1

K1

m2

m3

m3,m5

m1

m0

m4

K2

Figure 3.8: Trilattice of the tricontext “Hostels”

Figure 3.11: Lattice of reachability context

2014 Corr ICC PIMRC HICSS

Rumpe ×
Alouni × × ×

2015 Corr ICC PIMRC HICSS

Rumpe × ×
Alouni × ×

Figure 3.12: dblp data: author, conference/journal, year

121

Chapter 3 Visualization, Navigation and Exploration in Polyadic Datasets

Figure 3.17: Average step time for ASP vs brute force navigation tool with respect

to the number of triples in the relation

122

4. Conclusions and Future Work

4.1 Achievements

The aim of this thesis is to offer a deep insight into methods of analysis, visualization and

navigation based on formal concept analysis for higher-dimensional datasets. The main

scientific contributions are on one side theoretical and on the other side practical in the

form of different visualization and navigation paradigms, a part of which were already

implemented and evaluated through experiments. These contributions are summarized in

the next paragraphs.

In this thesis, we discussed theoretical aspects of higher-adic formal contexts and we

extended notions (such as clarification and reduction) from the dyadic to the triadic case.

Given that the motivation was a practical one, we implemented the clarification and

reduction processes and tested them on a cancer registry database. These experiments

highlighted the importance of a preprocessing phase of the data, that includes removing

redundant data through processes such as clarification and reduction, before any further

analysis. This not only improves the efficiency of the analysis, but it can also improve

the readability of the data since the size of the dataset is drastically decreased.

Driven by practical requirements, the rest of the thesis focused on visualization and

navigation methods of higher-adic datasets. The first method we proposed addressed

the problem of visualizing triadic data in a form that enables the detection of temporal

patterns in the data. Our main purpose was to analyze the data logs of an e-learning plat-

form in order to better understand the behavior of students during a semester. Therefore,

we chose different triadic structures from the available dataset and used a circular lay-

out to visualize the correlations within different data subsets. This enabled us to identify

trend-setters among the students and to correlate the behavior of the students to different

course-related activities.

Next we focused on paradigms that offered not only visualizations of the data, but

also the possibility to navigate among concepts. Motivated by the intuitive navigation

in a dyadic concept lattice, we proposed a first paradigm for triadic datasets based on

123

Chapter 4 Conclusions and Future Work

appropriately defined dyadic projections and a reachability relation among concepts. The

navigation is such that the user can navigate either within the dyadic lattice correspond-

ing to a dyadic projection or from one dyadic lattice to another one, depending on the

perspective that he chooses. Herefrom, we observed that the reachability relation forms

a partition on the concept set consisting of so-called reachability clusters. This led us to

investigate properties of the reachability clusters. We introduced the theoretical basis for

the navigation paradigm based on the reachability relation and described the exploration

strategy and possible implementation methods in more detail.

The second navigation paradigm proposed in this thesis follows a general interactive

framework based on the idea that the user can add constraints that gradually restrict

the space of the concepts, leading in the final step to a single concept which satisfies

all the constraints chosen by the user. This navigation paradigm has the important

advantage that the framework was designed in a user-friendly manner, i.e. it can be

used by users without any knowledge of formal concept analysis. In order to formally

define the framework we have defined membership constraints and the corresponding

satisfiability problems. The computational complexities of the satisfiability problems

were studied for different dimensions of the datasets (dyadic, triadic and n-adic) and we

have proved that although in some cases the complexity is low (trivial or AC0), there are

cases when it becomes intractable, i.e. NP-complete. This led us to consider answer set

programming for the implementation of the framework, since it offers highly optimized

tools for solving NP-complete satisfiability problems. For that purpose we presented an

encoding in answer set programming for membership constraints. This implementation

strategy has the advantage of being easily extended to any n-ary dataset. In order to

prove this, we implemented the tool for dyadic, triadic and tetradic datasets.

Next we considered a second implementation strategy for the navigation framework

based on membership constraints. This strategy uses an external FCA tool to compute

the whole concept set and then performs exhaustive search in the concept set in order

to narrow down the subset of concepts that satisfy the given constraints. However, we

observed that this approach is not always scalable, since it depends on the external tool

used for computing the concepts.

Finally, we ran experiments in order to compare the execution times of the two im-

plementation strategies and analyzed optimization methods for the framework. Experi-

mental results demonstrated that the ASP navigation tool can be successfully used for

large datasets (having low execution times of under two seconds for each navigation step).

The ASP-based and the exhaustive-search-based tools that implement the membership

constraints navigation are among the most important achievements of the thesis, since

124

Chapter 4 Conclusions and Future Work

they represent data analysis tools that use the capabilities of FCA while at the same time

being intuitive and user-friendly (i.e, using the tools does not require previous theoreti-

cal knowledge). For higher-adic FCA, these are, to the best of our knowledge, the first

navigation tools which allow to explore, search, recognize, identify, analyze, and investi-

gate polyadic concept sets, by using membership constraints together with the conceptual

knowledge processing paradigm.

4.2 Open Issues and Future Work

This thesis proposes a variety of visualization and navigation methods for higher-adic

datasets. For each of the proposed paradigms there are some open issues regarding ei-

ther theoretical aspects, i.e. properties that arise form the defined paradigms, or practical

aspects that still need to be discussed, such as different implementation methods or eval-

uations of the tools.

For the navigation approach based on three relatedness notions corresponding to the

three dimensions of the context, we have investigated the properties arising from this

reachability relation. As it turned out, in some datasets, not every concept can be reached

from every other concept. In the experiments that we ran on real datasets this was not

the case, which leads us to believe that the structure of real data is such that often

all concepts are mutually reachable. However, in general, the reachability relation gives

rise to reachability clusters obtained as maximal sets of mutually reachable concepts.

Regarding reachability between two clusters C1 and C2, there are two possible situations:

either concepts of the cluster C2 are reachable from the concepts of the cluster C1, but

concepts of cluster C1 are not reachable from the ones in C2 (or the other way around), or

there is no reachability relation between any elements of the two clusters. Consequently,

clusters are ordered by unidirectional reachability and form a partial order which we found

to always have a greatest element. Herefrom, we conclude that navigation should start in

a minimal cluster. However, some examples show that it can be the case that there are

several minimal clusters, hence choosing the starting point of the navigation remains an

open question.

Currently, we are working on defining a navigation paradigm that combines the two

navigation approaches proposed in this thesis, i.e. navigation based on the reachability

relation and navigation based on membership constraints, which would offer a possible

solution for choosing the starting point of the navigation. The idea is to use the constraints

based navigation in order to determine the starting point of the exploration and, from

then on, use the navigation based on the reachability relation for exploring the dataset.

125

Chapter 4 Conclusions and Future Work

However, in order to help the user visualize the constraints he chose in the beginning

throughout the whole exploration, in each dyadic projection we highlight concepts that

satisfy the constraints, using for example the green color for representing them. We intend

to analyze different implementation strategies for this combined navigation paradigm and

implement it in order to see if it is an efficient and appropriate solution for the above

mentioned problem.

Another open issue relates to the theoretical aspects of the reachability clusters. While

analyzing the properties of the clusters, we have tried to find a possible correlation between

the dimension of the context and the number of reachability clusters. However, some

initial conjectures about upper bounds or the existence of suprema had to be refuted

by counterexamples, which nevertheless provided some interesting structural insights and

may pave the way to further investigations. As of yet, the only (and trivial) upper

bound for the number of reachability clusters is the number of triconcepts, which may

be exponential in the size of the tricontext. We, however, still conjecture that there is a

polynomial bound.

Besides these open theoretical questions, future work on the topic has to include an

implementation of the described navigation paradigm and user studies in order to confirm

our hypothesis that this way of displaying and browsing the space of triconcepts is indeed

accessible and intuitive for human users.

For the second navigation framework, which is based on membership constraints, many

directions for future work can be identified. Regarding the theoretical aspects of mem-

bership constraints, we intend to further analyze the computational complexities of the

proper satisfiability problems and investigate whether some of the tractable cases of sat-

isfiability problems become intractable for proper satisfiability. In addition, regarding

aspects of implementation of the framework, as a first step in our future work we intend

to test the brute force navigation tool using different FCA tools for computing the formal

concepts, such as Data-Peeler ([Cerf et al., 2008; Cerf et al., 2009]) or Fenster ([Cerf et

al., 2013]). The authors of these tools claim that both are scalable and can compute the

formal concepts of any n-ary dataset. We intend to run extensive experiments on datasets

of different sizes in order to see if these tools improve the computation time of the concept

set, turning the brute force navigation approach into a feasible exploration method for

larger datasets. Moreover, we intend to compare the different implementations on several

datasets and investigate possible correlations between the performance of the two main

approaches, the ASP based approach and the exhaustive search based approach, and the

properties of the datasets, such as size and density.

As an application of the ASP based navigation, we are currently continuing our anal-

126

ysis on the data logs of the e-learning platform PULSE. In Chapter 3.1, we have studied

this data in a triadic setting and identified behavioral patterns of the students correlated

to the timeline of the course. Now, we want to analyze the data from a tetradic and

pentadic perspective, in order to detect repetitive browsing habits. Therefore, we use

formal concept analysis tools along with answer set programming in order to determine

trend-setters and followers. Intuitively, trend-setters are the users which firstly adhere to

a specific behavior and followers are the users that copy this behavior. The trend-setter

and followers can be identified from a pentadic setting in which we compare groups of stu-

dents among themselves and also when the behavior that they have in common occurred

for each of them. With that purpose, we extend the ASP encoding for computing formal

concepts in pentadic datasets and, after discovering interesting patterns in the data, we

use the ASP navigation tool in order to take a closer look at students that stand out in the

previous analysis. Furthermore, we intend to investigate whether trend-setters influence

the entire evolution of their followers over time. We believe that the techniques described

in this analysis will reveal potential hidden patterns in the Web logs that would sug-

gest improvements that can be made to the portal, eventually leading to a more efficient

interaction between the students.

Finally, as a long term goal, we will focus, in addition to the already described

paradigms, also on new methods of visualization, navigation and exploration which might

improve some aspects of the approaches proposed in this thesis.

List of my Publications

[Dragoş et al., 2014a] Sanda Dragoş, Diana Haliţă, Christian Săcărea, and Diana

Troancă. An FCA Grounded Study of User Dynamics through Log Exploration. Studia

Universitatis Babeş-Bolyai Series Informatica, LIX(2):82–97, 2014.

[Dragoş et al., 2014b] Sanda Dragoş, Diana Haliţă, Christian Săcărea, and Diana

Troancă. Applying Triadic FCA in Studying Web Usage Behaviors. In Robert Buch-

mann, Claudiu Vasile Kifor, and Jian Yu, editors, Proceedings of the 7th International

Conference on Knowledge Science, Engineering and Management, KSEM 2014, Sibiu,

Romania, volume 8793 of Lecture Notes in Computer Science, pages 73–80. Springer,

2014.

[Rudolph et al., 2015a] Sebastian Rudolph, Christian Săcărea, and Diana Troancă. Mem-

bership Constraints in Formal Concept Analysis. In Qiang Yang and Michael

Wooldridge, editors, Proceedings of the 24th International Joint Conference on Artifi-

cial Intelligence, IJCAI 2015, Buenos Aires, Argentina, pages 3186–3192. AAAI Press,

2015.

[Rudolph et al., 2015b] Sebastian Rudolph, Christian Săcărea, and Diana Troancă. Re-

duction in Triadic Data Sets. In Sergei O. Kuznetsov, Amedeo Napoli, and Sebastian

Rudolph, editors, Proceedings of the 4th International Workshop “What can FCA do

for Artificial Intelligence”, FCA4AI 2015, co-located with the International Joint Con-

ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, volume 1430

of CEUR Workshop Proceedings, pages 55–62. CEUR-WS.org, 2015.

[Rudolph et al., 2015c] Sebastian Rudolph, Christian Săcărea, and Diana Troancă. To-

wards a Navigation Paradigm for Triadic Concepts. In Jaume Baixeries, Christian

Săcărea, and Manuel Ojeda-Aciego, editors, Proceedings of the 13th International Con-

ference on Formal Concept Analysis, ICFCA 2015, Nerja, Spania, volume 9113 of

Lecture Notes in Computer Science, pages 232–248. Springer, 2015.

[Rudolph et al., 2016] Sebastian Rudolph, Christian Săcărea, and Diana Troancă. Con-

ceptual Navigation for Polyadic Formal Concept Analysis. Submitted to the 4th Work-

shop on Artificial Intelligence for Knowledge Management, AI4KM 2016, co-located

with the International Joint Conference on Artificial Intelligence, IJCAI 2016, paper

available at http://www.cs.ubbcluj.ro/~dianat/publications/RuTr1.pdf, 2016.

http://www.cs.ubbcluj.ro/~dianat/publications/RuTr1.pdf

Bibliography

[Agrawal and Jagadish, 1987] Rakesh Agrawal and Hosagrahar V. Jagadish. Direct Al-

gorithms for Computing the Transitive Closure of Database Relations. In Peter M.

Stocker, William Kent, and Peter Hammersley, editors, Proceedings of the 13th Inter-

national Conference on Very Large Data Bases, VLDB 1987, San Francisco, CA, USA,

pages 255–266. Morgan Kaufmann Publishers Inc., 1987.

[Andrews and Orphanides, 2010] Simon Andrews and Constantinos Orphanides.

FcaBedrock, a Formal Context Creator. In Madalina Croitoru, Sébastien Ferré,

and Dickson Lukose, editors, Proceedings of the 18th International Conference on

Conceptual Structures, ICCS 2010, Kuching, Sarawak, Malaysia, volume 6208 of

Lecture Notes in Computer Science, pages 181–184. Springer, 2010.

[Andrews, 2009] Simon Andrews. In-Close, a Fast Algorithm for Computing Formal Con-

cepts. In Sebastian Rudolph, Frithjof Dau, and Sergei O. Kuznetsov, editors, Supple-

mentary Proceedings of the 17th International Conference on Conceptual Structures,

ICCS 2009, Moscow, Russia, volume 483 of CEUR Workshop Proceedings. CEUR-

WS.org, 2009.

[Andrews, 2011] Simon Andrews. In-Close2, a High Performance Formal Concept Miner.

In Simon Andrews, Simon Polovina, Richard Hill, and Babak Akhgar, editors, Proceed-

ings of the 19th International Conference on Conceptual Structures, ICCS 2011, Derby,

England, volume 6828 of Lecture Notes in Computer Science, pages 50–62. Springer,

2011.

[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak. Computational Complexity - A

Modern Approach. Cambridge University Press, 2009.

[Becker and Correia, 2005] Peter Becker and Joachim Hereth Correia. The ToscanaJ

Suite for Implementing Conceptual Information Systems. In Bernhard Ganter, Gerd

Stumme, and Rudolf Wille, editors, Formal Concept Analysis, Foundations and Appli-

cations, volume 3626 of Lecture Notes in Computer Science, pages 324–348. Springer,

2005.

[Becker et al., 2002] Peter Becker, Joachim Hereth, and Gerd Stumme. ToscanaJ: An

Open Source Tool for Qualitative Data Analysis. In Vincent Duquenne, Bernhard

Ganter, Michel Liquiere, Engelbert M. Nguifo, and Gerd Stumme, editors, Proceed-

ings of the Workshop Advances in Formal Concept Analysis for Knowledge Discovery

in Databases, FCAKDD 2002, co-located with the European Conference on Artificial

Intelligence, ECAI 2002, Lyon, France, pages 1–2, 2002.

[Berry et al., 2007] Anne Berry, Jean Paul Bordat, and Alain Sigayret. A Local Approach

to Concept Generation. Annals of Mathematics and Artificial Intelligence, 49(1-4):117–

136, 2007.

[Birkhoff, 1940] Garrett Birkhoff. Lattice Theory. New York: American Mathematical

Society, 1940.

[Borchmann, 2012] Daniel Borchmann. A Generalized Next-Closure Algorithm - Enumer-

ating Semilattice Elements from a Generating Set. In Laszlo Szathmary and Uta Priss,

editors, Proceedings of The 9th International Conference on Concept Lattices and Their

Applications, CLA 2012, Fuengirola (Málaga), Spain, volume 972 of CEUR Workshop

Proceedings, pages 9–20. CEUR-WS.org, 2012.

[Calimeri et al., 2016] Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco

Ricca. Design and Results of the Fifth Answer Set Programming Competition. Artificial

Intelligence, 231:151–181, 2016.

[Cerf et al., 2008] Loc Cerf, Jrmy Besson, Cline Robardet, and Jean-Francois Boulicaut.

Data-Peeler: Constraint-based Closed Pattern Mining in n-ary Relations. In Chid

Apte, Haesun Park, Ke Wang, and Mohammad J. Zaki, editors, Proceedings of SIAM

International Conference on Data Mining, SDM 2008, Atlanta, Georgia, pages 37–48.

SIAM, 2008.

[Cerf et al., 2009] Löıc Cerf, Jérémy Besson, Céline Robardet, and Jean-François Bouli-

caut. Closed Patterns Meet n-ary Relations. ACM Transactions on Knowledge Discov-

ery from Data, TKDD, 3(1):3:1–3:36, 2009.

[Cerf et al., 2013] Löıc Cerf, Jérémy Besson, Kim-Ngan Nguyen, and Jean-François Bouli-

caut. Closed and Noise-tolerant Patterns in n-ary Relations. Data Mining and Knowl-

edge Discovery, 26(3):574–619, 2013.

[Cooley et al., 1999] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Data

Preparation for Mining World Wide Web Browsing Patterns. Knowledge and Informa-

tion Systems, 1(1):5–32, 1999.

[Dragoş and Beldean, 2013] Sanda Dragoş and Alina Mihaela Beldean. Analysing Web

Usage with Force-Directed Graphs. Studia Universitatis Babeş-Bolyai Series Informat-

ica, LVIII(4):75–86, 2013.

[Dragoş and Dragoş, 2009a] Sanda Dragoş and Radu Dragoş. WATEC: A Web Analytics

Tool for Educational Content. In Militon Frenţiu and Horia F. Pop, editors, Proceedings

of the 2nd Knowledge Engineering: Principles and Techniques Conference, KEPT 2009,

Cluj-Napoca, Romania, pages 320–327. Presa Universitara Clujeana, 2009.

[Dragoş and Dragoş, 2009b] Sanda Dragoş and Radu Dragoş. Web Analytics for Edu-

cational Content. Studia Universitatis Babeş-Bolyai Series Informatica, Special Issue

KEPT-2009: Knowledge Engineering: Principles and Techniques(2):268–271, 2009.

[Dragoş and Săcărea, 2012] Sanda Dragoş and Christian Săcărea. Analysing the Usage of

Pulse Portal with Formal Concept Analysis. Studia Universitatis Babeş-Bolyai Series

Informatica, LVII(3):65–75, 2012.

[Dragoş, 2007] Sanda Dragoş. PULSE - a PHP Utility used in Laboratories for Student

Evaluation. In Petros Kefalas, Anna Sotiriadou, Gordon Davies, and Andrew McGet-

trick, editors, Proceedings of the 2nd International Conference on Informatics Educa-

tion Europe, IEEII 2007, Thessaloniki, Greece, pages 306–314. South-East European

Research Center (SEERC), 2007.

[Dragoş, 2009] Sanda Dragoş. PULSE Extended. In Mark Perry, Hideyasu Sasaki,

Matthias Ehmann, Guadalupe Ortiz Bellot, and Oana Dini, editors, Proceedings of the

4th International Conference on Internet and Web Applications and Services, ICIW

2009, Venice/Mestre, Italy, pages 510–515. IEEE, 2009.

[Dragoş, 2010] Sanda Dragoş. Current Extensions on PULSE. Studia Universitatis Babeş-

Bolyai Series Informatica, LV(3):51–60, 2010.

[Dragoş, 2011] Sanda Dragoş. Why Google Analytics Cannot be Used for Educational

Web Content. In Ajith Abraham, Emilio Corchado, Sang-Yong Han, Weisen Guo,

Juan Corchado, and Athanasios Vasilakos, editors, Proceedings of the 7th International

Conference on Next Generation Web Services Practices, NWeSP 2011, Salamanca,

Spain, pages 113–115. IEEE, 2011.

[Eirinaki and Vazirgiannis, 2003] Magdalini Eirinaki and Michalis Vazirgiannis. Web

Mining for Web Personalization. ACM Transactions on Internet Technology, TOIT,

3(1):1–27, 2003.

[Ferré and Ridoux, 2004] Sébastien Ferré and Olivier Ridoux. Introduction to Logical

Information Systems. Information Processing & Management, 40(3):383–419, 2004.

[Ganter and Wille, 1999] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis -

Mathematical Foundations. Springer, 1999.

[Ganter, 1984] Bernhard Ganter. Two Basic Algorithms in Concept Analysis. FB4-

Preprint 831, 1984.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Os-

trowski, Torsten Schaub, and Marius Thomas Schneider. Potassco: The Potsdam

Answer Set Solving Collection. AI Communications, 24(2):107–124, 2011.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten

Schaub. Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence

and Machine Learning. Morgan and Claypool Publishers, 2012.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The Stable Model

Semantics For Logic Programming. In Robert Kowalski and Kenneth A. Bowen, editors,

Proceedings of the Joint International Logic Programming Conference and Symposium,

JICSLP 1988, Manchester, England, pages 1070–1080. MIT Press, 1988.

[Glodeanu, 2013] Cynthia V. Glodeanu. Tri-ordinal Factor Analysis. In Peggy Cellier,

Felix Distel, and Bernhard Ganter, editors, Proceedings of the 11th International Con-

ference on Formal Concept Analysis, ICFCA 2013, Dresden, Germany, volume 7880 of

Lecture Notes in Computer Science, pages 125–140. Springer, 2013.

[Gnatyshak et al., 2013] Dmitry Gnatyshak, Dmitry I. Ignatov, and Sergei O. Kuznetsov.

From Triadic FCA to Triclustering: Experimental Comparison of Some Triclustering

Algorithms. In Manuel Ojeda-Aciego and Jan Outrata, editors, Proceedings of the 10th

International Conference on Concept Lattices and Their Applications, CLA 2013, La

Rochelle, France, volume 1062 of CEUR Workshop Proceedings, pages 249–260. CEUR-

WS.org, 2013.

[Godin et al., 1993] Robert Godin, Rokia Missaoui, and Alain April. Experimental Com-

parison of Navigation in a Galois Lattice with Conventional Information Retrieval

Methods. International Journal of Man-Machine Studies, 38(5):747–767, 1993.

[Godin et al., 1995] Robert Godin, Rokia Missaoui, and Hassan Alaoui. Incremental Con-

cept Formation Algorithms Based on Galois (Concept) Lattices. Computational Intel-

ligence, 11(2):246–267, 1995.

[Immerman, 1999] Neil Immerman. Descriptive Complexity. Graduate texts in computer

science. Springer, 1999.

[Jäschke et al., 2006] Robert Jäschke, Andreas Hotho, Christoph Schmitz, Bernhard Gan-

ter, and Gerd Stumme. TRIAS - An Algorithm for Mining Iceberg Tri-Lattices. In

Christopher W. Clifton, Ning Zhong, Jiming Liu, Benjamin W. Wah, and Xindong Wu,

editors, Proceedings of the 6th IEEE International Conference on Data Mining, ICDM

2006, Hong Kong, China, pages 907–911. IEEE, 2006.

[Jäschke et al., 2008] Robert Jäschke, Andreas Hotho, Christoph Schmitz, Bernhard Gan-

ter, and Gerd Stumme. Discovering Shared Conceptualizations in Folksonomies. Jour-

nal of Web Semantics, 6(1):38–53, 2008.

[Jelassi et al., 2012] Mohamed Nader Jelassi, Sadok Ben Yahia, and Engelbert Mephu

Nguifo. A Scalable Mining of Frequent Quadratic Concepts in d-Folksonomies. Com-

puting Research Repository, CoRR, abs/1212.0087, 2012.

[Ji et al., 2006] Liping Ji, Kian-Lee Tan, and Anthony K. H. Tung. Mining Frequent

Closed Cubes in 3D Datasets. In Umeshwar Dayal, Kyu-Young Whang, David B.

Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, and

Young-Kuk Kim, editors, Proceedings of the 32nd International Conference on Very

Large Data Bases, VLDB 2006, Seoul, Korea, pages 811–822. ACM, 2006.

[Kosala and Blockeel, 2000] Raymond Kosala and Hendrik Blockeel. Web Mining Re-

search: A Survey. SIGKDD Explorations, 2(1):1–15, 2000.

[Krajca et al., 2008] Petr Krajca, Jan Outrata, and Vilem Vychodil. Parallel recursive

algorithm for FCA. In Radim Belohlavek and Sergei O. Kuznetsov, editors, Proceedings

of the 6th International Conference on Concept Lattices and Their Applications, CLA

2008, Olomouc, Czech Republic, volume 433 of CEUR Workshop Proceedings, pages

71–82. CEUR-WS.org, 2008.

[Krajca et al., 2010] Petr Krajca, Jan Outrata, and Vilém Vychodil. Advances in Al-

gorithms Based on CbO. In Marzena Kryszkiewicz and Sergei A. Obiedkov, editors,

Proceedings of the 7th International Conference on Concept Lattices and Their Appli-

cations, CLA 2010, Sevilla, Spain, volume 672 of CEUR Workshop Proceedings, pages

325–337. CEUR-WS.org, 2010.

[Kuznetsov and Obiedkov, 2002] Sergei O. Kuznetsov and Sergei A. Obiedkov. Compar-

ing Performance of Algorithms for Generating Concept Lattices. Journal of Experi-

mental and Theoretical Artificial Intelligence, 14(2-3):189–216, 2002.

[Kuznetsov, 1999] Sergei O. Kuznetsov. Learning of Simple Conceptual Graphs from Pos-

itive and Negative Examples. In Jan M. Zytkow and Jan Rauch, editors, Proceedings

of the 3rd European Conference on Principles of Data Mining and Knowledge Discov-

ery, PKDD 1999, Prague, Czech Republic, volume 1704 of Lecture Notes in Computer

Science, pages 384–391. Springer, 1999.

[Lehmann and Wille, 1995] Fritz Lehmann and Rudolf Wille. A Triadic Approach to For-

mal Concept Analysis. In Gerard Ellis, Robert Levinson, William Rich, and John F.

Sowa, editors, Proceedings of the 3rd International Conference on Conceptual Struc-

tures, ICCS 1995, Santa Cruz, California, USA, volume 954 of Lecture Notes in Com-

puter Science, pages 32–43. Springer, 1995.

[Lindig, 2000] Christian Lindig. Fast Concept Analysis. In Working with Conceptual

Structures - Contributions to ICCS 2000, pages 152–161. Shaker Verlag, 2000.

[Norguet et al., 2007] Jean-Pierre Norguet, Benjamin Tshibasu-Kabeya, Gianluca Bon-

tempi, and Esteban Zimányi. A Page-Classification Approach to Web Usage Semantic

Analysis. Engineering Letters, 14(1):120–126, 2007.

[Nourine and Raynaud, 1999] Lhouari Nourine and Olivier Raynaud. A Fast Algorithm

for Building Lattices. Information Processing Letters, 71(5-6):199–204, 1999.

[Outrata and Vychodil, 2012] Jan Outrata and Vilém Vychodil. Fast Algorithm for Com-

puting Fixpoints of Galois Connections Induced by Object-Attribute Relational Data.

Information Sciences, 185(1):114–127, 2012.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computational Complexity. Theoreti-

cal Computer Science. Addison-Wesley, 1994.

[Perkowitz and Etzioni, 1997] Mike Perkowitz and Oren Etzioni. Adaptive Web Sites:

An AI Challenge. In Martha E. Pollack, editor, Proceedings of the 15th International

Joint Conference on Artificial Intelligence, IJCAI 1997, Nagoya, Aichi, Japan, pages

16–23. Morgan Kaufmann Publishers Inc., 1997.

[Pisková and Horváth, 2013] Lenka Pisková and Tomás Horváth. Comparing Perfor-

mance of Formal Concept Analysis and Closed Frequent Itemset Mining Algorithms

on Real Data. In Manuel Ojeda-Aciego and Jan Outrata, editors, Proceedings of the

10th International Conference on Concept Lattices and Their Applications, CLA 2013,

La Rochelle, France, volume 1062 of CEUR Workshop Proceedings, pages 299–304.

CEUR-WS.org, 2013.

[Priss, 2008] Uta Priss. FcaStone - FCA File Format Conversion and Interoperability Soft-

ware. In Madalina Croitoru, Robert Jschke, and Sebastian Rudolph, editors, Proceed-

ings of the 3rd Conceptual Structures Tool Interoperability Workshop, CS-TIW 2008,

co-located with the International Conference on Conceptual Structures , ICCS 2008,

Toulouse, France, CEUR Workshop Proceedings, pages 33–43. CEUR-WS.org, 2008.

[Romero and Ventura, 2007] Cristóbal Romero and Sebastián Ventura. Educational Data

Mining: A Survey from 1995 to 2005. Expert Systems with Applications, 33(1):135–146,

2007.

[Romero et al., 2009] Cristóbal Romero, Sebastián Ventura, Amelia Zafra, and Paul De

Bra. Applying Web Usage Mining for Personalizing Hyperlinks in Web-based Adaptive

Educational Systems. Computers & Education, 53(3):828–840, 2009.

[Romero et al., 2013] Cristobal Romero, Pedro G. Espejo, Amelia Zafra, Jose Raul

Romero, and Sebastian Ventura. Web Usage Mining for Predicting Final Marks of

Students that Use Moodle Courses. Computer Applications in Engineering Education,

21(1):135–146, 2013.

[Săcărea, 2014] Christian Săcărea. Investigating Oncological Databases Using Conceptual

Landscapes. In Nathalie Hernandez, Robert Jäschke, and Madalina Croitoru, editors,

Proceedings of the 21st International Conference on Conceptual Structures, ICCS 2014,

Iaşi, Romania, volume 8577 of Lecture Notes in Computer Science, pages 299–304.

Springer, 2014.

[Spiliopoulou and Faulstich, 1998] Myra Spiliopoulou and Lukas Faulstich. WUM - A

Tool for WWW Utilization Analysis. In Paolo Atzeni, Alberto O. Mendelzon, and

Giansalvatore Mecca, editors, Selected Papers of the 1st International Workshop on the

Web and Databases, WebDB 1998, Valencia, Spain, volume 1590 of Lecture Notes in

Computer Science, pages 184–103. Springer, 1998.

[Srivastava et al., 2000] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and

Pang-Ning Tan. Web Usage Mining: Discovery and Applications of Usage Patterns

from Web Data. SIGKDD Explorations, 1(2):12–23, 2000.

[Stumme et al., 2002] Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and

Lotfi Lakhal. Computing Iceberg Concept Lattices with TITANIC. Data & Knowledge

Engineering, 42(2):189–222, 2002.

[Trabelsi et al., 2012] Chiraz Trabelsi, Nader Jelassi, and Sadok Ben Yahia. Scalable

Mining of Frequent Tri-concepts from Folksonomies. In Pang-Ning Tan, Sanjay Chawla,

Chin Kuan Ho, and James Bailey, editors, Part II of the Proceedings of the 16th Pacific-

Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2012,

Kuala Lumpur, Malaysia, volume 7302 of Lecture Notes in Computer Science, pages

231–242. Springer, 2012.

[Valtchev et al., 2003] Petko Valtchev, David Grosser, Cyril Roume, and Mo-

hamed Rouane Hacene. Galicia: An Open Platform for Lattices. In Aldo de Moor,

Wilfried Lex, and Bernhard Ganter, editors, Proceedings of the 11th International Con-

ference on Conceptual Structures, ICCS 2003, Dresden, Germany, volume 2746 of Lec-

ture Notes in Computer Science, pages 241–254. Springer, 2003.

[van der Merwe et al., 2004] Dean van der Merwe, Sergei A. Obiedkov, and Derrick G.

Kourie. AddIntent: A New Incremental Algorithm for Constructing Concept Lattices.

In Peter W. Eklund, editor, Proceedings of the 2nd International Conference on Formal

Concept Analysis, ICFCA 2004, Sydney, Australia, volume 2961 of Lecture Notes in

Computer Science, pages 372–385. Springer, 2004.

[Voutsadakis, 2002] George Voutsadakis. Polyadic Concept Analysis. Order, 19(3):295–

304, 2002.

[Wille, 1995] Rudolf Wille. The Basic Theorem of Triadic Concept Analysis. Order,

12(2):149–158, 1995.

[Yevtushenko, 2000] Serhiy A. Yevtushenko. System of Data Analysis “Concept Ex-

plorer” (In Russian). In Proceedings of the 7th National Conference on Artificial Intel-

ligence, KII 2000, Russia, pages 127–134, 2000.

	Introduction
	Motivation
	Problem Statement
	Thesis Focus and Key Contributions
	Thesis Outline

	Preliminaries and State of the Art
	Formal Concept Analysis
	History of Formal Concept Analysis
	Dyadic Formal Concept Analysis
	Theoretical Foundations
	Existing Tools and Algorithms

	Triadic Formal Concept Analysis
	Theoretical Foundations
	Existing Tools and Algorithms

	Polyadic Formal Concept Analysis

	Complexity Theory
	Answer Set Programming

	Visualization, Navigation and Exploration in Polyadic Datasets
	Formal Concept Analysis for Web Usage Mining
	Web Usage Mining and Web Analytics Metrics
	Web Usage Mining for E-learning Systems
	PULSE - a PHP Utility used in Laboratories for Student Evaluation
	Applying Formal Concept Analysis on PULSE Usage Data
	Data Preprocessing and Pattern Discovery
	Pattern Analysis and Visualization using Circos

	Circos Interpretations of Triadic Data

	Clarification and Reduction of Triadic Contexts
	A Triadic Navigation Paradigm based on Reachability Relations
	Motivation
	Proof of Concept
	Reachability Relations among Triconcepts
	Reachability in Composed Tricontexts
	Properties of Reachability Clusters
	Exploration Strategy

	An n-adic Navigation Paradigm based on Membership Constraints
	Motivation
	Membership Constraints
	Membership Constraints in Dyadic Formal Concept Analysis
	Membership Constraints in Triadic Formal Concept Analysis
	Membership Constraints in n-adic Formal Concept Analysis
	A Discussion on Proper Satisfiability

	Encoding for Membership Constraints in Answer Set Programming
	Navigation in Conceptual Spaces based on Membership Constraints
	Implementation of Exploration and Navigation Tool based on Membership Constraints
	ASP Navigation Tool
	Brute Force Navigation Tool

	Evaluation and Comparison of the ASP and the Brute Force Approach

	Conclusions and Future Work
	Achievements
	Open Issues and Future Work

