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ABSTRACT. The purpose of this article is to give an analoque of Blundon theorem in an acute triangle
and using this result to obtain the best inequality of the type

b _
S s (R
a
where f is a homogenous function

Let be C(O,r),C (I,r) two circles such that I € int C (O,r) and OI = v R? — 2Rr.

For any triangle ABC with C (O, R) the circumscrible and C (I,r) the incircle, we denote a = BC,
b=CA,c=AB, s= %b“ the semiperimeter of triangle and F' the area.

The Theorem 2 of Blundon see [[3], p. 615-626] it has in this paper an analoque in an acute triangle by
Theorem 3.

Also the Theorem 4 represent the best improvement of the type > b*‘%a > f(R,r), where f(R,r) is

a homogeneous function of the inequality > 4/ HCT_“ > 3. See [[1], p.- 159-165], which is know as the

Radulescu - Maftei Theorem and which in [1] has 2 solutions one elementary and other based on the
multiplier Lagrange Theorem.

MAIN RESULTS

Lemma 1. In any triangle ABC are true the following equalities
1). a®>+b*+c* =2 (s> —r% — 4Rr)

2). ab+bc+ca = s?>+ 12+ 4Rr

3). a?b? + b2 + Pa? = (s* + 12 + 4Rr)2 — 16Rrs?

Lemma 2. In any triangle ABC' is true the following equality:

HCOSA— s — 712 —4Rr — AR?
N 4R?

Proof. In the following we will denote x = a? + b? + 2. From the cosine theorem it follows that:

Mo 06 —) TG —22)

8(ITa)* 8(ITa)?
2?2 =23 a’zr +4) a*b*x — 8([[a)* s* —r? —4Rr — 4R?

8([Ta)? - AR?

Theorem 1. In any acute triangle is true the following inequality:

s>2R+r

Proof. As in any acute triangle is true the inequality: []cos A > 0 according with Lemma 2 it follows
the inequality from the statement.
Theorem 2. (Blundon). In any triangle ABC is true the following inequality: s; < s < s where
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51 = \/2R2 +10Rr — 12 — 24/ R(R —2r)° | s5 = \/2R2+10Rr—r2+2\/R(R—27’)3

represent the semiperimeter of two issoscels triangle Ay B1C7 and As BoCs with the sides

ay :2\/R2—(r—t)2, bip=c1=+vV2R(R+r—1t)

ay =2\/R2 — (r+1t)°, bo=cy =\/2R(R+7+1)
where t = OI = vV R? — 2Rr.

Lemma 3. Let A3B3C5 be a triangle with C (O, R) the circumscrible and C (I, r) the incircle and with
the semiperimeter s3 = 2R + r. Then the sides of triangle A3B3sCj5 is unique determinated by the
equalities:

a3:2R
bs =R+7r+R?>—2Rr —r?
c3=R+r—+R2—-2Rr —r?

where Aj is a right angle.
Proof. We have the following equalities:

a+b+c=2s
ab+bc+ ca=s>+r®>+4Rr

abc = 4Rrs

or

a+b+c=4R+2r
ab+be + ca = 4R? + 8Rr + 2r? (1)

abc =4Rr (2R + )
From (1) it follows that a,b, ¢ are the solutions of the equation:
u? — (4R +2r)u® + (4R +8Rr +2r*) u —4Rr 2R+ 1) =0 (2)
The equation (2) may be written as:

(u—2R) [u* — (2R+2r)u+4Rr +2r*] =0

which has the solutions from the statement.
Theorem 3. In any acute triangle with C (O, R) the circumscribed and C (I, r) the inscribed are true
the following inequalities:

R
51<s8<sif2< = <V2+1
T

and



R
s3§s§smf;z\/§+1

where s1, so are the semiperimeter of two issosceles triangle A; B1Cy, As BoCo with the sides from
Theorem 2 and s3 is the semiperimeter of the right triangle A3B3C5 from Lemma 3.
Proof. We denote % = z. We consider two cases:

Casel. 2<z<+V2+1
We will prove that s; > s3 or in an equivalent form:

2:r2+10:1712\/1’(:172)3(2:c+1)22{ z(x—2)° — (22 =32 +1)| >0
—(x2—3x+1)>\/x(x—2)3 (3)

But 22 -3z +1<0asz <+vV2+1< 3+T\/5 After squaring in (3) we obtain:

or

(x2—333—|—1)2>x(33—2)3 or —z4+2r+1>0o0r

(vV2—1-2) (z= (V2+1)) >0

inequality which is true. It results that s3 < s7 < ss.

But as 51 < s < s9 and s > s3 it follows that s; < s < s9.
Case 2a. V2+1<z< %0rz273x+1<0.

We will prove that s; < s3 or in an equivalent form:

22 + 10z — 1 —2\/z (x — 2)> < (22 4+1)® or — (2 =3z +1) < Ve(z—2)>° (4)

After squaring and performing some calculation the inequality (4) may be written as

(a:f (\[271)> (xf (\/§+1)) >0
inequality which is true.

We will prove that s3 < s or in an equivalent form:

Qr+1)72 <2 +100—1-2y/z(z—2)° or 22 —3z+1<\/z(z—1)° (5)

The inequality (5) is true as #? — 3z + 1 < 0. It results that s; < s3 < s5. But as s1 < s < sp and s > s3
it follows that s3 < s < s9.

Case 2.b. = > 3+T\/g orz? —3z+1>0.

We will prove that

sy <sgor — (2 —3x+1) < z(z—2)>°

inequality which is true.
We will prove that

s3<sgora’—3x+1<y/z(x—2)°

o= (V2=1)] [o= (va+1)] >0

It results that s; < s3 < s9. But as 517 < s < s9 and s > s3 it follows that s3 < s < s9.
It results in the cases 2a and 2b that s3 < s < sy which is equivalent with the inequality from the
statement.

or in an equivalent form



Lemma 4. In any triangle ABC is true the equalities:
1) Z s—a __ s24+r2—8Rr
. a 4Rr
2). 3 (s—a)(s=b) _ 2R—r
: ab 2R
Proof.

Zs—a_szbc—3abc_8(82+7“2+4Rr)—12Rr s?+r%—8Rr
a abc B abc 4Ry

_Z(s—a)(s—b) B s> (3 a) —2s (s> +r? +4Rr) + 12Rrs _2R-—r
N ab B abc 2R

Theorem 4. (A refinement of Radulescu - Maftei Theorem). In any triangle ABC' is true the following
inequality:

b+c—a 2R — 2v/R? — 2Rr — r? 2R+ 2V R? — 2Rr — r? r
> > + /=
a R+r+VR?—2Rr —r? R+r—+R?—2Rr — 12 R

if £>+v241o0r

Z\/b+c—a>\/R—r—d+2\/R+d
a - r R
if2<f<v241.

Proof. We denote t =~ 4/*=%. By squaring we obtain

tQZZs;a+2\/Z(S—52(S—b)+2\/(s—a)(s—b)(s—c)

abc
From Lemma 4, 1) and 2) it follows that:
2
t2_52+r2—8Rr 4 2R—T+2 Ty
4Rr 2R 4R
We consider the function f : (0, +00) = R

2 2 24 .2 2
_ 4 S +r"—=8Rr , [T s*+r°—8Rr\~ 4R —2r
)= omr W8 4R“+< ARr R

We have f (t) = 0. We will prove that

s+ 12— 8Rr 2< 4R — 2r
4Rr R

or in an equivalent form:

s < 8Rr —r? +4+/Rr2 (4R — 2r)

But as s2 < s%. It will be sufficient to prove that

53 = 2R? + 10Rr — 12 — 24/ R (R — 2r)* < 8Rr — r® + 4\/Rr? (4R — 2r) (6)

We denote z = %. The inequality (6) may be written as:

202 410z — 1 —2\/z (z — 2)° < 8z — 1+ 4\/z (4z — 2)

or

2?4z <y z(x—2)"+2yx 4z —2) (7)



After squaring the inequality (7) we will obtain:

x4+2z3—|—z2<x(:c3—6x2—|—12x—8)+16x2—8x+4x\/(x—2)3(4x—2)

or
8z — 2722 4 162 < 4:E\/(x —2)° (42— 2)
or
812 — 27z + 16 < 4+/(23 — 622 + 122 — 8) (4z — 2) (8)
If

827 — 27z 4+ 16 <0
the inequality (8) is true. For 822 — 27z + 16 > 0 we will square (8) and we will obtain:

64zt + 72922 + 256 — 43223 + 25622 — 864z < 642t — 4162° + 96022 — 8962 + 256

or

1623 — 252% — 322 > 0 or 162% — 252 — 32 > 0
But 82% — 27z + 16 > 0. It results that ¢ > 2TEL2LT > 2502073 op 1622 — 27 — 32 > 0.
2
We denote ap = SF°—8Rr o — 8/ 2, ao = 20 — (32+22_8R’“> . The equation f (u) = 0 may be

2Rr - R Rr
written as: u?* — asu® — aju — ag = 0 with ag,a;,a9 > 0or 1 — % -4 — 5 =0.But g:(0,+00) = R,
g(u)=1- 9 — %4 — 84 is an increasing function. It results that ¢ is the only positive root of equation

/() =0,
It result that if exists a unique continue function u : [s1, s2] — R such that f (u(s)) =0, (V) s € [s1, 2] .
From implicite Theorem it follows that u is derivable on interval (s1, s2),u : [s1,82] — R which verify

the condition:
2 2 2
9 sS4 - 8Rr\~ 2R —r r
(20 - ) =4 (BT 4y fpu ) e 0

After we derivate the equality (9) we will obtain:

(u2 (5) — W) (u (s)u' (s) — ﬁ) = %u’ (s),(¥)s € [s1, 2]

or in an equivalent form:

<u3(8)—52+7’28R7’u(s)— ;)UI(S)ZL};%(UQ(S)_*MSRT>

4Ry 4Rr
or
2,2 2, ,2
3,0 S +r°—8Rr N S (o, s +r°—8Rr
(v 6 e - 5 ) w0 = g (#0 - T ) s e v
From:
5 s—a [(s—a)(s—b) _ s>+r?—8Rr f/(s—a)(s—b)(s—c)
= > =
w(s) Z a +2Z ab - 4Rr 0 abc
s?2 4+ 12 —8Rr ST
_T—FG @,(V)se[sl,sﬂ

it results that:



() = TS ) - [ =) (w0 - S 2 \/TR i ol
—\/Z=(3¢6—1)\/§>o, (V) s € [51, 53]

and u? (s) — % >0, (V) s € [s1, 2] . It results that u is an increasing function on interval [s1, so] .

From Theorem 3 it follows that s; < s, for 2 < g < V2 4 1 which implies that v (s1) < u (s).
Replacing the sides a1, b1, c; of the A1 B1C; triangle from Theorem 2 we will obtain:

Z\/b+c—a2\/R—r—d+2 |R+d f2<§<\f+1
a r "R

From Theorem 3 it follows that s3 < s if £ > /2 + 1 which implies that u (s3) < u (s)
By replacing the sides ag, b, cs from Lemma 3 it follows that:

+ + if —>+2
R+r++vR?>—2Rr —r? R+7r—+R?—2Rr —r? R r -

Lemma 5. In any triangle ABC is true the following inequality:

2R — 2V R? — 2Rr — 12 2R+ 2V R? — 2Rr — 12
+ +
R+7r+VR2—2Rr —r? R+r—+R?—2Rr —r?

Proof. We denote ds = Va2 — 2x — 1. By squaring the inequality (10) we will obtain:

S /b+c—a>\/2R2—2\/R2—2Rr—r2 2R+2/RP 3R —° [T R o
a

>31f5>f+1 (10)

3 - —

\/ (22 — 2do) (2 + 2ds) (212d2)(x+1d2)+(2x+2d2)(x+1+d2)>< 1 )2

(x4+14do)(x+1—ds) (x4+14do)(x+1—ds) NZ3
or
2\/ 4(x2 —224+2x+1)
2 4+2x+1—224+22+1
+2x2+2x—2xd2—2xd2—2d2+23§2—4x—2+2x2+2x+2xd2+2xd2—|—2d2+2x2—495—2>
224+2x+1—224+20+1 -
1 6
>94+ - — —
20+ - =
or
8z —dx — 4 1 6
—_— +2V22>94+ - — —
4 42 T2z +sc NG
or
1 6
20 —24+2V/2>9+ — — —
T —2+2v2> T
or

20 — 114 22 >

&\'—‘

aE



or
2z2+(2f2—11)z21—6\/5
or
22% 4 (2\/5—11)x+6\/5—120
We consider the function f : [\/5 +1, +oo) — R
fle) =242+ (2\/5—11)x+6\/:2—1

with the derivate

3 3
(@) = 4z +2v2 — 11 —:4(— 2—1) 6vV2—7+-— >0
f(z) =4 +2V2 + 7 -2 +6V2 -7+ Nk
It results that f is an increasing function on interval [\/5 + 1, —i—oo) which implies that

f@) > f(V2+1).
After performing some calculation we obtain f (\/i + 1) > 0.
Lemma 6. In any triangle ABC is true the following inequality:

\/er+2\/R+dz3, ifQSESS
T R T

Proof. We denote £ = z,d, = 7”2(1:727”) = \/x (z — 2). The inequality (11) may be written as:

\/q:f1fdx+2\/x+dx >3
X

By squaring we will obtain:

Az + Ad,
e g 1—d, - 6T —1—d,
X

or
6\/x717dz287dm+x7w
T
or
dx — xd, + 22 — 4d,
6v/xr—1—d, >
xZ x = -
or
(z+4) (z —do)
6V —1—d, > 2
v - x
or
362 (x—1—dy) > (2*+82+16)2(x —dy — 1)z
or

20 (x—dy — 1) (18z — 2 =8z —16) >0 andasz —d, — 1 > 0

It will be sufficient to prove that:

22 =10z +16<0or (r —2)(x—8)<0orxz <8

(11)

Theorem 5. (The inequality Radulescu-Maftei) In any acute triangle is true the following inequality:



\/b+c—a+\/c+a—b+\/a+b—023
a b c

Proof. It results from Theorem 4, Lemma 5 and 6.
Theorem 6. In any triangle ABC with 2 < % < 8 is true the following inequality:

\/b+ca+\/c+ab+\/a+b023
a b c

Proof. According with the proof of Theorem 4 it follows that w : [s1, so] — R is an increasing function.
But s; < s. It results that u (s) > u(s1) or

Z\/b+c—a2\/R—r—d+2\/R+d23
a r R
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