
Lecture #4
RESTful Web Services

Spring 2024

Introduction

• What are RESTful Web Services?

• Why do we need RESTful Web Services?

• Advantages of RESTful Web Services

HTTP Methods

• HTTP Methods used in RESTful Web Services

• GET

• POST

• PUT

• DELETE

import requests
GET request
response = requests.get('https://jsonplaceholder.typicode.com/posts/1')
print(response.json())
POST request
data = {
 'title': 'foo',
 'body': 'bar',
 'userId': 1
}
response = requests.post('https://jsonplaceholder.typicode.com/posts', json=data)
print(response.json())
PUT request
data = {
 'id': 1,
 'title': 'foo',
 'body': 'bar',
 'userId': 1
}
response = requests.put('https://jsonplaceholder.typicode.com/posts/1', json=data)
print(response.json())
DELETE request
response = requests.delete('https://jsonplaceholder.typicode.com/posts/1')
print(response.status_code)

RESTful API Design

• Guidelines for designing RESTful APIs

• Resource identification through URIs

• Use of HTTP Methods for CRUD operations

• Use of HTTP status codes

from flask import Flask, jsonify, request

app = Flask(__name__)
GET request
@app.route('/posts/<int:id>', methods=['GET'])
def get_post(id):
 post = get_post_from_database(id)
 if post:
 return jsonify(post)
 else:
 return jsonify({'error': 'Post not found'}), 404
POST request
@app.route('/posts', methods=['POST'])
def create_post():
 data = request.get_json()
 post = create_post_in_database(data)
 return jsonify(post), 201
PUT request
@app.route('/posts/<int:id>', methods=['PUT'])
def update_post(id):
 data = request.get_json()
 post = update_post_in_database(id, data)
 if post:

from flask import Flask, jsonify, request

app = Flask(__name__)
GET request
@app.route('/posts/<int:id>', methods=['GET'])
def get_post(id):
 post = get_post_from_database(id)
 if post:
 return jsonify(post)
 else:
 return jsonify({'error': 'Post not found'}), 404
POST request
@app.route('/posts', methods=['POST'])
def create_post():
 data = request.get_json()
 post = create_post_in_database(data)
 return jsonify(post), 201
PUT request
@app.route('/posts/<int:id>', methods=['PUT'])
def update_post(id):
 data = request.get_json()
 post = update_post_in_database(id, data)
 if post:
 return jsonify(post)
 else:
 return jsonify({'error': 'Post not found'}), 404

@app.route('/posts/<int:id>', methods=['GET'])
def get_post(id):
 post = get_post_from_database(id)
 if post:
 return jsonify(post)
 else:
 return jsonify({'error': 'Post not found'}), 404
POST request
@app.route('/posts', methods=['POST'])
def create_post():
 data = request.get_json()
 post = create_post_in_database(data)
 return jsonify(post), 201
PUT request
@app.route('/posts/<int:id>', methods=['PUT'])
def update_post(id):
 data = request.get_json()
 post = update_post_in_database(id, data)
 if post:
 return jsonify(post)
 else:
 return jsonify({'error': 'Post not found'}), 404
DELETE request
@app.route('/posts/<int:id>', methods=['DELETE'])
def delete_post(id):
 delete_post_from_database(id)
 return '', 204

RESTful Web Services vs SOAP Web Services

• Differences between RESTful Web Services
and SOAP Web Services

• Pros and cons of RESTful Web Services

• Pros and cons of SOAP Web Services

Identifying Resources in RESTful Web Services

Identifying Resources

• Define resources as domain nouns, for example,
"users," "posts," "comments," etc.

• Use a resource hierarchy for complex entities, for
example, "/users/{user_id}/posts" or "/posts/
{post_id}/comments".

• Avoid using verbs or actions in resource
identification, as it violates the principle of using
HTTP methods for operations.

Identifying Resources
// Define a user resource
GET /users/{user_id}
POST /users
PUT /users/{user_id}
DELETE /users/{user_id}

// Define a post resource
GET /posts/{post_id}
POST /users/{user_id}/posts
PUT /posts/{post_id}
DELETE /posts/{post_id}

// Define a comment resource
GET /comments/{comment_id}
POST /posts/{post_id}/comments
PUT /comments/{comment_id}
DELETE /comments/{comment_id}

Choosing Resource Granularity in RESTful Web
Services

Choosing Resource Granularity

• Define resources based on their significance
and level of detail.

• Consider the audience and use cases when
choosing the granularity of a resource.

• Avoid creating overly granular resources that
result in excessive API calls.

Choosing Resource Granularity
// Example of overly granular resources
GET /users/{user_id}/posts/{post_id}/comments/{comment_id}
POST /users/{user_id}/posts/{post_id}/comments/{comment_id}
PUT /users/{user_id}/posts/{post_id}/comments/{comment_id}
DELETE /users/{user_id}/posts/{post_id}/comments/{comment_id}

// Example of too general resource
GET /posts
POST /posts
PUT /posts/{post_id}
DELETE /posts/{post_id}

// Example of balanced resource granularity
GET /posts/{post_id}/comments
POST /posts/{post_id}/comments
PUT /comments/{comment_id}
DELETE /comments/{comment_id}

Organizing Resources into
Collections in RESTful Web Services

Organizing Resources into Collections

• Define collections and explain how they
relate to resources.

• How collections can help to organize related
resources.

• Provide examples of collections, such as
users, products, and orders.

Choosing Resource Granularity
// Example of resource organization without collections
GET /users/{user_id}/profile
POST /users/{user_id}/profile
PUT /users/{user_id}/profile
DELETE /users/{user_id}/profile
GET /users/{user_id}/orders
POST /users/{user_id}/orders
PUT /users/{user_id}/orders/{order_id}
DELETE /users/{user_id}/orders/{order_id}

// Example of resource organization with collections
GET /users/{user_id}
POST /users
PUT /users/{user_id}
DELETE /users/{user_id}
GET /users/{user_id}/orders
POST /users/{user_id}/orders
PUT /orders/{order_id}
DELETE /orders/{order_id}

When to Combine Resources into Composites

• Understanding the decision to combine
resources is important for RESTful API
designers

• Combining resources can simplify client usage

• Combining resources can improve API
performance

Combining resources can simplify client usage

• Example scenario: retrieving all books published by
a certain publisher

• Notes: This scenario highlights the benefits of
combining resources into a composite resource.
Without a composite resource, the client would
need to make multiple API calls to retrieve all the
relevant information, whereas a composite resource
would provide all the information in a single API call.

Combining resources can improve API performance

• Example scenario: retrieving related resources such
as publisher, author, and book data in a single API
call

• Notes: This scenario illustrates how combining
related resources into a composite resource can
improve API performance. Instead of making
multiple API calls to retrieve the publisher, author,
and book data, a single API call to the composite
resource would provide all the information needed.

Combining resources can simplify resource modeling

• Example scenario: combining resources that are
always retrieved together, such as a user's profile
information and their list of posts

• Notes: This scenario demonstrates how combining
related resources into a composite resource can
simplify resource modeling. By combining a user's
profile information and their list of posts into a single
composite resource, the API can be simplified and the
number of resources that need to be modeled and
maintained separately is reduced. This can save time
and reduce complexity, especially as the API evolves
and new resources are added.

When to consider not combining
resources into composites

When not to combine resources into
composites

Designing an effective RESTful API
requires balancing multiple factors

const express = require('express');
const app = express();

// Create a composite resource for books published by a certain publisher
app.get('/publishers/:publisher/books', (req, res) => {
 const publisherId = req.params.publisher;
 // Retrieve the publisher information
 const publisher = getPublisher(publisherId);
 // Retrieve the books published by the publisher
 const books = getBooksByPublisher(publisherId);
 // Combine the publisher and book information into a single response
 const response = {
 publisher: publisher,
 books: books
 };
 // Send the response to the client
 res.json(response);
});

// Start the server
app.listen(3000, () => {
 console.log('Server listening on port 3000');
});

How to Support Computing/Processing
Functions in RESTful Web Services

• Definition of computing/processing functions

• Importance of supporting computing/
processing functions in RESTful web
services

• Challenges in supporting computing/
processing functions in RESTful web
services

How to Support Computing/Processing
Functions in RESTful Web Services

• Query parameters

Approaches to supporting
computing/processing functions

• Query parameters

• Resource-oriented APIs

Approaches to supporting
computing/processing functions

• Query parameters

• Resource-oriented APIs

• Custom API endpoints

Approaches to supporting
computing/processing functions

• Use HTTP caching

Best practices for supporting
computing/processing functions

• Use HTTP caching

• Use pagination

Best practices for supporting
computing/processing functions

• Use HTTP caching

• Use pagination

• Use parameter validation and error handling

Best practices for supporting
computing/processing functions

const express = require('express');
const app = express();

// Define an API endpoint for calculating the sum of two numbers
app.get('/calculate', (req, res) => {
 const num1 = parseInt(req.query.num1);
 const num2 = parseInt(req.query.num2);

 // Check that the query parameters are valid
 if (isNaN(num1) || isNaN(num2)) {
 res.status(400).json({ error: 'Invalid query parameters' });
 return;
 }

 // Calculate the sum of the two numbers
 const sum = num1 + num2;

 // Send the result to the client
 res.json({ result: sum });
});

// Start the server
app.listen(3000, () => {
 console.log('Server listening on port 3000');
});

When and How to Use Controllers
to Operate on Resources

• Restful Web Services allow us to create APIs
that can be easily accessed by different
devices and platforms.

• Controllers play an essential role in handling
HTTP requests and responses to operate on
resources.

• In this presentation, we'll discuss when and
how to use controllers to operate on
resources in RESTful Web Services.

When and How to Use Controllers
to Operate on Resources

• Controllers are a key part of the Model-View-
Controller (MVC) architectural pattern.

• They receive incoming requests from clients,
retrieve the necessary data from models, and
return the appropriate response.

• In RESTful Web Services, controllers are
responsible for handling HTTP requests to
perform CRUD (Create, Read, Update,
Delete) operations on resources.

What are Controllers?

• Use the HTTP GET method to retrieve a
resource from the server.

• Use the HTTP POST method to create a new
resource on the server.

• Use the HTTP PUT method to update an
existing resource on the server.

• Use the HTTP DELETE method to remove a
resource from the server.

How to Use Controllers to Operate
on Resources

// GET request to retrieve a resource by ID
@RequestMapping(value = "/resource/{id}", method = RequestMethod.GET)
public ResponseEntity<Resource> getResourceById(@PathVariable("id") String id) {
 Resource resource = resourceService.getResourceById(id);
 return new ResponseEntity<Resource>(resource, HttpStatus.OK);
}

// POST request to create a new resource
@RequestMapping(value = "/resource", method = RequestMethod.POST)
public ResponseEntity<Resource> createResource(@RequestBody Resource resource) {
 resourceService.createResource(resource);
 return new ResponseEntity<Resource>(resource, HttpStatus.CREATED);
}

// PUT request to update an existing resource
@RequestMapping(value = "/resource/{id}", method = RequestMethod.PUT)
public ResponseEntity<Resource> updateResource(@PathVariable("id") String id, @RequestBody Resource resource) {
 Resource updatedResource = resourceService.updateResource(id, resource);
 return new ResponseEntity<Resource>(updatedResource, HttpStatus.OK);
}

// DELETE request to remove a resource
@RequestMapping(value = "/resource/{id}", method = RequestMethod.DELETE)
public ResponseEntity<?> deleteResource(@PathVariable("id") String id) {
 resourceService.deleteResource(id);
 return new ResponseEntity<>(HttpStatus.NO_CONTENT);
}

Designing Representations

• RESTful Web Services allow us to create
APIs that can be easily accessed by different
devices and platforms.

• Designing representations is an essential
part of RESTful Web Services.

• How to use entity headers to annotate
representations.

How to Use Entity Headers to
Annotate Representations

• Entity headers are used to provide metadata
about the representation of a resource.

• They include headers such as Content-Type,
Content-Length, and ETag.

• Entity headers help clients and servers to
understand the format and content of the
representation.

What are Entity Headers?

• Use the Content-Type header to specify the
format of the representation.

• Use the Content-Length header to specify
the length of the representation.

• Use the ETag header to specify a unique
identifier for the representation.

How to Use Entity Headers to
Annotate Representations

• Consider a RESTful API that returns
information about a book.

• The representation of the book might include
the title, author, publication date, and ISBN.

• We could use entity headers to provide
additional metadata about the
representation.

Example of Entity Headers in
Practice

import datetime
from flask import Flask, jsonify, make_response

app = Flask(__name__)

Dummy data representing a book
book = {
 'id': 1,
 'title': 'RESTful Web Services',
 'author': 'Leonard Richardson and Sam Ruby',
 'publication_date': datetime.date(2007, 5, 8)
}

Define a function to return the book representation
def get_book_representation():
 # Get the current representation of the book
 representation = {
 'id': book['id'],
 'title': book['title'],
 'author': book['author'],
 'publication_date': book['publication_date'].strftime('%Y-%m-%d')
 }

 # Set the entity headers to annotate the representation

 'title': book['title'],
 'author': book['author'],
 'publication_date': book['publication_date'].strftime('%Y-%m-%d')
 }

 # Set the entity headers to annotate the representation
 entity_headers = {
 'Last-Modified': book['publication_date'].strftime('%a, %d %b %Y %H:%M:%S GMT'),
 'ETag': f'"{book["id"]}-{book["publication_date"].timestamp()}"'
 }

 # Return the annotated representation and the entity headers
 return (representation, entity_headers)

Define a route to get the book representation
@app.route('/books')
def get_book():
 representation, entity_headers = get_book_representation()

 # Return the annotated representation and the entity headers in the response
 response = make_response(jsonify(representation))
 for key, value in entity_headers.items():
 response.headers[key] = value
 return response

if __name__ == '__main__':
 app.run(debug=True)

• Definition of character encoding and its role
in web services

• Overview of the most commonly used
character encoding schemes

• Explanation of how character encoding can
impact data representation and transmission

Introduction to Character Encoding

• Detailed overview of ASCII, UTF-8, and
ISO-8859-1 encoding schemes

• Explanation of the differences between these
encoding schemes

• Examples of when to use each encoding
scheme

Common Character Encoding
Schemes

• Establish a clear encoding scheme for all
data exchanged between servers and
clients.

• Validating input data.

• Use standard libraries and frameworks.

Strategies for Avoiding Character
Encoding Mismatch

• What is JSON

• How JSON is used in web services

• Benefits of using JSON

Understanding JSON
Representations

Understanding JSON
Representations

{
 "firstName": "John",
 "lastName": "Doe",
 "age": 30,
 "email": "john.doe@example.com",
 "address": {
 "street": "123 Main St",
 "city": "Anytown",
 "state": "CA",
 "zip": "12345"
 }
}

• Naming conventions for JSON keys

• Keeping JSON representations simple and
clear

• Using data types consistently

Best Practices for Designing JSON
Representations

{
 "first_name": "John",
 "last_name": "Doe",
 "age": 30,
 "email_address": "john.doe@example.com"
}

• Using nested objects in JSON
representations

• Avoiding deep nesting

• Providing documentation for nested
representations

Designing Nested JSON
Representations

{
 "id": 1,
 "title": "Example post",
 "author": {
 "id": 2,
 "name": "John Doe",
 "email": "john.doe@example.com"
 },
 "comments": [
 {
 "id": 1,
 "body": "Example comment",
 "author": {
 "id": 3,
 "name": "Jane Doe",
 "email": "jane.doe@example.com"
 }
 }
]
}

• Definition of collections

• Common examples of collections

• Why collections are important in web
services

What are collections?

• Choosing a format for representing
collections

• Designing URLs for collection
resources

• Providing metadata for collections

How to design representations of
collections

• Example of a collection of products

• Designing URLs for accessing and
manipulating the collection resources

• Providing metadata for the collection

Example of designing a collection
representation in JSON

{
 "products": [
 {
 "id": 1,
 "name": "Product 1",
 "description": "This is the description for Product 1.",
 "price": 9.99
 },
 {
 "id": 2,
 "name": "Product 2",
 "description": "This is the description for Product 2.",
 "price": 19.99
 },
 {
 "id": 3,
 "name": "Product 3",
 "description": "This is the description for Product 3.",
 "price": 29.99
 }
]
}

• Definition of homogeneous collections

• Benefits of homogeneous collections

• Consequences of non-homogeneous
collections

What Does it Mean to Keep
Collections Homogeneous?

• Standardize data fields and data types

• Use common formatting and naming
conventions

• Validate data inputs

Strategies for Keeping Collections
Homogeneous [

 {
 "id":1,
 "name":"Product 1",
 "description":"This is product 1",
 "price":10.99,
 "quantity":5
 },
 {
 "id":2,
 "name":"Product 2",
 "description":"This is product 2",
 "price":7.99,
 "quantity":10
 },
 {
 "id":3,
 "name":"Product 3",
 "description":"This is product 3",
 "price":4.99,
 "quantity":2
 }
]

• Explanation of what binary data is

• Challenges of encoding binary data in
representations

• Examples of encoding binary data in
JSON and XML

Binary Data in JSON

{
 "message": "aGVsbG8gd29ybGQ="
}

• Advantages of using HTML
representations for web content

• Comparison with other types of
representations

• Examples of web services that use
HTML representations effectively

Why HTML Representations?
<!DOCTYPE html>
<html>
 <head>
 <title>My Blog Post</title>
 </head>
 <body>
 <h1>My Blog Post</h1>
 <p>This is my first blog post. I hope you enjoy it!</p>

 Author: John Doe
 Published: January 1, 2022

 </body>
</html>

• Factors to consider when deciding to
serve HTML representations

• Examples of scenarios where HTML
representations are appropriate

• Best practices for serving HTML
representations

When to Serve HTML
Representations

<!DOCTYPE html>
<html>
 <head>
 <title>My Blog Post</title>
 </head>
 <body>
 <h1>My Blog Post</h1>
 <p>This is my first blog post. I hope you enjoy it!</p>

 Author: John Doe
 Published: January 1, 2022

 </body>
</html>

• Explanation of different approaches to
serving HTML representations (e.g.
server-side rendering, client-side
rendering, hybrid rendering)

• Pros and cons of each approach

• Example code for each approach

How to Serve HTML
Representations

<!DOCTYPE html>
<html>
 <head>
 <title>My Blog Post</title>
 </head>
 <body>
 <h1>My Blog Post</h1>
 <p>This is my first blog post. I hope you enjoy it!</p>

 Author: John Doe
 Published: January 1, 2022

 </body>
</html>

Server-Side Rendering
const http = require('http');
const fs = require('fs');

const server = http.createServer((req, res) => {
 fs.readFile('index.html', (err, data) => {
 if (err) {
 res.writeHead(404, {'Content-Type': 'text/html'});
 res.write('404 Not Found');
 } else {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.write(data);
 }
 res.end();
 });
});

server.listen(3000, () => {
 console.log('Server is running on port 3000');
});

Client-Side Rendering

import React from 'react';
import ReactDOM from 'react-dom';

const App = () => {
 return <h1>Hello, world!</h1>;
};

ReactDOM.render(<App />, document.getElementById('root'));

Hybrid Rendering

import React from 'react';
import ReactDOM from 'react-dom';

const App = () => {
 return <h1>Hello, world!</h1>;
};

ReactDOM.hydrate(<App />, document.getElementById('root'));

Common error response formats

{
 "errors": [
 {
 "status": "404",
 "title": "Not Found",
 "detail": "The requested resource could not be found"
 }
]
}

Best practices for returning errors

• Use standard HTTP error codes

{
 "errors": [
 {
 "status": "404",
 "title": "Not Found",
 "detail": "The requested resource could not be found"
 }
]
}

Best practices for returning errors

• Use standard HTTP error codes

• Return a detailed error message in the
response body

{
 "errors": [
 {
 "status": "404",
 "title": "Not Found",
 "detail": "The requested resource could not be found"
 }
]
}

Best practices for returning errors

• Use standard HTTP error codes

• Return a detailed error message in the
response body

• Use a consistent error format

{
 "errors": [
 {
 "status": "404",
 "title": "Not Found",
 "detail": "The requested resource could not be found"
 }
]
}

Best practices for returning errors

• Use standard HTTP error codes

• Return a detailed error message in the
response body

• Use a consistent error format

• Avoid returning sensitive information in
error messages

{
 "errors": [
 {
 "status": "404",
 "title": "Not Found",
 "detail": "The requested resource could not be found"
 }
]
}

Best practices for returning errors

• Use standard HTTP error codes

• Return a detailed error message in the
response body

• Use a consistent error format

• Avoid returning sensitive information in
error messages

• Provide documentation for error handling

{
 "errors": [
 {
 "status": "404",
 "title": "Not Found",
 "detail": "The requested resource could not be found"
 }
]
}

Error Handling Strategies

• Fail fast, fail hard

• Return detailed error messages

• Use HTTP status codes

{
 "errors": [
 {
 "status": "404",
 "title": "Not Found",
 "detail": "The requested resource could not be found"
 }
]
}

Fail Fast, Fail Hard

• Advantages of failing fast

• How to fail fast

from flask import Flask, abort, request

app = Flask(__name__)

@app.route('/some-endpoint')
def some_endpoint():
 if not request.args.get('query'):
 abort(400, 'Query parameter is required')
 # continue processing request

Detailed Error Messages

• Advantages of detailed error messages

• How to return detailed error messages

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
 "error": {
 "code": "missing_query_param",
 "description": "The 'query' parameter is required"
 }
}

Lecture outcomes

• Restful

• Identifying Resources

• Designing Representations

