
Lecture #6
Security

Spring 2024

Introduction to Web Services Security

• Overview of web services and why
security is important

• Understanding the potential risks
and threats to web services

• Key concepts and terminology in
web services security

Web Services Standards and Protocols for Security

• Overview of key web services security
standards such as WS-Security and
SAML

• Understanding the role of SSL/TLS and
HTTPS in web services security

• Using OAuth 2.0 for secure
authentication and authorization in web
services

Web Services Security Threats and Attacks

• Common web services security threats such as SQL injection and
cross-site scripting (XSS)

• Understanding denial of service (DoS) attacks and distributed
denial of service (DDoS) attacks

• The impact of security breaches on web services and their users

Best Practices for Securing Web Services

• Secure coding practices for web services development

• Guidelines for securing web services communications

• Managing access control and authentication in web services

Authentication and Authorization in Web Services

• Understanding the difference between authentication and
authorization

• The role of identity providers (IdPs) and security tokens in web
services authentication

• Best practices for implementing role-based access control (RBAC)
in web services

Securing Web Services with HTTPS and SSL/TLS

• Understanding HTTPS and SSL/TLS protocols for secure
communications

• Configuring web services to use HTTPS and SSL/TLS

• Best practices for managing SSL/TLS certificates and keys

import ssl
import socket

Setează calea către certificatul SSL/TLS al serverului
cert_file = '/calea/pana/la/certificat.crt'

Crează un context SSL/TLS
context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)

Încarcă certificatul serverului în context
context.load_verify_locations(cert_file)

Creează un socket SSL/TLS
with socket.create_connection(('adresa_serverului', 443)) as sock:
 with context.wrap_socket(sock, server_hostname='adresa_serverului') as ssock:
 # Trimite date catre server
 ssock.sendall(b'GET / HTTP/1.1\r\nHost: adresa_serverului\r\n\r\n')
 # Primeste raspunsul de la server
 response = ssock.recv(4096)
 print(response.decode())

Encryption and Decryption in Web Services

• Understanding encryption and decryption in web services

• Common encryption algorithms used in web services

• Best practices for implementing encryption and decryption in web
services

from cryptography.fernet import Fernet

Generarea unei chei de criptare
key = Fernet.generate_key()
cipher_suite = Fernet(key)

Textul de criptat
plaintext = b"Date sensibile pe care dorim sa le criptam"

Criptarea textului
cipher_text = cipher_suite.encrypt(plaintext)

Afisarea textului criptat
print("Textul criptat:", cipher_text)

Descifrarea textului
decrypted_text = cipher_suite.decrypt(cipher_text)

Afisarea textului descifrat
print("Textul descifrat:", decrypted_text.decode())

Digital Signatures and Certificates in Web Services

• Understanding digital signatures and certificates in web services

• Common digital signature algorithms used in web services

• Best practices for implementing digital signatures in web services

from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography import x509
from cryptography.x509.oid import NameOID

Generarea unei perechi de chei RSA pentru semnătură digitală
private_key = rsa.generate_private_key(
 public_exponent=65537,
 key_size=2048
)

Extrage cheia publică
public_key = private_key.public_key()

Generare certificat X.509 folosind cheia publică
builder = x509.CertificateBuilder()
builder = builder.subject_name(x509.Name([
 x509.NameAttribute(NameOID.COMMON_NAME, u'www.example.com')
]))
builder = builder.issuer_name(x509.Name([
 x509.NameAttribute(NameOID.COMMON_NAME, u'www.example.com')
]))
builder = builder.not_valid_before(datetime.datetime.utcnow())
builder = builder.not_valid_after(datetime.datetime.utcnow() + datetime.timedelta(days=365))
builder = builder.serial_number(x509.random_serial_number())
builder = builder.public_key(public_key)

Generare certificat X.509 folosind cheia publică
builder = x509.CertificateBuilder()
builder = builder.subject_name(x509.Name([
 x509.NameAttribute(NameOID.COMMON_NAME, u'www.example.com')
]))
builder = builder.issuer_name(x509.Name([
 x509.NameAttribute(NameOID.COMMON_NAME, u'www.example.com')
]))
builder = builder.not_valid_before(datetime.datetime.utcnow())
builder = builder.not_valid_after(datetime.datetime.utcnow() + datetime.timedelta(days=365))
builder = builder.serial_number(x509.random_serial_number())
builder = builder.public_key(public_key)
builder = builder.add_extension(
 x509.SubjectAlternativeName([x509.DNSName(u"www.example.com")]),
 critical=False,
)

Semnează certificatul folosind cheia privată
certificate = builder.sign(private_key, hashes.SHA256())

Afiseaza certificatul
print("Certificat X.509:")
print(certificate)

Creează un mesaj pentru semnătură digitală
message = b"Datele pe care dorim să le semnăm digital"

Semnează mesajul
signature = private_key.sign(

)

Semnează certificatul folosind cheia privată
certificate = builder.sign(private_key, hashes.SHA256())

Afiseaza certificatul
print("Certificat X.509:")
print(certificate)

Creează un mesaj pentru semnătură digitală
message = b"Datele pe care dorim să le semnăm digital"

Semnează mesajul
signature = private_key.sign(
 message,
 padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH
),
 hashes.SHA256()
)

Verifică semnătura
try:
 public_key.verify(
 signature,
 message,
 padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH

Creează un mesaj pentru semnătură digitală
message = b"Datele pe care dorim să le semnăm digital"

Semnează mesajul
signature = private_key.sign(
 message,
 padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH
),
 hashes.SHA256()
)

Verifică semnătura
try:
 public_key.verify(
 signature,
 message,
 padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH
),
 hashes.SHA256()
)
 print("Semnătura digitală este validă.")
except:
 print("Semnătura digitală nu este validă.")

Role-based Access Control in Web Services

• Understanding role-based access control (RBAC) in web services

• Implementing RBAC using security tokens and identity providers

• Best practices for managing RBAC in web services

Securing Web Services with OAuth 2.0

• OAuth 2.0 overview and how it works

• Advantages of using OAuth 2.0 for Web Services security

• Examples of using OAuth 2.0 to secure Web Services

Web Services Security Risks and Countermeasures

• Common security risks in Web Services

• Countermeasures to mitigate Web Services security risks

• Best practices for protecting Web Services

Web Services Security Standards: WSS and
WS-Security

• Overview of Web Services Security (WSS)

• Introduction to WS-Security

• Examples of using WSS and WS-Security in Web Services

Web Services Security in SOA Architecture

• Overview of Service-Oriented Architecture (SOA)

• Security challenges in SOA

• Best practices for securing Web Services in SOA

Web Services Security in RESTful Architecture

• Overview of Representational State Transfer (REST)

• Security challenges in RESTful Web Services

• Best practices for securing RESTful Web Services

Protecting Web Services with SAML

• Overview of SAML and its role in web service security

• Examples of how to use SAML to secure web services

• Best practices to ensure the security of web services protected by
SAML

Overview of SAML and its role in web service security

• SAML (Security Assertion Markup Language) is an XML-based standard for
exchanging authentication and authorization data between parties

• SAML plays a crucial role in web service security by providing a way to establish
trust and enable single sign-on (SSO) across multiple domains

• SAML assertions can be used to assert user identity and authorization data to
service providers, enabling access control and user-based security policies

Web Services Security using XACML

• Introduction to XACML and its role in web service security

• Overview of XACML features and functionalities, including
attribute-based access control

• Examples of how to use XACML to secure web services

Web Services Security and Firewalls

• Web services are increasingly being used for exchanging sensitive data and require
robust security measures.

• Firewalls are a critical component in securing web services by controlling traffic to
and from the network.

• A firewall can be deployed as a hardware device or a software application to
prevent unauthorized access to web services.

Web Services Security and Firewalls

Example code for configuring firewall rules for web services

Allow incoming traffic on port 80 for HTTP web service
sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT

Block incoming traffic on port 22 for SSH access to web server
sudo iptables -A INPUT -p tcp --dport 22 -j DROP

Log all incoming and outgoing traffic for web service
sudo iptables -A INPUT -j LOG
sudo iptables -A OUTPUT -j LOG

Web Services Security Testing and Assessment

• Web services security testing and assessment is a crucial part of ensuring the security of
web services.

• The testing process involves identifying potential vulnerabilities in web services, evaluating
the risks associated with those vulnerabilities, and developing a plan to address them.

• Different types of security testing can be performed, such as penetration testing,
vulnerability scanning, and code review.

Web Services Security Testing and Assessment

Example code for running a vulnerability scan on a web service

Install and configure the Nessus vulnerability scanner
sudo apt-get install nessus
sudo /etc/init.d/nessusd start

Launch a vulnerability scan on the web service
nessuscli scan --target 192.168.0.1 --policy "Web Services Policy" --name "Web Services Scan"

Web Services Security in Cloud Computing

• Cloud computing and web services have transformed the IT industry, but the security of
web services in cloud computing is a major concern.

• Cloud providers use various security measures, including encryption and access control,
to protect web services, but these measures alone are not enough.

• Additional security measures, such as authentication, authorization, and threat detection,
must be implemented to ensure the security of web services in cloud computing.

Web Services Security in Cloud Computing
from flask import Flask
from flask_restful import Resource, Api
from flask_jwt_extended import JWTManager

app = Flask(__name__)
api = Api(app)

app.config['JWT_SECRET_KEY'] = 'super-secret'
jwt = JWTManager(app)

class PrivateResource(Resource):
 @jwt_required
 def get(self):
 return {'private': 'data'}

api.add_resource(PrivateResource, '/private')

if __name__ == '__main__':
 app.run()

Web Services Security in Mobile Computing

• Mobile devices are increasingly used to access web services, but this trend also presents
new security challenges.

• Mobile devices are vulnerable to various security threats, such as malware and phishing
attacks, that can compromise the security of web services.

• To ensure the security of web services in mobile computing, additional security measures,
such as secure coding practices and mobile device management, must be implemented.

Web Services Security in Mobile Computing

private void sendPayment() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
 if (checkSelfPermission(Manifest.permission.USE_FINGERPRINT) != PackageManager.PERMISSION_GRANTED) {
 return;
 }
 }
 FingerprintManager fingerprintManager = (FingerprintManager) getSystemService(Context.FINGERPRINT_SERVICE);
 Cipher cipher = fingerprintManager.createCipher(new KeyGenParameterSpec.Builder(KEY_NAME, KeyProperties.PURPOSE_ENCRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setUserAuthenticationRequired(true)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .build());
 byte[] encryptedData = cipher.doFinal(paymentData.getBytes());
 sendEncryptedPayment(encryptedData);
}

Web Services Security and Privacy

• Web services can transmit sensitive data across networks and therefore require
privacy protection.

• Techniques such as encryption, secure communication protocols, and access
control can help protect privacy.

• Privacy regulations such as GDPR and CCPA must be complied with to ensure that
personal data is protected.

Web Services Security and Privacy

using System.Security.Cryptography;

public class WebServiceClient {
 private static readonly string privateKey = "privateKey";

 public void SendData(string data) {
 // Encrypt data using AES algorithm and private key
 using (Aes aes = Aes.Create()) {
 aes.Key = Encoding.UTF8.GetBytes(privateKey);
 aes.IV = new byte[16];
 ICryptoTransform encryptor = aes.CreateEncryptor(aes.Key, aes.IV);
 byte[] encryptedData = encryptor.TransformFinalBlock(Encoding.UTF8.GetBytes(data), 0, data.Length);
 // Send encrypted data to web service
 }
 }
}

Web Services Security in Financial Applications

• Financial applications often deal with sensitive data such as credit card information
and require strong security measures.

• Web services can use secure communication protocols, encryption, and access
control to ensure the confidentiality, integrity, and availability of financial data.

• Compliance with regulations such as PCI DSS is essential to protect financial data
and prevent fraud.

Web Services Security in Financial Applications

import requests
import json

def makePayment(amount, cardNumber, expirationDate):
 # Send payment information to web service
 payload = {'amount': amount, 'cardNumber': cardNumber, 'expirationDate': expirationDate}
 headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
 r = requests.post('https://payment-service.com/makePayment', data=json.dumps(payload), headers=headers, verify=False)
 response = r.json()
 # Process payment response
 if response['status'] == 'success':
 print('Payment successful.')
 else:
 print('Payment failed.')

Web Services Security and Intellectual Property

• Web services can transmit intellectual property such as software code and
confidential business information.

• Protection of intellectual property can be achieved through encryption, access
control, and secure communication protocols.

• Legal protections such as patents and trade secrets can also be used to protect
intellectual property.

Web Services Security and Digital Rights
Management

• Web services security ensures the protection of digital content and intellectual
property.

• Digital Rights Management (DRM) uses encryption to prevent unauthorized access
and distribution of digital content.

• Web services security and DRM together provide a secure environment for digital
content distribution.

Web Services Security and Digital Rights
Management

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <soapenv:Header>
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>user</wsse:Username>
 <wsse:Password>password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <ns:getDigitalContent xmlns:ns="http://example.com">
 <ns:id>12345</ns:id>
 </ns:getDigitalContent>
 </soapenv:Body>
</soapenv:Envelope>

Web Services Security and Secure Transactions

• Web services are used for various transactions and require security measures to
protect sensitive information.

• Secure transactions involve encryption, digital signatures, and secure
communication protocols.

• Security measures must be implemented at every step of the transaction process
to ensure data confidentiality and integrity.

// Using HTTPS for secure communication
URL url = new URL("https://example.com");
HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
conn.setRequestMethod("GET");
conn.connect();

Web Services Security and Network Security

• Web services rely on network infrastructure to transmit data securely.

• Network security measures such as firewalls and intrusion detection
systems can help protect web services from attacks.

• Network security policies must be implemented to restrict access to web
services based on predefined rules.

Web Services Security and Network Security

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Restricted Resource</web-resource-name>
 <url-pattern>/secure/*</url-pattern>
 </web-resource-collection>
 <auth-constraint/>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 <web-resource-name>Secure</web-resource-name>
 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>
</security-constraint>

Lecture outcomes

• Security

• Standards

• Threats

• Risks

