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A generalization of Minkowski’s Inequality

Introduction

The purpose of this paper is to prove the inequality :
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where a; and b; are positive real numbers, and p, q are real numbers such
that
p=q>1

Equality obtains if and only if
a; = bz

The motivation for the paper is found in [1].

The proof will be a straightforward application of the standard method
of finding the maximum value of a function with n variables. To this end,
define
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where we consider the b; constant.
Setting the n first partial derivatives to zero, we find the critical point:
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Setting all these to zero, and dividing the resulting equations by each

other, we obtain
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Rearranging these, we obtain
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for all choices of k and j. Let us denote the common ratio of all these fractions
by A. We aim to show A = 1. To achieve this, we substitute

in the equation for the first partial derivative, and set it to zero. Carrying
out the operations and simplifying, we obtain
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or A = 1, which implies that

for all indices i, so the critical point
(b1, ba, ..., by)
is unique. We readily verify that
fCby, bay ..., b,) =0.

We will now show that this is a maximum point by showing that all eigen-
values of the hessian at the critical point are strictly negative. We have to
compute the second partial derivatives, first the mixed partials:
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The non-mixed partials:
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We will evaluate these partials at the critical point:
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Now the values of the non mixed partials at the critical point:
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We are now ready to compute the eigenvalues of the hessian. To do this, we
refer to Faddeev-Sominsky, problem 227 of page 40 of [2]. The entries of that
matrix on the main diagonal are called =z, xs,..., z,, and the ij-th entry is
denoted by A; B;. The determinant of this matrix is
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Let us denote

and

B;=C bt

This substitution matches the entries of our hessian. From here we easily
obtain the eigenvalues as
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Under our conditions, these are clearly all strictly negative, concluding our
proof. If p and q are equal, Minkowski’s inequality obtains.
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