Karen Adams, Nicholas Martin
Shepherd University, Shepherdstown, WV

A generalization of Minkowski's Inequality

Introduction

The purpose of this paper is to prove the inequality :

$$
\left(\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{q}\right)^{\frac{1}{p}} \leq 2^{\frac{q}{p}-1}\left[\left(\sum_{i=1}^{n} a_{i}^{q}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}}\right]
$$

where a_{i} and b_{i} are positive real numbers, and p, q are real numbers such that

$$
p \geq q>1
$$

Equality obtains if and only if

$$
a_{i}=b_{i} .
$$

The motivation for the paper is found in [1].
The proof will be a straightforward application of the standard method of finding the maximum value of a function with n variables. To this end, define
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sum_{i=1}^{n}\left(x_{i}+b_{i}\right)^{q}\right)^{\frac{1}{p}}-2^{\frac{q}{p}-1}\left[\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}}\right]$,
where we consider the b_{i} constant.
Setting the n first partial derivatives to zero, we find the critical point:

$$
f_{x_{j}}=\frac{1}{p}\left(\sum_{i=1}^{n}\left(x_{i}+b_{i}\right)^{q}\right)^{\frac{1}{p}-1} q\left(x_{j}+b_{j}\right)^{q-1}-2^{\frac{q}{p}-1} \frac{1}{p}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{p}-1} q x_{j}^{q-1}
$$

Setting all these to zero, and dividing the resulting equations by each other, we obtain

$$
\frac{x_{j}+b_{j}}{x_{k}+b_{k}}=\frac{x_{j}}{x_{k}} .
$$

Rearranging these, we obtain

$$
\frac{x_{j}}{b_{j}}=\frac{x_{k}}{b_{k}}
$$

for all choices of k and j . Let us denote the common ratio of all these fractions by λ. We aim to show $\lambda=1$. To achieve this, we substitute

$$
x_{i}=\lambda b_{i}
$$

in the equation for the first partial derivative, and set it to zero. Carrying out the operations and simplifying, we obtain

$$
(1+\lambda)^{\frac{q}{p}-1}=2^{\frac{q}{p}-1}
$$

or $\lambda=1$, which implies that

$$
x_{i}=b_{i}
$$

for all indices i, so the critical point

$$
\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

is unique. We readily verify that

$$
f\left(b_{1}, b_{2}, \ldots, b_{n}\right)=0
$$

We will now show that this is a maximum point by showing that all eigenvalues of the hessian at the critical point are strictly negative. We have to compute the second partial derivatives, first the mixed partials:

$$
\begin{aligned}
f_{x_{k} x_{j}}=\frac{q^{2}}{p}\left(\frac{1}{p}-1\right) & {\left[\left(\sum_{i=1}^{n}\left(x_{i}+b_{i}\right)^{q}\right)^{\frac{1}{p}-2}\left(x_{j}+b_{j}\right)^{q-1}\left(x_{k}+b_{k}\right)^{q-1}-\right.} \\
& \left.-2^{\frac{q}{p}-1}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{p}-2} x_{k}^{q-1} x_{j}^{q-1}\right]
\end{aligned}
$$

The non-mixed partials:

$$
\begin{gathered}
f_{x_{j} x_{j}}= \\
=\frac{q}{p}\left[\left(\frac{1}{p}-1\right)\left(\sum_{i=1}^{n}\left(x_{i}+b_{i}\right)^{q}\right)^{\frac{1}{p}-2} q\left(x_{j}+b_{j}\right)^{2(q-1)}+\right.
\end{gathered}
$$

$$
\begin{gathered}
+\left(\sum_{i=1}^{n}\left(x_{i}+b_{i}\right)^{q}\right)^{\frac{1}{p}-1}(q-1)\left(x_{j}+b_{j}\right)^{q-2}- \\
-2^{\frac{q}{p}-1}\left(\frac{1}{p}-1\right)\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{p}-2} q x_{j}^{2(q-1)}- \\
\left.\quad-2^{\frac{q}{p}-1}(q-1)\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{p}-1} x_{j}^{q-2}\right]
\end{gathered}
$$

We will evaluate these partials at the critical point:

$$
\begin{gathered}
f_{x_{k} x_{j}}\left(b_{1}, b_{2}, \ldots, b_{n}\right)= \\
=-\frac{q^{2}(1-p)}{p^{2}}\left[2^{\frac{q}{p}-2 q}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-2} 2^{q-1} b_{j}^{q-1} 2^{q-1} b_{k}^{q-1}-\right. \\
\left.-2^{\frac{q}{p}-1}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-2} b_{k}^{q-1} b_{j}^{q-1}\right]= \\
=\frac{q^{2}(p-1)}{p^{2}} 2^{\frac{q}{p}-2}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-2}\left(b_{j} b_{k}\right)^{q-1}
\end{gathered}
$$

Now the values of the non mixed partials at the critical point:

$$
\begin{gathered}
f_{x_{j} x_{j}}\left(b_{1}, b_{2}, \ldots, b_{n}\right)= \\
=\frac{q}{p}\left[\left(\frac{1}{p}-1\right) 2^{\frac{q}{p}-2 q} q\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-2} 2^{2(q-1)} b_{j}^{2(q-1)}+\right. \\
+2^{\frac{q}{p}-q}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-1}(q-1) 2^{q-2} b_{j}^{q-2}- \\
-2^{\frac{q}{p}-1}\left(\frac{1}{p}-1\right)\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-2} q b_{j}^{2(q-1)}- \\
\left.-2^{\frac{q}{p}-1}(q-1)\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-1} b_{j}^{q-2}\right]=
\end{gathered}
$$

$$
=\frac{q}{p} 2^{\frac{q}{p}-2}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-2} b_{j}^{q-2}\left[\frac{q(p-1)}{p} b_{j}^{q}+(1-q)\left(\sum_{i=1}^{n} b_{i}^{q}\right)\right]
$$

We are now ready to compute the eigenvalues of the hessian. To do this, we refer to Faddeev-Sominsky, problem 227 of page 40 of [2]. The entries of that matrix on the main diagonal are called $x_{1}, x_{2}, \ldots, x_{n}$, and the ij -th entry is denoted by $A_{j} B_{i}$. The determinant of this matrix is

$$
\prod_{i=1}^{n}\left(x_{i}-A_{i} B_{i}\right)\left(1+\sum_{i=1}^{n} \frac{A_{i} B_{i}}{x_{i}-A_{i} B_{i}}\right)
$$

Let us denote

$$
C=\frac{q^{2}(p-1)}{p^{2}} 2^{\frac{q}{p}-2}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-2} b_{j}^{q-2}
$$

In the determinant formula above, we will substitute

$$
A_{i}=b_{i}^{q-1}
$$

and

$$
B_{i}=C b_{i}^{q-1}
$$

This substitution matches the entries of our hessian. From here we easily obtain the eigenvalues as

$$
-\frac{q}{p} 2^{\frac{q}{p}-2}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{p}-1}(q-1) b_{i}^{q-2}
$$

Under our conditions, these are clearly all strictly negative, concluding our proof. If p and q are equal, Minkowski's inequality obtains.

References :

[1] Karen Adams: A Minkowski-like inequality over R^{n}, Journal of Mathematical Sciences and Mathematics Education Vol. 12 No. 2
[2] D. Faddeev, I.Sominsky: Problems in Higher Algerba, MIR Publishers,

Moscow, 1968
[3] D.S. Mitrinovic: Analytic Inequalities, Grundlehren der mathematischen Wissenschaften, 1970

