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Abstract

For an arbitrary positive real number r > 0, let U(r) = {z € C:
|z| < r} denote the disk centered in 0 and of radius r. Let A be the
class of analytic functions defined in the unit disk U = U(1) = {z €
C : |z| < 1} and having the property f(0) = f/(0) —1 = 0. We say
that a function f € A is starlike if f is univalent, and f(U) is a star-
like domain with respect to 0, and a function f € A is convex if f is
univalent and f(U) is a convex domain in C. Analytic descriptions of
these properties are as follows

/
feAis starlike if and only if m(zf (Z)) >0, zeU,

f(z)
and
"
f e Ais convex if and only if ?R(l + Zf, (Z)) >0, zeU.
f'(2)
If %(zf/(z)) >a, z€Uor ER(l + Zf”(z)) >, z € U, we say that
f(2) ’ 1'(2) ’ ’

f is starlike of order a and convex of order « respectively. We define
by the equalities

r}(a)zsup{re(o,oo): 8%(2 )>a, zeU(O,r)}

and
Zf”(z)

r = 0, : §R<1

rf(a) sup {T € (0,00) + )
the radius of starlikeness and the radius of convexity of order a re-
spectively, where a € [0,1), is a given number and f € A, is a given
function.
It is obvious that the mapping defined by ([1] p.3)

u(z) = F(lz) o ] (14 2)e

n=1

) >a, z€ U(O,T)},




belongs to A. In [2] the authors determined the radius of starlikeness
of u. We are going to generalize the result regarding the starlikeness
and to determine the radius of convexity of the mapping w.
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