The best constant in some geometric inequalities

Mihály Bencze and Marius Drăgan

Abstract

The purpose of this article is to find a way to determine the best constant for some geometric inequalities.

1 Introduction

First recall the fundamental triangle theorem of Blundon (see [1]):
Theorem 1. For any triangle $A B C$, the inequality $s_{1} \leq s_{\leq} s_{2}$ holds, where s_{1}, s_{2} represent the semiperimeter of two isosceles triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ which have the same circumradius R and irradius r as the triangle $A B C$, where

$$
\begin{aligned}
& s_{1}^{2}=2 R^{2}+10 R r-r^{2}-2 \sqrt{R(R-2 r)^{3}} \\
& s_{2}^{2}=2 R^{2}+10 R r-r^{2}+2 \sqrt{R(R-2 r)^{3}} .
\end{aligned}
$$

Also recall the Blundon theorem for acute triangles (see [4]):
Theorem 2. For any acute triangle holds
$s_{1} \leq s \leq s_{2}$ if $2 \leq \frac{R}{r} \leq \sqrt{2}+1$ and $s_{3} \leq s \leq s_{2}$ if $\frac{R}{r} \geq \sqrt{2}+1$, where s_{1}, s_{2} represent the semiperimeter of isosceles triangles from Theorem 1 and s_{3} the semiperimeter of a right angle triangle, where $s_{3}=2 R+r$.

We will search the best constant \boldsymbol{k} for the inequality of type

$$
\begin{equation*}
E(a, b, c, k) \geq \text { or } \leq 0 \tag{1}
\end{equation*}
$$

where E are symmetric and homogeneous in a, b, c.
We reduce the inequality (1) at inequality of form

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{R}, \boldsymbol{r}, \boldsymbol{s}) \geq \text { or } \leq \boldsymbol{k} \tag{2}
\end{equation*}
$$

We consider R, r in (2) constant and s variable.
If we denote $x=\frac{\boldsymbol{R}}{\boldsymbol{r}}$ inequality (2) is equivalent with

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{x}, 1, s) \geq \text { or } \leq \boldsymbol{k} \tag{3}
\end{equation*}
$$

defined for $x \geq 2$.
Let $f:\left[s_{1}, s_{2}\right] \rightarrow \mathbb{R}, f(s)=F(x, 1, s), x \geq 2$.
For inequality $F(x, 1, s) \geq k$ or $f(s) \geq k$.
If f is increasing we obtain $f(s) \geq f\left(s_{1}\right) \geq k$, so $k \leq f\left(s_{1}\right)=h(x)$, $\forall x \geq 2$. So the best constant is $k_{1}=\inf _{x \geq 2} h(x)$.

If f is decreasing then $f(s) \geq f\left(s_{2}\right) \geq k$, hence $k \leq f\left(s_{2}\right)=g(x)$, $\forall x \geq 2$, and the best constant is $k_{2}=\inf _{x \geq 2} g(x)$.

For inequality $F(x, 1, s) \leq k$ or $f(s) \leq k$, if f is increasing we have $f(s) \leq f\left(s_{2}\right) \leq k$ or $k \geq f\left(s_{2}\right)=u(x), \forall x \geq 2$.
So the best constant is $k_{3}=\sup _{x \geq 2} u(x)$.
If f is decreasing we have $f(s) \leq f\left(s_{1}\right) \leq k$ or $k \geq f\left(s_{1}\right)=\boldsymbol{v}(x)$, $\forall x \geq 2$, so the best constant is $k_{4}=\sup _{x \geq 2} v(x)$. In the same way we proceed in the case of acute triangle using Theorem 2.

In the following we present some applications.
I. Find the best constant α such that the inequality

$$
\frac{a^{2}}{(b+c)^{2}}+\frac{b^{2}}{(c+a)^{2}}+\frac{c^{2}}{(a+b)^{2}} \leq \alpha+\frac{3-4 \alpha}{2} \frac{r}{R}
$$

is true in every $A B C$ triangle.
The following identities are known:
$\sum \frac{a}{b+c}=\frac{2 s^{2}-2 r^{2}-2 R r}{s^{2}+r^{2}+2 R r}$ and $\sum \frac{b c}{(a+b)(a+c)}=\frac{s^{2}-2 R r+r^{2}}{s^{2}+2 R r+r^{2}}$
So

$$
\begin{gathered}
\sum\left(\frac{a}{b+c}\right)^{2}=\left(\sum \frac{a}{b+c}\right)^{2}-2 \sum \frac{b c}{(a+b)(a+c)} \\
=\frac{2\left[s^{4}-\left(6 r^{2}+4 R r\right) s^{2}+6 R^{2} r^{2}+4 R r^{3}+r^{4}\right]}{\left(s^{2}+r^{2}+2 R r\right)^{2}}
\end{gathered}
$$

We consider the function $f:(0,+\infty) \rightarrow \mathbb{R}$

$$
\begin{aligned}
f(t) & =\frac{2\left[t^{2}-\left(6 r^{2}+4 R r\right) t+6 R^{2} r^{2}+4 R r^{3}+r^{4}\right]}{\left(t+r^{2}+2 R r\right)^{2}} \text { with } \\
f^{\prime}(t) & =\frac{4 R\left[(2 R+2 r) t-5 R^{2} r-6 R r^{2}-2 r^{3}\right]}{\left(t+2 R r+r^{2}\right)^{3}}
\end{aligned}
$$

From Gerretsen inequality we have $t=s^{2} \geq 16 R r-5 r^{2}$. We will prove $16 R r-5 r^{2} \geq \frac{5 R^{2} r+6 R r^{2}+2 r^{2}}{2 R+2 r}$ which is equivalent with

$$
(2 x+2)(16 x-5) \geq 5 x^{2}+6 x+2, \forall x \geq 2
$$

This inequality is true if $x>\frac{2 \sqrt{97}-8}{27} \simeq 0,43$, which is true since $x \geq 2$. We deduce that $f^{\prime}(t) \stackrel{27}{>0}$ or f is increasing. Then $f(t) \leq f\left(s_{2}^{2}\right)$, therefore one has

$$
\sum \frac{a^{2}}{(b+c)^{2}} \leq \frac{29 R^{3}-5 R^{2} r-8 R r^{2}-4 r^{3}+(7 R+2 r) \sqrt{R(R-2 r)^{3}}}{2 R(3 R+2 r)^{2}}
$$

The inequality from the statement is equivalent to

$$
\frac{29 x^{3}-5 x^{2}-8 x-4+(7 x+2) \sqrt{x(x-2)^{3}}}{2 x(3 x+2)^{2}} \leq \alpha+\left(\frac{3}{2}-2 \alpha\right) \frac{1}{x}, \forall x \geq 2
$$

or

$$
\begin{gathered}
\alpha \geq \frac{x}{x-2}\left[\frac{29 x^{3}-5 x^{2}-8 x-4+(7 x+2) \sqrt{x(x-2)^{3}}}{2 x(3 x+2)^{2}}-\frac{3}{2 x}\right] \\
=\frac{29 x^{2}+26 x+8+(7 x+2) \sqrt{x(x-2)}}{2(3 x+2)^{2}}, \quad \forall x \geq 2 .
\end{gathered}
$$

So the best constant is

$$
\alpha_{0}=\sup _{x \geq 2} \frac{29 x^{2}+26 x+8+(7 x+2) \sqrt{x(x-2)}}{2(3 x+2)^{2}} \stackrel{W A}{=} 2 .
$$

Remark 1. In every $\boldsymbol{A B C}$ triangle is true

$$
\frac{a^{2}}{(b+c)^{2}}+\frac{b^{2}}{(c+a)^{2}}+\frac{c^{2}}{(a+b)^{2}}+\frac{5 r}{2 R} \leq 2
$$

II. Find the best constant α such that the inequality

$$
\frac{a^{2}}{(b+c)^{2}}+\frac{b^{2}}{(c+a)^{2}}+\frac{c^{2}}{(a+b)^{2}} \geq \alpha+\frac{3-4 \alpha}{2} \frac{r}{R}
$$

is true in every $A B C$ triangle.
We saw in \mathbf{I} that f is increasing. So
$f(t) \geq f\left(s_{1}^{2}\right)=\frac{29 R^{3}-5 R^{2} r-8 R r^{2}-4 r^{3}-(7 R+2 r) \sqrt{R(R-2 r)^{3}}}{2 R(3 R+2 r)^{2}}$
therefore

$$
\frac{29 x^{3}-5 x^{2}-8 x-4-(7 x+2) \sqrt{x(x-2)^{3}}}{2 x(3 x+2)^{2}} \geq \alpha+\left(\frac{3}{2}-2 \alpha\right) \frac{1}{x}, \forall x \geq 2
$$

or

$$
\alpha \leq \frac{29 x^{2}+26 x+8-(7 x+2) \sqrt{x(x-2)}}{2(3 x+2)^{2}}, \forall x \geq 2
$$

So the best constant is

$$
\alpha_{1}=\min _{x \geq 2} \frac{29 x^{2}+26 x+8-(7 x+2) \sqrt{x(x-2)}}{2(3 x+2)^{2}} \stackrel{W_{A}}{=} \frac{11}{9} .
$$

Remark 2. In every $A B C$ triangle is true

$$
\frac{a^{2}}{(b+c)^{2}}+\frac{b^{2}}{(c+a)^{2}}+\frac{c^{2}}{(a+b)^{2}}+\frac{17 r}{18 R} \geq \frac{11}{9} .
$$

III. Find the best positive constant α such that the inequality

$$
\alpha\left(\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2}\right)+8(1-\alpha) \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \geq 1,
$$

is true in every $A B C$ triangle.
We know identities: $\quad \sum \tan \frac{A}{2}=\frac{4 R+r}{s}, \quad \Pi \sin \frac{A}{2}=\frac{r}{4 R}$. The inequality from statement may be written as

$$
\begin{equation*}
\alpha\left[\frac{(4 R+r)^{2}}{s^{2}}-2\right]+(8-8 \alpha) \frac{r}{4 R} \geq 1 . \tag{4}
\end{equation*}
$$

We consider the function $f:\left[s_{1}, s_{2}\right] \rightarrow \mathbb{R}$

$$
f(s)=\alpha\left[\frac{(4 R+r)^{2}}{s^{2}}-2\right]+(8-8 \alpha) \frac{r}{4 R}
$$

which is decreasing in s with R, r fixed.
So from Blundon's inequality we obtain

$$
\begin{equation*}
f(s) \geq f\left(s_{2}\right) \tag{5}
\end{equation*}
$$

From (4) and (5) it follows that $f\left(s_{2}\right) \geq 1$ or

$$
\alpha\left[\frac{(4 x+1)^{2}}{s_{2}^{2}(x)}-2\right]+\frac{2}{x}-\frac{2 \alpha}{x} \geq 1, \forall x \geq 2
$$

where $s_{2}(x)=2 x^{2}+10 x-1-2 \sqrt{x(x-2)^{3}}$.
We obtain after perform some calculation

$$
\alpha \geq u(x)=\frac{2 x^{2}+10 x-1+2 \sqrt{x(x-2)^{3}}}{12 x^{2}+8 x-1-(4 x+4) \sqrt{x(x-2)}}, \forall x \geq 2
$$

So $\alpha \geq \sup _{x \geq 2} u(x) \stackrel{W A}{=} \frac{1}{2}$.
Therefore the best constant is $\alpha=\frac{1}{2}$.

Remark 3. If we take $\alpha=\frac{1}{2}$, we obtain $\sum \tan \frac{A}{2}+8 \prod \sin \frac{A}{2} \geq 2$, which represent a problem of Leon Banoff from Crux Mathematicorum no 5 (1984).
IV. Find the best constants $\alpha, \beta, \gamma \geq-2$ such that the inequality

$$
\left(\frac{r}{r_{a}}\right)^{3}+\left(\frac{r}{r_{b}}\right)^{3}+\left(\frac{r}{r_{c}}\right)^{3} \leq \frac{\alpha R+\beta r}{R+\gamma r}
$$

is true in every $\boldsymbol{A B C}$ triangle.
First we will prove that

$$
\begin{equation*}
\left(\frac{r}{r_{a}}\right)^{3}+\left(\frac{r}{r_{b}}\right)^{3}+\left(\frac{r}{r_{c}}\right)^{3} \leq \frac{8 R-13 r}{8 R+11 r} \tag{6}
\end{equation*}
$$

We have

$$
\begin{gather*}
\left(\frac{r}{r_{a}}\right)^{3}+\left(\frac{r}{r_{b}}\right)^{3}+\left(\frac{r}{r_{c}}\right)^{3}=\frac{(s-a)^{3}+(s-b)^{3}+(s-c)^{3}}{s^{3}} \tag{7}\\
=\frac{9 s^{3}-3 s^{2} \sum a+3 s \sum a^{2}-\sum a^{3}}{s^{3}} \\
=\frac{3 s^{3}+6 s\left(s^{2}-r^{2}-4 R r\right)-2 s\left(s^{2}-6 R r-3 r\right)}{s^{3}}=1-\frac{12 R r}{s^{2}}
\end{gather*}
$$

From (6) and (7) it follows that we need to prove that

$$
\begin{equation*}
1-\frac{12 R r}{s^{2}} \leq \frac{8 R-13 r}{8 R+11 r} \quad \text { or } \quad s^{2} \leq \frac{8 R^{2}+11 R r}{2} \tag{8}
\end{equation*}
$$

By Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r$. So to prove (8), it remains to show that

$$
8 R^{2}+8 R r+6 r \leq 8 R^{2}+11 R r \quad \text { or } \quad 3 r(R-2 r) \geq 0
$$

which clearly holds.
In the following we will prove that the best inequality of the type in the statement is the inequality (6).

We suppose that it exists other constants $\alpha, \beta, \gamma \in \mathbb{R}$ and $\gamma \geq-\mathbf{2}$ such that

$$
\begin{equation*}
\left(\frac{r}{r_{a}}\right)^{3}+\left(\frac{r}{r_{b}}\right)^{3}+\left(\frac{r}{r_{c}}\right)^{3} \leq \frac{\alpha R+\beta r}{R+\gamma r} \leq \frac{8 R-13 r}{8 R+11 r} \tag{9}
\end{equation*}
$$

is true in every $A B C$ triangle or

$$
\begin{equation*}
1-\frac{12 R r}{s^{2}} \leq \frac{\alpha R+\beta r}{R+\gamma r} \leq \frac{8 R-13 r}{8 R+11 r} \tag{10}
\end{equation*}
$$

According to Blundon's inequality and (10), we obtain

$$
\begin{equation*}
1-\frac{12 R r}{2 R^{2}+10 R r-r^{2}+2 \sqrt{R(R-2 r)^{3}}} \leq \frac{\alpha R+\beta r}{R+\gamma r} \leq \frac{8 R-13 r}{8 R+11 r} \tag{11}
\end{equation*}
$$

In the case of isosceles triangle with sides $b=c=1, a=0$, from (11) since $R=\frac{1}{2}, r=0$ it follows that $1 \leq \alpha \leq 1 \quad$ or $\alpha=1$.

In the case of equilateral triangle $\frac{R}{r}=2$, from (11)

$$
\frac{1}{9} \leq \frac{2+\beta}{2+\gamma} \leq \frac{1}{9} \quad \text { or } \quad \gamma=9 \beta+16 \geq-2 \quad \text { or } \quad \beta \geq-2
$$

So inequality (11) may be written as

$$
\begin{equation*}
1-\frac{12 x}{2 x^{2}+10 x-1+2 \sqrt{x(x-2)^{3}}} \leq \frac{x+\beta}{x+9 \beta+16} \leq \frac{8 x-13}{8 x+11} \tag{12}
\end{equation*}
$$

The second part of inequality (12) ($x \geq 2 \geq-9 \beta-16$), may be written as:

$$
\begin{align*}
& 8 x^{2}+8 \beta x+11 x+11 \beta \leq 8 x^{2}+(72 \beta+128) x-13 x-13(9 \beta+16) \\
& \text { or } \\
& (64 \beta+104) x-13(9 \beta+16)-11 \beta \geq 0, \forall x \geq 2 \text { So } \\
& \qquad 64 \beta \geq-104 \text { or } \beta \geq-\frac{13}{8} . \tag{13}
\end{align*}
$$

The first side of (12) may be written as

$$
\frac{2 \beta+4}{x+9 \beta+16} \leq \frac{3 x}{2 x^{2}+10 x-1+2 \sqrt{x(x-2)^{3}}}, \forall x \geq 2
$$

or

$$
(x-2)[(4 \beta+5) x+\beta+2]+(4 \beta+8) \sqrt{x(x-2)^{3}} \leq 0, \forall x \geq 2
$$

or

$$
(4 \beta+5) x+\beta+2+(4 \beta+8) \sqrt{x(x-2)} \leq 0, \forall x \geq 2
$$

or

$$
4 \beta+5+\frac{\beta+2}{x}+(4 \beta+8) \sqrt{1-\frac{2}{x}} \leq 0, \forall x \geq 2
$$

Taking $x \rightarrow \infty$ we obtain

$$
\begin{equation*}
\beta \leq-\frac{13}{8} \tag{14}
\end{equation*}
$$

From (13 and (14) we get that (6) is the best inequality of the type in the "statement".
V. Find the best constant α such that the inequality

$$
\frac{b c}{(s-a)^{2}}+\frac{c a}{(s-b)^{2}}+\frac{a b}{(s-c)^{2}} \leq \alpha \frac{R}{r}+12-2 \alpha
$$

is true in every acute triangle.
We have

$$
\sum \frac{b c}{(s-a)^{2}}=\frac{r-8 R}{r}+\frac{(4 R+r)^{2}}{r s^{2}}
$$

So the inequality from statement is equivalent to

$$
F(s, R, r)=\left[\frac{(4 R+r)^{3}}{r s^{2}}-11-\frac{8 R}{r}\right] \frac{r}{R-2 r} \leq \alpha
$$

Since \boldsymbol{F} is decreasing we obtain

$$
\begin{aligned}
& F(s, R, r) \leq F\left(s_{1}, R, r\right) \leq \alpha_{1} \quad \text { if } \quad 2 \leq \frac{R}{r} \leq \sqrt{2}+1 \\
& F(s, R, r) \leq F\left(s_{3}, R, r\right) \leq \alpha_{2} \quad \text { if } \quad \frac{R}{r} \geq \sqrt{2}+1
\end{aligned}
$$

Consider the functions $f_{1}:[2, \sqrt{2}+1] \rightarrow \mathbb{R}$ with $f_{1}(x)=F\left(s_{1}, R, r\right)$ and $f_{2}:[\sqrt{2}+1,+\infty) \rightarrow \mathbb{R}$ defined by $f_{2}(x)=F\left(s_{3}, R, r\right)$.
One can show that $\alpha_{1}=\sup _{x \in[2, \sqrt{2}+1]} f_{1}(x)$ and $\alpha_{2}=\sup _{x \in[\sqrt{2}+1,+\infty)} f_{2}(x)$ are the best constant for inequalities (3)

$$
\begin{aligned}
& f_{1}(x)=\left(\frac{1}{x-2}\right)\left(\frac{(4 x+1)^{3}}{2 x^{2}+10 x-1-2 \sqrt{x(x-2)^{3}}}-11-8 x\right) \\
& f_{2}(x)=\left(\frac{1}{x-2}\right)\left(\frac{(4 x+1)^{3}}{(2 x+1)^{2}}-11-8 x\right)
\end{aligned}
$$

Using WA we obtain

$$
\begin{aligned}
& \alpha_{1}=\sup _{x \in[2, \sqrt{2}+1]} f_{1}(x)=f_{1}(\sqrt{2}+1)=10+2 \sqrt{2} \\
& \alpha_{2}=\sup _{x \in[\sqrt{2}+1,+\infty)} f_{2}(x)=10+2 \sqrt{2} .
\end{aligned}
$$

So the best constant is $10+2 \sqrt{2}$.
Remark 4. In every acute triangle $A B C$

$$
\frac{b c}{(s-a)^{2}}+\frac{c a}{(s-b)^{2}}+\frac{a b}{(s-c)^{2}} \leq(10+2 \sqrt{2}) \frac{R}{r}-8-4 \sqrt{2}
$$

VI. Find the best constant \boldsymbol{k} such that the inequality

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2} \geq k \frac{R-2 r}{2 R} .
$$

it's true in every acute triangle.
From identity $\sum \frac{a}{b+c}=\frac{2 s^{2}-2 r^{2}-2 R r}{s^{2}+r^{2}+2 R r}$, the inequality from the statement is equivalent with

$$
k \leq \frac{R}{R-2 r} \frac{s^{2}-10 R r-7 r^{2}}{s^{2}+r^{2}+2 R r} \quad \text { or } \quad k \leq F(R, r, s)=f(s)
$$

where $f:(0,+\infty) \rightarrow \mathbb{R}$ given by $f(s)=\frac{R}{R-2 r} \frac{s^{2}-10 R r-7 r^{2}}{s^{2}+r^{2}+2 R r}$ satisfies $f^{\prime}(s)=\frac{2 s^{2}\left(12 R r+8 r^{2}\right)}{s^{2}+r^{2}+2 R r}>0$.

Hence f is increasing and $k \leq f\left(s_{1}\right) \leq f(s)$ if $2 \leq \frac{R}{r} \leq \sqrt{2}+1$ and $k \leq f\left(s_{3}\right) \leq f(s)$ if $\frac{R}{r} \geq \sqrt{2}+1$.
So $k \leq u(x)=\frac{x}{x-2} \frac{x^{2}-4-\sqrt{x(x-2)}}{x^{2}+6 x-\sqrt{x(x-2)^{3}}}$ if $x \in[2, \sqrt{2}+1]$.
Therefore the best constant is $k_{1}=\inf _{x \in[2, \sqrt{2}+1]} u(x) \stackrel{\text { WA }}{=} \sqrt{2}-1$.
Also if $\frac{R}{r}=x \geq \sqrt{2}+1, k \leq f\left(s_{3}\right)=v(x)=\frac{x}{x-2} \frac{2 x^{2}-3 x-3}{2 x^{2}+3 x+1}$.
So the best constant is $k_{2}=\inf _{x \geq \sqrt{2}+1} \frac{x}{x-2} \frac{2 x^{2}-3 x-3}{2 x^{2}+3 x+1}=\sqrt{2}-1$.
Therefore, in general, the best constant is $\sqrt{2}-1$.
Remark 5. In every acute triangle holds

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+(\sqrt{2}-1) \frac{r}{R} \geq \frac{2+\sqrt{2}}{2}
$$

VII. Find the best constant α such that

$$
\frac{a^{2}}{(b+c)^{2}}+\frac{b^{2}}{(c+a)^{2}}+\frac{c^{2}}{(a+b)^{2}} \geq \alpha+\frac{3-4 \alpha}{2} \frac{r}{R}
$$

is true in every acute triangle.
We see at problem I that the function f is increasing.
So according Blundon inequality in acute triangle, we have since $\alpha \leq f(s)$ that $\alpha \leq f\left(s_{1}^{2}\right) \leq f\left(s^{2}\right)$ if $2 \leq \frac{R}{r} \leq \sqrt{2}+1$ or

$$
\alpha \leq u(x)=\frac{29 x^{2}+26 x+8-(7 x+2) \sqrt{x(x-2)}}{2(3 x+2)^{2}}
$$

So the best constant is $\alpha_{2}=\inf _{2 \leq x \leq \sqrt{2}+1} u(x) \stackrel{W A}{=} \frac{4-\sqrt{2}}{2}$.
Also if $\frac{R}{r} \geq \sqrt{2}+1$, we have $\alpha \leq f\left(s_{3}^{2}\right) \leq f\left(s^{2}\right)$ or

$$
\alpha \leq v(x)=\frac{16 x^{5}+4 x^{4}-46 x^{3}-55 x^{2}-22 x-3}{2(x+1)^{2}(2 x+1)^{2}(x-2)} .
$$

So the best constant is $\alpha_{3}=\inf _{x \geq \sqrt{2}+1} v(x) \stackrel{W A}{=} \frac{4-\sqrt{2}}{2}$.
Therefore the best constant is $\frac{4-\sqrt{2}}{2}$.
Remark 6. In every acute triangle it's true the inequality

$$
\frac{a^{2}}{(b+c)^{2}}+\frac{b^{2}}{(c+a)^{2}}+\frac{c^{2}}{(a+b)^{2}} \geq \frac{4-\sqrt{2}}{2} \frac{5-2 \sqrt{2}}{2} \frac{r}{R} .
$$

VIII. Find the best constant \boldsymbol{k} such that the inequality

$$
\cos ^{4} A+\cos ^{4} B+\cos ^{4} C \geq k
$$

is true in every acute triangle.
Let $x=a^{2}, y=b^{2}, z=c^{2}$. Since a, b, c are the sides of an acute triangle, then x, y, z is the sides of an triangle with R, r the circumradius and inradius and s semiperimeter. From the cosine law, for all $s \in(0,+\infty)$ we have

$$
\begin{aligned}
& \sum \cos ^{4} A=\sum \frac{(y+z-x)^{4}}{16 y^{2} z^{2}}=\frac{1}{16 x^{2} y^{2} z^{2}} \sum x^{2}(y+z-x)^{4} \\
= & \frac{1}{16 \sigma_{3}^{2}}\left[48 \sigma_{3}^{2}+\sigma_{1}^{6}-10 \sigma_{1}^{4}+8 \sigma_{3} \sigma_{1}^{3}+32 \sigma_{2}^{2} \sigma_{1}^{2}-32 \sigma_{1} \sigma_{2} \sigma_{3}-32 \sigma_{2}^{2}\right] \\
= & \frac{\left(256 R^{2} r^{2}+32 r^{4}\right) s^{2}-\left(2048 R^{3} r^{3}+1536 R^{2} r^{2}+384 R r^{5}+32 r^{6}\right)}{256 R^{2} r^{2} s^{2}} \\
= & \frac{256 R^{2} r^{2}+32 r^{4}}{256 R^{2} r^{2}}-\frac{2084 R^{3} r^{3}+1536 R^{2} r^{4}+384 R r^{5}+32 r^{6}}{256 R^{2} r^{2} s^{2}}=f(s) .
\end{aligned}
$$

So f is increasing (we use $\sigma_{1}=2 s, \sigma_{2}=s^{2}+r^{2}+4 R r, \sigma_{3}=4 R r s$).
We obtain $f(s)=F(R, r, s) \geq k$ or $f(s) \geq f\left(s_{1}\right) \geq k$ or
$k \leq f\left(s_{1}\right)=u(x)=\frac{256 x^{2}+32}{256 x^{2}}-\frac{2048 x^{3}+1536 x^{2}+384 x+32}{256 x^{2}\left(2 x^{2}+10 x-1\right)+2 \sqrt{x(x-2)^{3}}}$.
Therefore the best constant is

$$
k_{0}=\inf _{x \geq 2} u(x) \stackrel{W A}{=} \frac{73}{384} .
$$

Remark 7. In every acute triangle the following inequality holds

$$
\cos ^{4} A+\cos ^{4} B+\cos ^{4} C \geq \frac{73}{384}
$$

IX. Find the best constant \boldsymbol{k} such that the inequality

$$
\cos ^{3} A+\cos ^{3} B+\cos ^{3} C \leq \boldsymbol{k}
$$

holds in every acute triangle. It's known the identity
$\sum \cos ^{3} A=\frac{4 R^{3}+12 R^{2} r+6 R r^{2}+r^{3}-3 r s^{2}}{4 R^{3}}=F(s, R, r)=f(s)$,
f is decreasing in s. So we search k such that $f(s) \leq k$.
In the case $2 \leq \frac{R}{r} \leq \sqrt{2}+1$, according Blundon theorem in acute triangle we have $f(s) \leq f\left(s_{1}\right) \leq k$ or

$$
\begin{aligned}
& u(x)=f\left(s_{1}\right) \leq k, \forall x \in[2, \sqrt{2}+1) \\
& u(x)=\frac{4 x^{3}+6 x^{2}-24 x+4+6 \sqrt{x(x-2)^{3}}}{4 x^{3}}, \forall x \in[2, \sqrt{2}+1]
\end{aligned}
$$

So the best constant in this case is $k=\sup _{x \in[2, \sqrt{2}+1]} u(x) \stackrel{W A}{=} \frac{1}{\sqrt{2}}$.
If $\frac{R}{r} \geq \sqrt{2}+1$ we have $f(s) \leq f\left(s_{3}\right) \leq k$ or $v(s)=f\left(s_{3}\right) \leq k$, $\forall x \in[\sqrt{2}+1,+\infty)$, where $v(x)=\frac{4 x^{3}-6 x-2}{4 x^{3}} \forall x \geq \sqrt{2}+1$.

So the best constant is $k_{2}=\sup _{x \in[\sqrt{2}+1,+\infty)} v(x) \stackrel{W A}{=} \frac{1}{\sqrt{2}}$.
Therefore the best constant is $\frac{1}{\sqrt{2}}$.
Remark 8. 1) In every acute triangle one has

$$
\cos ^{3} A+\cos ^{3} B+\cos ^{3} C \leq \frac{1}{\sqrt{2}} \simeq 0,707
$$

2) In [5] Yu-Dong Wu and Nu -Chun Hu find that $k_{0} \simeq 1,225 \ldots$ is the best constant for which $\sum \cos ^{3} A \leq k$ holds in every $A B C$ triangle. In [6] we give an easier solution for this inequality.
\mathbf{X}. Find the best constant \boldsymbol{k} such that the inequality

$$
\cos ^{3} A+\cos ^{3} B+\cos ^{3} C \geq k
$$

holds in every $A B C$ triangle.
By Problem IX, function f is decreasing or $f(s) \geq f\left(s_{2}\right) \geq k$.
So $v(x)=f\left(s_{2}\right) \geq k, \forall x \geq 2$, where

$$
v(x)=\frac{4 x^{3}+6 x^{2}-24 x+4-6 \sqrt{x(x-2)^{3}}}{4 x^{3}}, \forall x \geq 2
$$

So the best constant is

$$
k_{2}=\inf _{x \geq 2} v(x) \stackrel{W A}{=} \frac{3}{8} \simeq 0,375
$$

References

[1] Drăgan, M., Haivas, M. and Maftei, I,V., O demonstraţie geometrică a inegalităţii lui Blundon, Recreaţii Matematice, No 1(2012), 20-22
[2] Drăgan, M. and Stanciu, N., A new proof of Blundon inequality, Recreaţii Matematice, No 2(2017), 100-105
[3] Drăgan, M. and Stanciu, N., On geometric interpretation of Blundon's inequality and some consequences, GMB no 1 (2019), 4-12
[4] Bencse, M. and Drăgan, M., The Blundon theorem in acute triangle and some consequences, Forum Geometricorum (2018), 85-194
[5] Yu-Dong Wu and Nu-Chen Hu , The maximum of $\sum \cos ^{3} A$, Octogon Mathematical Magazine, vol. 19, No 1, April 2011, 114-119
[6] Drăgan, M. and Stanciu, N., Cea mai buna constantă pentru unele inegalităţi geometrice, GMB no 12(2018), 571-578

Mihály Bencze
Str. Hărmanului 6, 505600 Săcele-Négyfalu, Jud. Braşov, Romania
benczemihaly@yahoo.com

Marius Drăgan
61311 bd. Timişoara Nr. 35, Bl. OD6, Sc. E, et. 7, Ap. 176, Sect. 6, Bucureşti, Romania
marius.dragan2005@yahoo.com

