Lecture #8

MOM - Message Oriented Middleware
Spring 2024

e Message-oriented middleware (MOM) is a
software platform that facilitates the
exchange of messages between
applications.

Message Oriented Middleware

RPC System MOM System RPC System

- i h h i -
End End
User User

Discount Airline PanWorld
Tickets Application Airlines

e Message-oriented middleware (MOM) is a
software platform that facilitates the
exchange of messages between
applications.

e MOM provides a number of benefits,
including:

e | oose coupling.

Message Oriented Middleware

RPC System MOM System RPC System

- i h h i -
End End
User User

Discount Airline PanWorld
Tickets Application Airlines

e Message-oriented middleware (MOM) is a
software platform that facilitates the
exchange of messages between
applications.

e MOM provides a number of benefits,
including:

e | oose coupling.

e Scalability.

Message Oriented Middleware

RPC System MOM System RPC System

- i h h i -
End End
User User

Discount Airline PanWorld
Tickets Application Airlines

e Message-oriented middleware (MOM) is a
software platform that facilitates the
exchange of messages between
applications.

e MOM provides a number of benefits,
including:

e | oose coupling.
e Scalability.

e Reliablility.

Message Oriented Middleware

RPC System MOM System RPC System

- i h h i -
End End
User User

Discount Airline PanWorld
Tickets Application Airlines

Fundamental Concepts

A message Is a unit of data that is ® -

exchanged between applications.
MOM

A message broker is a software component

that routes messages between
applications.

A queue Is a temporary storage location for

MOM architecture provides synchronous
messages. ProvICies =
asynchronous communication communication

between systems.

A topic is a logical grouping of messages.

Fundamental Concepts

A message Is a unit of data that is @ -
exchanged between applications.
MOM
A message broker is a software
component that routes messages
between applications. O%
A queue Is a temporary storage location for
messages. MOM architecture provides synchronous

asynchronous communication communication
between systems.

A topic is a logical grouping of messages.

Fundamental Concepts

A message is a unit of data that is ® -

exchanged between applications.
MOM

A message broker is a software component

that routes messages between
applications. 0¥0

A gqueue is a temporary storage location
for messages MOM architecture provides synchronous

asynchronous communication communication
between systems.

A topic is a logical grouping of messages.

Fundamental Concepts

A message Is a unit of data that is
exchanged between applications. © -

MOM

A message broker is a software component
that routes messages between

applications. %
A queue Is a temporary storage location for

messages.

MOM architecture provides synchronous
asynchronous communication communication
between systems.

A topic is a logical grouping of
messages.

Message

// Create a message.

e Messages are a unit of data that can be Message message = new Message();

exchanged between applications. // Set the message content.

| message.setContent("This 1s a message.");
 Messages can contain any type of data,

such as text, binary data, or XML. // Send the message to the MOM.
mom.send(message);

Broker

e Message broker is a software component that
routes messages between applications.

* Message brokers are used to decouple // Create a message listener.
applications from each other, making them more MessageListener listener = new MessageListener() {
loosely coupled and easier to maintain.
_ @Qverride
* Message brokers can also provide a number of public void onMessage(Message message) {
other features, such as: // Do something with the message.
* Message transformation. }.}

* Message logging.

// Register the message listener with the message broker.

. messageBroker.registerMessagel istener(listener):
* Message security. g g g ();

* Message monitoring.

Channels

A channel is a logical connection between
two applications.

e Channels can be used to send and receive
messages.

Sender Recelver

e Channels can be either point-to-point or Agolication Syster Application
publish-subscribe.

Queue

e A queue Is a temporary storage location for
messages.

e Messages are stored in the queue in the
order in which they are received.

e Messages are processed in the order In
which they are stored in the queue.

Topic

Broker

e A topic is a logical grouping of messages.

* Messages are published to a topic. -

e Consumers subscribe to a topic to receive
messages.

Broker

Topic

e A topic is a logical grouping of messages.

// Create a consumetr.

* Messages are published to a topic. Consumer consumer = new Consumer();
e Consumers subscribe to a topic to receive /I ' Subscribe the consumer to the topic.
messages. consumer.subscribe(topic);

// Recelve messages from the topic.
while (true) {
// Get the next message from the topic.
Message message = consumer.receive();

// Do something with the message.
/] ...

b

Types of MOM

e There are two main types of MOM:

® POlnt—tO—pO|nt MOM Th|S type Of MOM |S Publish-and-subscribe (1-Many)

designed for applications that need to

communicate directly with each other.

* Publish-subscribe MOM: This type of MOM rointtopoint (-1
Is desighed for applications that need to
publish messages to a central location and > messaging domais
have other applications subscribe to those
messages.

Pipelines

Receive Port

e A pipeline is a sequence of processing Receive Location

steps that are applied to a message. c._) 58

* Pipelines can be used to transform, filter,

and route messages. Receive Location
e Pipelines can be used to implement i
. . | Decocde Disassemble Validate Resolve
complex business logic. Parity

Receive Pipeline

Pipeline Components

e A pipeline consists of a sequence of pipeline
components.

Receive Port

e A pipeline component is a software component Receive Location

g o= .
that performs a specific processing step. | :) %

e Common pipeline components include:

Receive Location

e Filters
' Receive
Adapter
° Aggregators | : Decode Disassemble Validate Resolve
Parity
® ROUterS Receive Pipeline

e Transformers

Example

// Create a pipeline
Pipeline pipeline = new Pipeline();

// Add a filter to the pipeline

Filter filter = new Filter();
filter.setCondition("message.body == 'Hello, World!"");
pipeline.add(filter);

// Add an aggregator to the pipeline
Aggregator aggregator = new Aggregator();
aggregator.setOperation("sum");
pipeline.add(aggregator);

// Add a router to the pipeline

Router router = new Router();
router.addRoute("message.destination == 'queuel'");
router.addRoute("message .destination == 'queue?'");
pipeline.add(router);

// Add a transformer to the pipeline
Transformer transformer = new Transtormer();

transtormer.setOperation("uppercase");
nineline add(tran<former):

L lpulliide pipulidlc =— HUVY L 1IPULLIICA),

// Add a filter to the pipeline

Filter filter = new Filter();
filter.setCondition("message.body == 'Hello, World!"");
pipeline.add(filter);

// Add an aggregator to the pipeline
Aggregator aggregator = new Aggregator();
aggregator.setOperation("sum");
pipeline.add(aggregator);

// Add a router to the pipeline

Router router = new Router();
router.addRoute("message .destination == 'queuel'");
router.addRoute("message .destination == 'queue?'");
pipeline.add(router);

// Add a transformer to the pipeline
Transformer transformer = new Transformer();
transformer.setOperation("uppercase");
pipeline.add(transformer);

// Send a message through the pipeline
Message message = new Message("Hello, World!");
pipeline.send(message);

Routers

e A router is a software component that Dynamic Router Outp“tChW'
routes messages to different destinations. | MessogeRouler |
Input Channel Qutput Channel
 Routers can be used to implement load —]

' ' ' Output Channel
balancing, failover, and other routing utput Channe

strategies.

i Dynamic Rule Base —

e Routers can be either static or dynamic. ' Control Channel

Static Routers

Alibaba Cloud Message

e A static router is a router that routes Queue for RabbithQ
messages to a fixed set of destinations.

e Static routers are easy to configure and Direct
manage.

Exchange

e Static routers are not as flexible as
dynamic routers.

Dynamic Routers

A dynamic router is a router that routes

Dynamic Router Output Channel
messages to different destinations based - —
. . : Message Router
on thelr prOpertleS- Input Channel Qutput Channel
e Dynamic routers are more flexible than | output channe

static routers. m T

e Dynamic routers can be more complex to DemcfueBee QO
| | Control Channel
configure and manage. ontrol Channe

Translators

e A translator is a software component that

converts messages from one format to
another.

 Translators can be used to integrate

applications that use different messaging
formats.

Incoming Message Translated Message

 Translators can be either static or dynamic.

Translators

// Create a translator
Translator translator = new Translator();

// Add a translation
translator.addTranslation("xml", "json");

// Add another translation
translator.addTranslation("json", “text");

// Translate a message
Message message = new Message("Hello, World!");
Message translatedMessage = translator.translate(message);

Endpoints

e An endpoint is a software component that
sends or receives messages.

 Endpoints can be either producers or
consumers. Endpoint Endpoint

Sendetr Hecever

Aonplication Annlhication

 Endpoints can be either synchronous or
asynchronous.

Producer Endpoints

Direct Exchange in RabbitMQ

e A producer endpoint is an endpoint that

sends messages. - RoutingKeys 4 Queue (MobileQ) Consumer
Producer Deut
personaivevce

e Producer endpoints can be either point-to-

point or publish-subscribe.

® Producer endeintS Can be either Producer sends message homeAppliance

to Exchange

synchronous or asynchronous. o Quete (Light)

Exchanges with the
Routing Keys

/}/&&;&éfa corme

Consumer Endpoints

Direct Exchange in RabbitMQ

e A consumer endpoint is an endpoint that

receives messages. Roting Keys
personalDevjce

e Consumer endpoints can be either point-

to-point or publish-subscribe.

o COnsumer endeintS Can be either Producer sends message homeAwspliance

to Exchange

synchronous or asynchronous. Quete (Light)

Queues linked to
Exchanges with the
Routing Keys

/}/&&;&éfa corme

Message Transactions

A message transaction is a unit of work
that is performed on a message.

e Message transactions can be used to E> E> "

i3

ensure that messages are processed
correctly.

Transaction

e Message transactions can be used to roll
back changes if a message fails to
Process.

Types of Message Transactions

 There are two types of message
transactions:
e | ocal transactions: Local transactions are TEY Message Broker
performed within a single message

Enterprise Integrator

broker.

e Distributed transactions: Distributed
transactions are performed across
multiple message brokers.

Transaction

// Start a transaction
Transaction transaction = messageBroker.startTransaction();

// Process the message
messageProcessor.processMessage(message);

// Commit the transaction
transaction.commit();

Message Acknowledgments

e A message acknowledgment is a
notification to the sender that the message
has been received and processed.

* Message acknowledgments can be used
to improve the reliability of message
delivery.

* Message acknowledgments can be used
to track the status of message delivery.

Message Broker

Endpoint

3 Reopen
Guaranteed
Message Window

5 Remove
messages from
endpoint

1 Deliver messages

2 API acknowdedgment of
windowed Messages

4 Application acknowledgment
of messages

Receiving
Application

Types of Message Acknowledgments

e There are two types of message

acknowledgments: // Send a message
Message message = new Message("Hello, World!");
e Auto-acknowledgements: Auto- messageBroker.send(message);

acknowledgements are sent
automatically when a message is
received.

// Recelve a message
Message receivedMessage = messageBroker.recerve();

// Acknowledge the message
e Manual acknowledgments: Manual messageBroker.acknowledge(receivedMessage);

acknowledgments must be sent manually
by the recipient.

Message Correlation

e Message correlation is the process of
associating messages with each other.

e Message correlation is used to ensure that
messages are processed in the correct
order.

e Message correlation is used to group Requesto Replies
messages together for processing.

Types of Message Correlation

e There are two types of message correlation:
// Send a message

e Implicit correlation: Implicit correlation is the Message message = new Message("Hello, World!");
default type of message correlation. In message.setCorrelationld("1234567890");
implicit correlation, messages are correlated messageBroker.send(message);
based on their properties. For example,
messages can be correlated based on their
destination, their sender, or their content.

// Recelve a message
Message receivedMessage = messageBroker.receive();

// Check the correlation ID

 Explicit correlation: Explicit correlation is if (receivedMessage.getCorrelationld().equals("1234567890")) {
used when implicit correlation is not // Process the message
sufficient. In explicit correlation, messages) else {
are correlated using a correlation ID. The // Do something else
correlation ID is a unique identifier that is h

assigned to each message.

The Java Message Service (JMS)

e A messaging standard that allows
applications to send and receive
messages.

e |t provides a way for applications to
communicate with each other without
having to know about each other's
existence.

Java Message Service

e |t is aloosely coupled messaging system.

JMS Components

JMS Clients: Applications that send and
receive messages.

JMS Providers: Implement the JMS AP
and provide the infrastructure for sending
and receiving messages.

es . | Message
Consumer
iv
r

JMS Destinations: Containers for
messages.

JMS Messages: Data that is sent and
received by JMS clients.

JMS API

e The JMS API provides a set of interfaces

and classes that applications use to send
and receive messages.

« The JMS AP! is divided into two main
p art S: Creates

e The core API: Provides the basic

functionality for sending and receiving
messages. T

Destination

e The advanced API: Provides additional
functionality for more complex
messaging scenarios.

Sending Messages with JMS

// Create a JMS producer

* To send a message with JMS, you will JMSProducer producer = new JMSProducer(connectionFactory);

need to create a JMS producer and specify

the destination of the message. /| Specify the destination of the message
Destination destination = new Queue("myQueue");

e You can specify the destination of the

message as a queue or topic. // Create a message
TextMessage message = new TextMessage();

. S setText("Hello, world!");
e Once you have specified the destination, message.setlext("Hello, world!")

you can send the message. // Send the message

producer.send(message, destination);

Receiving Messages with JMS

// Create a connection.
Connection connection = connectionFactory.createConnection();

e To receive a message with JMS, you will // Create a session.
need to create a JMS consumer and Session session = connection.createSession(false,
specify the destination of the message. session. AUTO_ACKNOWLEDGE);

// Create a consumetr.

* You can specify the destination of the Queue destination = new Queue("myQueue"):

message as a queue or topic. MessageConsumer consumer = session.createConsumer(destination);
e Once you have specified the destination, // Start receiving messages.
you can receive the message. consumer.setMessageListener(new MyConsumer());

// Start the connection.
connection.start();

Microsoft Message Queuing (MSMQ)

Payment myPayment;

myPayment.Payor = textBox1.Text;

myPayment.Payee = textBox2.Text;
myPayment.Amount = Convert. Tolnt32(textBox3.Text);
myPayment.DueDate = textBox4.Text;

A messaging system that enables
applications to send and receive
messages.

e A scalable and reliable messaging platform
that can be used to support a variety of System.Messaging.Message msg = new
applications. System.Messaging.Message();

msg.Body=myPayment;

e A great choice for applications that need to

: MessageQueue msgQ =new MessageQueue(" \\Private$\\billpay");
send and receive messages. geQ gQ geQueue(pay")

msgQ.Send(msg);

Features of MOM

e MOM platforms typically offer a number of
features, including:

» Message queuing.

Features of MOM

e MOM platforms typically offer a number of oulOueue
features, including:

inQueue

» Message queuing.

e Message routing.

outQueue?2

Features of MOM

e MOM platforms typically offer a number of
features, including:

» Message queuing.

e Message routing.

Incoming Message Translated Message

e Message transformation.

Features of MOM

e MOM platforms typically offer a number of popteten
features, including:

; er.info .
message: "Savin ata",
ata: o
1 : Message Broker
X

Message
Generating

 Message routing. Looge
Log;ﬁlécgg?\?ice
* Message transformation.

{
"source": "My Cool App",
"ip: "10.1.241.1186",
; "time": "Fri Feb 28 07:25:25 UTC 2016", SMS
"type": "log_event",
® Messa e IO “l "body®: { Broadcaster
| | " eve u: " F u'

"message'": "Savin ata",
"data": {"name": "Bob", "status": "cool"

Benefits of MOM

e MOM provides a number of benefits,
including:

e | oose coupling.

Tight coupling: Loose coupling:
1. More Interdependency 1. Less Interdependency
2. More coordination 2. Less coordination
3. More information flow 3. Less information flow

Benefits of MOM

Messaging Messaging Messaging

Server 1 Server 2 Server 3

e MOM provides a number of benefits,
including:

* Loose coupling. sl ? |

e Scalability.

w— POP/IMAP

Benefits of MOM

e MOM provides a number of benefits,
including:

e | oose coupling.

e Scalability.

e Reliablility.

Benefits of MOM

e MOM provides a number of benefits,
including:

 Loose coupling.
e Scalability.

e Reliablility.

e |mproved performance.

Benefits of MOM

e MOM provides a number of benefits,
including:

e | oose coupling.
e Scalability.
e Reliablility.

e |mproved performance.

e Reduced costs.

Uses of MOM

e MOM can be used in a variety of
applications, including:

e Enterprise application integration (EAI).

E-commerce

R)\

Legacy System |E_A5" Enterprise

Internet Portals

Application o e
- <>
Integratlon 4%' Intelligence

Third Parties

CRM

Financial Systems

Uses of MOM

Business-to-

e MOM can be used in a variety of Business (B2B)
applications, including: S Lbé tli bej
| A form of transaction
e Enterprise application integration (EAI). D — N between businesses,
: such as one involving
e Business-to-business (B2B) integration. fore & a manufacturer and

wholesaler, or a
wholesaler and a retailer.

2 Investopedia

Uses of MOM

e MOM can be used in a variety of
applications, including:

e Enterprise application integration (EAI). e ;.

SERVICE ORIENTED
ARCHITECTURE (SOA)

' 4 A
e
PROCESS

e Business-to-business (B2B) integration.

e Service-oriented architecture (SOA).

Uses of MOM

e MOM can be used in a variety of
applications, including:

Cloud Computing

e Enterprise application integration (EAI).
e Business-to-business (B2B) integration.
e Service-oriented architecture (SOA).

e Cloud computing.

Software as a Service Platform as a Service Infrastructure as a
(SaaS) (PaaS) Service (laaS)

Popular MOM Platforms

e Some of the most popular MOM platforms
iInclude:

e |BM WebSphere Message Broker
e Microsoft BizTalk Server
e Oracle Enterprise Service Bus

e Tibco ActiveEnterprise

e Red Hat JBoss Enterprise Service Bus

Choosing a MOM Platform

e When choosing a MOM platform, you
should consider the following factors:

e Your specific integration needs. T

e The size and complexity of your
organization.

e Your budget.

e Your technical expertise.

IBM WebSphere Message Broker

e |BM WebSphere Message Broker is a powerful
MOM platform that can be used to integrate a
wide variety of applications. It is a good choice
for organizations that need a scalable and
reliable platform for integration.

e Some of the key features of IBM WebSphere
Message Broker include:

* A powerful message broker engine.
A wide range of integration capabillities.
* A scalable and reliable architecture.

e A comprehensive set of security features.

&

-

-
.

IBM WebSphere
Message Broker

Microsoft BizTalk Server

 Microsoft BizTalk Server is a MOM platform that is
designed to integrate applications developed using
Microsoft technologies. It is a good choice for
organizations that are already using Microsoft
technologies.

e Some of the key features of Microsoft BizTalk Server
iInclude:

* A powerful message broker engine.

Microsoft®

BlzTaIk Server

* A wide range of integration capabilities.

* A scalable and reliable architecture.
A comprehensive set of security features.

* |ntegration with other Microsoft products.

Oracle Enterprise Service Bus

* Oracle Enterprise Service Bus is a MOM platform that
IS designed to integrate applications developed using
Oracle technologies. It is a good choice for
organizations that are already using Oracle
technologies.

e Some of the key features of Oracle Enterprise Service
Bus include:

* A powerful message broker engine.

* A wide range of integration capabilities.

e A scalable and reliable architecture.

A comprehensive set of security features.

* |ntegration with other Oracle products.

Service
Clients

Application
Client

Application
Client

Application
Client

Application
Client

Application
Client

HTTP/SOAP

Oracle Service Bus

Service Messaging

Request / Response

Synch / Asynch
Split / Join

Publish / Subscribe

Enterprise
Services

Tibco ActiveEnterprise

* Tibco (The Information Bus Company)
ActiveEnterprise is a MOM platform that is designed
to integrate applications developed using a variety of
technologies. It is a good choice for organizations that
need a flexible and scalable platform for integration.

e Some of the key features of Tibco ActiveEnterprise
iInclude:

* A powerful message broker engine.

* A wide range of integration capabilities.

e A scalable and reliable architecture.

A comprehensive set of security features.

* |ntegration with a wide range of technologies.

Credit
Bureau

Generate Test
Message

Verify Result

Test Client Loan Broker

bank.loan.request

Red Hat JBoss Enterprise Service Bus

e Red Hat JBoss Enterprise Service Bus is a MOM
platform that is designed to integrate applications
developed using open source technologies. It is a good
choice for organizations that are looking for a cost-
effective platform for integration.

e Some of the key features of Red Hat JBoss Enterprise
Service Bus include:

e A powerful message broker engine.

e A wide range of integration capabilities.

e A scalable and reliable architecture.
A comprehensive set of security features.

* |ntegration with a wide range of open source
technologies.

Platform

IBM WebSphere
Message Broker

Microsoft BizTalk Server

Oracle Enterprise
Service Bus

Tibco ActiveEnterprise

Red Hat JBoss
Enterprise Service Bus

Comparison

Strengths

Powerful message broker engine, wide range of integration capabilities, scalable
and reliable architecture, comprehensive set of security features

Powerful message broker engine, wide range of integration capabilities, scalable
and reliable architecture, comprehensive set of security features, integration with
other Microsoft products

Powerful message broker engine, wide range of integration capabilities, scalable
and reliable architecture, comprehensive set of security features, integration with
other Oracle products

Flexible and scalable platform for integration, integration with a wide range of
technologies

Cost-effective platform for integration, integration with a wide range of open
source technologies

Weaknesses

Expensive, complex to use

Expensive, complex to use

Expensive, complex to use

Expensive, complex to use

Not as powerful as some of the other
platforms, not as scalable as some of the
other platforms

Lecture outcomes

e MOM

e Fundamentals

e Options

e JMS

e MSMQ

OUTCOME

@

