About Brocard point in a triangle

Mihály Bencze ${ }^{1}$

In this paper we present some geometrical inequalities related to the Brocard point in a triangle.

Definition 1. In any triangle $A B C$ there exists a unique point P for each $\varangle P A B=\varangle P B C=$ $\varangle P C A=\omega$. The point P is the Brocard point, they are named after Henri Brocard (1845-1922), a French mathematician.

This point P is called the first Brocard point, and ω the Brocard angle.
Theorem 1. (Brocard). In any triangle $A B C$ holds the identity:

$$
\operatorname{ctg} \omega=\operatorname{ctg} A+\operatorname{ctg} B+\operatorname{ctg} C .
$$

Proof. The given relation is equivalent to $\sin (A-\omega) \cdot \sin (B-\omega) \cdot \sin (C-\omega)=\sin ^{3} \omega$. But we have $\frac{\sin (A-\omega)}{\sin \omega}=\frac{C P}{A P}, \frac{\sin (B-\omega)}{\sin \omega}=\frac{A P}{B P}, \frac{\sin (C-\omega)}{\sin \omega}=\frac{B P}{C P}$ and after multiplication holds the identity.
Remark 1. We have the following relations

$$
\begin{gathered}
\operatorname{ctg} \omega=\sum \operatorname{ctg} A=\frac{\sum a^{2}}{4 s r}=\frac{1+\prod \cos A}{\prod \sin A} \\
=\frac{\sum \sin ^{2} A}{2 \prod \sin A}=\frac{\sum a \sin A}{\sum a \cos A} \\
\csc ^{2} \omega=\csc ^{2} A+\csc ^{2} B+\csc ^{2} C \\
\sin \omega=\frac{2 s r}{\sqrt{\sum a^{2} b^{2}}} .
\end{gathered}
$$

Corollary 1. Denote P the Brocard point in the triangle $A B C$, then

$$
\frac{A P}{c}+\frac{B P}{a}+\frac{C P}{b}=2 \cos \omega .
$$

Proof. In the triangle $A P C$ we have $\varangle C A P=A-\omega, \varangle C P A=\pi-A$ and using the sine rule we can write

$$
\frac{\sin (A-\omega)}{C P}=\frac{\sin A}{b}
$$

Similarly hold

$$
\frac{\sin (B-\omega)}{A P}=\frac{\sin B}{c}, \frac{\sin (C-\omega)}{P B}=\frac{\sin C}{a} .
$$

[^0]Expanding the expressions $\sin (A-\omega), \sin (B-\omega), \sin (C-\omega)$ we get

$$
\begin{aligned}
& \frac{C P}{b}=\cos \omega-\sin \omega \operatorname{ctg} A \\
& \frac{P B}{a}=\cos \omega-\sin \omega \operatorname{ctg} C \\
& \frac{A P}{c}=\cos \omega-\sin \omega \operatorname{ctg} B
\end{aligned}
$$

Adding these we get

$$
\frac{A P}{c}+\frac{P B}{a}+\frac{C P}{b}=3 \cos \omega-\sin \omega \sum \operatorname{ctg} A=2 \cos \omega
$$

Corollary 2. In any triangle $A B C$, we have

$$
\cos ^{3} \omega \geq \frac{27 \cdot A P \cdot B P \cdot C P}{8 a b c}
$$

Proof. By AM-GM Inequality,

$$
2 \cos \omega=\sum \frac{A P}{c} \geq 3 \sqrt[3]{\prod \frac{A P}{c}}
$$

Corollary 3. In any triangle $A B C$, we have

$$
A P^{2}+B P^{2}+C P^{2} \geq \frac{4 a^{2} b^{2} c^{2} \cos ^{2} \omega}{\sum a^{2} b^{2}}
$$

Proof. By Cauchy-Schwarz Inequality,

$$
2 \cos \omega=\sum \frac{A P}{c} \leq \sqrt{\left(\sum A P^{2}\right)\left(\sum \frac{1}{a^{2}}\right)}
$$

Corollary 4. In all triangle $A B C$, we have

$$
\sqrt{A P}+\sqrt{B P}+\sqrt{C P} \leq \sqrt{2(a+b+c) \cos \omega}
$$

Proof. By Cauchy-Schwarz Inequality,

$$
2 \cos \omega=\sum \frac{A P}{c} \geq \frac{\left(\sum \sqrt{A P}\right)^{2}}{\sum c}
$$

Corollary 5. In all triangle $A B C$, we have

$$
\left(\frac{2 \cos \omega}{\sum a}\right)^{\sum a} \geq\left(\frac{A P}{c^{2}}\right)^{c}\left(\frac{B P}{a^{2}}\right)^{a}\left(\frac{C P}{b^{2}}\right)^{b}
$$

Proof. By weighted AM-GM Inequality, we get

$$
\frac{2 \cos \omega}{\sum a}=\frac{\sum c \cdot \frac{A P}{c^{2}}}{\sum c} \geq\left(\prod\left(\frac{A P}{c^{2}}\right)^{c}\right)^{\frac{1}{\sum c}}
$$

Corollary 6. In any triangle $A B C$, we have

$$
\frac{3(2 R-r)}{s} \leq \operatorname{ctg} \omega \leq \frac{2 R^{2}+r^{2}}{s r}
$$

Proof. We have the follows

$$
\operatorname{ctg} \omega=\frac{\sum a^{2}}{4 s r}=\frac{s^{2}-r^{2}-4 R r}{2 s r}
$$

Using the Gerretsen's Inequalities

$$
16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

we obtain the desired results.
Remark 2. We have the following inequality

$$
\operatorname{ctg} \omega \geq \frac{s}{3 r}
$$

Proof. We have the follows

$$
\operatorname{ctg} \omega=\frac{\sum a^{2}}{4 s r} \geq \frac{\left(\sum a\right)^{2}}{12 s r}=\frac{4 s^{2}}{12 s r}=\frac{s}{3 r} .
$$

Corollary 7. In any triangle $A B C$, we have

$$
\left(\frac{5 R-r}{s}\right)^{2}-\frac{R}{r} \leq\left(\frac{1}{2 \sin \omega}\right)^{2} \leq\left(\frac{(R+r)^{2}}{s r}\right)^{2}-\frac{R}{r}
$$

Proof. We have the follows

$$
\frac{1}{\sin ^{2} \omega}=4 R^{2} \sum \frac{1}{a^{2}}=\left(\frac{s^{2}+r^{2}+4 R r}{2 s r}\right)^{2}-\frac{4 R}{r} .
$$

Using the Gerretsen's Inequalities holds the desired results.
Remark 3. We have the following inequality

$$
\frac{1}{\sin ^{2} \omega} \geq \frac{2 R}{r}
$$

Proof. We have the follows

$$
\frac{1}{\sin ^{2} \omega}=\frac{\sum a^{2} b^{2}}{4 s^{2} r^{2}} \geq \frac{a b c \sum a}{4 s^{2} r^{2}}=\frac{2 R}{r} .
$$

Open Question. Prove or disprove

$$
\left(\frac{R}{r}\right)^{2} \geq \frac{1}{\sin ^{2} \omega} \geq \frac{2 R}{r}
$$

when give a new refinement for Euler's $R \geq 2 r$ Inequality.

References

[1] Octogon Mathematical Magazine (1993-2021).
[2] MATINF (2018-2021).

[^0]: ${ }^{1}$ Profesor dr., Brașov, benczemihaly@gmail.com

