
Lecture #8
MOM - Message Oriented Middleware

Spring 2024

Message Oriented Middleware

• Message-oriented middleware (MOM) is a
software platform that facilitates the
exchange of messages between
applications.

Message Oriented Middleware

• Message-oriented middleware (MOM) is a
software platform that facilitates the
exchange of messages between
applications.

• MOM provides a number of benefits,
including:

• Loose coupling.

Message Oriented Middleware

• Message-oriented middleware (MOM) is a
software platform that facilitates the
exchange of messages between
applications.

• MOM provides a number of benefits,
including:

• Loose coupling.

• Scalability.

Message Oriented Middleware

• Message-oriented middleware (MOM) is a
software platform that facilitates the
exchange of messages between
applications.

• MOM provides a number of benefits,
including:

• Loose coupling.

• Scalability.

• Reliability.

Fundamental Concepts

• A message is a unit of data that is
exchanged between applications.

• A message broker is a software component
that routes messages between
applications.

• A queue is a temporary storage location for
messages.

• A topic is a logical grouping of messages.

Fundamental Concepts

• A message is a unit of data that is
exchanged between applications.

• A message broker is a software
component that routes messages
between applications.

• A queue is a temporary storage location for
messages.

• A topic is a logical grouping of messages.

Fundamental Concepts

• A message is a unit of data that is
exchanged between applications.

• A message broker is a software component
that routes messages between
applications.

• A queue is a temporary storage location
for messages.

• A topic is a logical grouping of messages.

Fundamental Concepts

• A message is a unit of data that is
exchanged between applications.

• A message broker is a software component
that routes messages between
applications.

• A queue is a temporary storage location for
messages.

• A topic is a logical grouping of
messages.

Message

• Messages are a unit of data that can be
exchanged between applications.

• Messages can contain any type of data,
such as text, binary data, or XML.

// Create a message.
Message message = new Message();

// Set the message content.
message.setContent("This is a message.");

// Send the message to the MOM.
mom.send(message);

Broker
• Message broker is a software component that

routes messages between applications.

• Message brokers are used to decouple
applications from each other, making them more
loosely coupled and easier to maintain.

• Message brokers can also provide a number of
other features, such as:

• Message transformation.

• Message logging.

• Message security.

• Message monitoring.

// Create a message listener.
MessageListener listener = new MessageListener() {

 @Override
 public void onMessage(Message message) {
 // Do something with the message.
 }
};

// Register the message listener with the message broker.
messageBroker.registerMessageListener(listener);

Channels

• A channel is a logical connection between
two applications.

• Channels can be used to send and receive
messages.

• Channels can be either point-to-point or
publish-subscribe.

Queue

• A queue is a temporary storage location for
messages.

• Messages are stored in the queue in the
order in which they are received.

• Messages are processed in the order in
which they are stored in the queue.

Topic

• A topic is a logical grouping of messages.

• Messages are published to a topic.

• Consumers subscribe to a topic to receive
messages.

Topic

• A topic is a logical grouping of messages.

• Messages are published to a topic.

• Consumers subscribe to a topic to receive
messages.

// Create a consumer.
Consumer consumer = new Consumer();

// Subscribe the consumer to the topic.
consumer.subscribe(topic);

// Receive messages from the topic.
while (true) {
 // Get the next message from the topic.
 Message message = consumer.receive();

 // Do something with the message.
 // ...
}

Types of MOM

• There are two main types of MOM:

• Point-to-point MOM: This type of MOM is
designed for applications that need to
communicate directly with each other.

• Publish-subscribe MOM: This type of MOM
is designed for applications that need to
publish messages to a central location and
have other applications subscribe to those
messages.

Pipelines

• A pipeline is a sequence of processing
steps that are applied to a message.

• Pipelines can be used to transform, filter,
and route messages.

• Pipelines can be used to implement
complex business logic.

Pipeline Components

• A pipeline consists of a sequence of pipeline
components.

• A pipeline component is a software component
that performs a specific processing step.

• Common pipeline components include:

• Filters

• Aggregators

• Routers

• Transformers

Example
// Create a pipeline
Pipeline pipeline = new Pipeline();

// Add a filter to the pipeline
Filter filter = new Filter();
filter.setCondition("message.body == 'Hello, World!'");
pipeline.add(filter);

// Add an aggregator to the pipeline
Aggregator aggregator = new Aggregator();
aggregator.setOperation("sum");
pipeline.add(aggregator);

// Add a router to the pipeline
Router router = new Router();
router.addRoute("message.destination == 'queue1'");
router.addRoute("message.destination == 'queue2'");
pipeline.add(router);

// Add a transformer to the pipeline
Transformer transformer = new Transformer();
transformer.setOperation("uppercase");
pipeline.add(transformer);

Pipeline pipeline = new Pipeline();

// Add a filter to the pipeline
Filter filter = new Filter();
filter.setCondition("message.body == 'Hello, World!'");
pipeline.add(filter);

// Add an aggregator to the pipeline
Aggregator aggregator = new Aggregator();
aggregator.setOperation("sum");
pipeline.add(aggregator);

// Add a router to the pipeline
Router router = new Router();
router.addRoute("message.destination == 'queue1'");
router.addRoute("message.destination == 'queue2'");
pipeline.add(router);

// Add a transformer to the pipeline
Transformer transformer = new Transformer();
transformer.setOperation("uppercase");
pipeline.add(transformer);

// Send a message through the pipeline
Message message = new Message("Hello, World!");
pipeline.send(message);

Routers

• A router is a software component that
routes messages to different destinations.

• Routers can be used to implement load
balancing, failover, and other routing
strategies.

• Routers can be either static or dynamic.

Static Routers

• A static router is a router that routes
messages to a fixed set of destinations.

• Static routers are easy to configure and
manage.

• Static routers are not as flexible as
dynamic routers.

Dynamic Routers

• A dynamic router is a router that routes
messages to different destinations based
on their properties.

• Dynamic routers are more flexible than
static routers.

• Dynamic routers can be more complex to
configure and manage.

Translators

• A translator is a software component that
converts messages from one format to
another.

• Translators can be used to integrate
applications that use different messaging
formats.

• Translators can be either static or dynamic.

Translators

// Create a translator
Translator translator = new Translator();

// Add a translation
translator.addTranslation("xml", "json");

// Add another translation
translator.addTranslation("json", “text");

// Translate a message
Message message = new Message("Hello, World!");
Message translatedMessage = translator.translate(message);

Endpoints

• An endpoint is a software component that
sends or receives messages.

• Endpoints can be either producers or
consumers.

• Endpoints can be either synchronous or
asynchronous.

Producer Endpoints

• A producer endpoint is an endpoint that
sends messages.

• Producer endpoints can be either point-to-
point or publish-subscribe.

• Producer endpoints can be either
synchronous or asynchronous.

Consumer Endpoints

• A consumer endpoint is an endpoint that
receives messages.

• Consumer endpoints can be either point-
to-point or publish-subscribe.

• Consumer endpoints can be either
synchronous or asynchronous.

Message Transactions

• A message transaction is a unit of work
that is performed on a message.

• Message transactions can be used to
ensure that messages are processed
correctly.

• Message transactions can be used to roll
back changes if a message fails to
process.

Types of Message Transactions

• There are two types of message
transactions:

• Local transactions: Local transactions are
performed within a single message
broker.

• Distributed transactions: Distributed
transactions are performed across
multiple message brokers.

Transaction

// Start a transaction
Transaction transaction = messageBroker.startTransaction();

// Process the message
messageProcessor.processMessage(message);

// Commit the transaction
transaction.commit();

Message Acknowledgments

• A message acknowledgment is a
notification to the sender that the message
has been received and processed.

• Message acknowledgments can be used
to improve the reliability of message
delivery.

• Message acknowledgments can be used
to track the status of message delivery.

Types of Message Acknowledgments

• There are two types of message
acknowledgments:

• Auto-acknowledgements: Auto-
acknowledgements are sent
automatically when a message is
received.

• Manual acknowledgments: Manual
acknowledgments must be sent manually
by the recipient.

// Send a message
Message message = new Message("Hello, World!");
messageBroker.send(message);

// Receive a message
Message receivedMessage = messageBroker.receive();

// Acknowledge the message
messageBroker.acknowledge(receivedMessage);

Message Correlation

• Message correlation is the process of
associating messages with each other.

• Message correlation is used to ensure that
messages are processed in the correct
order.

• Message correlation is used to group
messages together for processing.

Types of Message Correlation
• There are two types of message correlation:

• Implicit correlation: Implicit correlation is the
default type of message correlation. In
implicit correlation, messages are correlated
based on their properties. For example,
messages can be correlated based on their
destination, their sender, or their content.

• Explicit correlation: Explicit correlation is
used when implicit correlation is not
sufficient. In explicit correlation, messages
are correlated using a correlation ID. The
correlation ID is a unique identifier that is
assigned to each message.

// Send a message
Message message = new Message("Hello, World!");
message.setCorrelationId("1234567890");
messageBroker.send(message);

// Receive a message
Message receivedMessage = messageBroker.receive();

// Check the correlation ID
if (receivedMessage.getCorrelationId().equals("1234567890")) {
 // Process the message
} else {
 // Do something else
}

The Java Message Service (JMS)

• A messaging standard that allows
applications to send and receive
messages.

• It provides a way for applications to
communicate with each other without
having to know about each other's
existence.

• It is a loosely coupled messaging system.

JMS Components

• JMS Clients: Applications that send and
receive messages.

• JMS Providers: Implement the JMS API
and provide the infrastructure for sending
and receiving messages.

• JMS Destinations: Containers for
messages.

• JMS Messages: Data that is sent and
received by JMS clients.

JMS API

• The JMS API provides a set of interfaces
and classes that applications use to send
and receive messages.

• The JMS API is divided into two main
parts:

• The core API: Provides the basic
functionality for sending and receiving
messages.

• The advanced API: Provides additional
functionality for more complex
messaging scenarios.

Sending Messages with JMS

• To send a message with JMS, you will
need to create a JMS producer and specify
the destination of the message.

• You can specify the destination of the
message as a queue or topic.

• Once you have specified the destination,
you can send the message.

// Create a JMS producer
JMSProducer producer = new JMSProducer(connectionFactory);

// Specify the destination of the message
Destination destination = new Queue("myQueue");

// Create a message
TextMessage message = new TextMessage();
message.setText("Hello, world!");

// Send the message
producer.send(message, destination);

Receiving Messages with JMS

• To receive a message with JMS, you will
need to create a JMS consumer and
specify the destination of the message.

• You can specify the destination of the
message as a queue or topic.

• Once you have specified the destination,
you can receive the message.

// Create a connection.
Connection connection = connectionFactory.createConnection();
// Create a session.
Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

// Create a consumer.
Queue destination = new Queue("myQueue");
MessageConsumer consumer = session.createConsumer(destination);

// Start receiving messages.
consumer.setMessageListener(new MyConsumer());

// Start the connection.
connection.start();

Microsoft Message Queuing (MSMQ)

• A messaging system that enables
applications to send and receive
messages.

• A scalable and reliable messaging platform
that can be used to support a variety of
applications.

• A great choice for applications that need to
send and receive messages.

Payment myPayment;
myPayment.Payor = textBox1.Text;
myPayment.Payee = textBox2.Text;
myPayment.Amount = Convert.ToInt32(textBox3.Text);
myPayment.DueDate = textBox4.Text;

System.Messaging.Message msg = new
System.Messaging.Message();
msg.Body=myPayment;

MessageQueue msgQ =new MessageQueue(".\\Private$\\billpay");
msgQ.Send(msg);

Features of MOM

• MOM platforms typically offer a number of
features, including:

• Message queuing.

Features of MOM

• MOM platforms typically offer a number of
features, including:

• Message queuing.

• Message routing.

Features of MOM

• MOM platforms typically offer a number of
features, including:

• Message queuing.

• Message routing.

• Message transformation.

Features of MOM

• MOM platforms typically offer a number of
features, including:

• Message queuing.

• Message routing.

• Message transformation.

• Message logging.

Benefits of MOM

• MOM provides a number of benefits,
including:

• Loose coupling.

Benefits of MOM

• MOM provides a number of benefits,
including:

• Loose coupling.

• Scalability.

Benefits of MOM

• MOM provides a number of benefits,
including:

• Loose coupling.

• Scalability.

• Reliability.

Benefits of MOM

• MOM provides a number of benefits,
including:

• Loose coupling.

• Scalability.

• Reliability.

• Improved performance.

Benefits of MOM

• MOM provides a number of benefits,
including:

• Loose coupling.

• Scalability.

• Reliability.

• Improved performance.

• Reduced costs.

Uses of MOM

• MOM can be used in a variety of
applications, including:

• Enterprise application integration (EAI).

Uses of MOM

• MOM can be used in a variety of
applications, including:

• Enterprise application integration (EAI).

• Business-to-business (B2B) integration.

Uses of MOM

• MOM can be used in a variety of
applications, including:

• Enterprise application integration (EAI).

• Business-to-business (B2B) integration.

• Service-oriented architecture (SOA).

Uses of MOM

• MOM can be used in a variety of
applications, including:

• Enterprise application integration (EAI).

• Business-to-business (B2B) integration.

• Service-oriented architecture (SOA).

• Cloud computing.

Popular MOM Platforms

• Some of the most popular MOM platforms
include:

• IBM WebSphere Message Broker

• Microsoft BizTalk Server

• Oracle Enterprise Service Bus

• Tibco ActiveEnterprise

• Red Hat JBoss Enterprise Service Bus

Choosing a MOM Platform

• When choosing a MOM platform, you
should consider the following factors:

• Your specific integration needs.

• The size and complexity of your
organization.

• Your budget.

• Your technical expertise.

IBM WebSphere Message Broker
• IBM WebSphere Message Broker is a powerful

MOM platform that can be used to integrate a
wide variety of applications. It is a good choice
for organizations that need a scalable and
reliable platform for integration.

• Some of the key features of IBM WebSphere
Message Broker include:

• A powerful message broker engine.

• A wide range of integration capabilities.

• A scalable and reliable architecture.

• A comprehensive set of security features.

Microsoft BizTalk Server
• Microsoft BizTalk Server is a MOM platform that is

designed to integrate applications developed using
Microsoft technologies. It is a good choice for
organizations that are already using Microsoft
technologies.

• Some of the key features of Microsoft BizTalk Server
include:

• A powerful message broker engine.

• A wide range of integration capabilities.

• A scalable and reliable architecture.

• A comprehensive set of security features.

• Integration with other Microsoft products.

Oracle Enterprise Service Bus
• Oracle Enterprise Service Bus is a MOM platform that

is designed to integrate applications developed using
Oracle technologies. It is a good choice for
organizations that are already using Oracle
technologies.

• Some of the key features of Oracle Enterprise Service
Bus include:

• A powerful message broker engine.

• A wide range of integration capabilities.

• A scalable and reliable architecture.

• A comprehensive set of security features.

• Integration with other Oracle products.

Tibco ActiveEnterprise
• Tibco (The Information Bus Company)

ActiveEnterprise is a MOM platform that is designed
to integrate applications developed using a variety of
technologies. It is a good choice for organizations that
need a flexible and scalable platform for integration.

• Some of the key features of Tibco ActiveEnterprise
include:

• A powerful message broker engine.

• A wide range of integration capabilities.

• A scalable and reliable architecture.

• A comprehensive set of security features.

• Integration with a wide range of technologies.

Red Hat JBoss Enterprise Service Bus
• Red Hat JBoss Enterprise Service Bus is a MOM

platform that is designed to integrate applications
developed using open source technologies. It is a good
choice for organizations that are looking for a cost-
effective platform for integration.

• Some of the key features of Red Hat JBoss Enterprise
Service Bus include:

• A powerful message broker engine.

• A wide range of integration capabilities.

• A scalable and reliable architecture.

• A comprehensive set of security features.

• Integration with a wide range of open source
technologies.

Comparison

Lecture outcomes

• MOM

• Fundamentals

• Options

• JMS

• MSMQ

