
Lecture #3
WSDL

Registering and Discovering
Spring 2024

WSDL

• WSDL stands for Web Services Description Language

• WSDL is an XML-based language used for describing web services

• WSDL is used to describe the functionality offered by a web service, its inputs
and outputs, and how to access it

Structure of WSDL

• WSDL is composed of three main parts:

• Service description: describes the functionality of the web service

• Types definition: defines the data types used in the web service

• Message exchange patterns: describes how messages are
exchanged between client and server

Example of WSDL
<wsdl:definitions name="StockQuoteService"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
 <xs:schema targetNamespace="http://example.com/stockquote.wsdl">
 <xs:element name="GetStockPriceRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="symbol" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GetStockPriceResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="price" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 </xs:element>
 <xs:element name="GetStockPriceResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="price" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
</wsdl:types>

<wsdl:message name="GetStockPriceRequest">
 <wsdl:part name="parameters" element="tns:GetStockPriceRequest"/>
</wsdl:message>
<wsdl:message name="GetStockPriceResponse">
 <wsdl:part name="parameters" element="tns:GetStockPriceResponse"/>
</wsdl:message>

<wsdl:portType name="StockQuotePortType">
 <wsdl:operation name="GetStockPrice">
 <wsdl:input message="tns:GetStockPriceRequest"/>
 <wsdl:output message="tns:GetStockPriceResponse"/>
 </wsdl:operation>
</wsdl:portType>

<wsdl:binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetStockPrice">
 <soap:operation soapAction="http://example.com/GetStockPrice"/>

<wsdl:portType name="StockQuotePortType">
 <wsdl:operation name="GetStockPrice">
 <wsdl:input message="tns:GetStockPriceRequest"/>
 <wsdl:output message="tns:GetStockPriceResponse"/>
 </wsdl:operation>
</wsdl:portType>

<wsdl:binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetStockPrice">
 <soap:operation soapAction="http://example.com/GetStockPrice"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="StockQuoteService">
 <wsdl:port name="StockQuoteSoapPort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.com/stockquote"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

WSDL Versioning and Extensions

• WSDL allows for versioning of web services, enabling clients to use different
versions of a service

• WSDL also supports extensions, allowing developers to add custom
functionality to their web services

• WSDL versioning and extensions are important for maintaining compatibility and
flexibility in web services

WSDL Versioning

• WSDL versioning allows for multiple versions of a web service to coexist

• A new version of a web service can be created by adding or modifying elements
in the WSDL file

• Clients can use a specific version of a web service by specifying the version in
the request

WSDL Extensions

• WSDL extensions allow developers to add custom functionality to their web
services

• Extensions are defined using XML Schema and can be added to the WSDL file
as needed

• Popular extensions include WS-Addressing, WS-Security, and WS-Policy

WS-Addressing

• WS-Addressing provides a standard way to
include addressing information in SOAP
messages

• It enables the identification of the intended
recipient of a message and the reply address

• WS-Addressing also supports message
correlation and the propagation of security
and policy information

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 ...
 <wsdl:message name="MyRequest">
 <wsa:Action>http://example.org/MyService/Request</wsa:Action>
 ...
 </wsdl:message>
 <wsdl:message name="MyResponse">
 <wsa:Action>http://example.org/MyService/Response</wsa:Action>
 ...
 </wsdl:message>
 ...
</wsdl:definitions>

WS-Addressing

• WS-Addressing provides a standard way to
include addressing information in SOAP
messages

• It enables the identification of the intended
recipient of a message and the reply address

• WS-Addressing also supports message
correlation and the propagation of security
and policy information

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 ...
 <wsdl:message name="MyRequest">
 <wsa:Action>http://example.org/MyService/Request</wsa:Action>
 ...
 </wsdl:message>
 <wsdl:message name="MyResponse">
 <wsa:Action>http://example.org/MyService/Response</wsa:Action>
 ...
 </wsdl:message>
 ...
</wsdl:definitions>

WS-Security

• WS-Security provides a standard way to
secure SOAP messages over different
transport protocols

• It supports message integrity, confidentiality,
and authentication

• WS-Security also provides a framework for
exchanging security tokens between service
providers and consumers

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 ...
 <wsse:policy wsu:Id="ExampleServicePolicy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:usernameToken>
 <wsse:username/>
 <wsse:password/>
 </wsse:usernameToken>
 </wsse:policy>
 ...
</wsdl:definitions>

WS-Policy

• WS-Policy provides a framework for
describing the capabilities and requirements of
web services

• It enables service providers to describe their
policies and clients to specify their policy
requirements

• WS-Policy also provides a standard way to
express security requirements and preferences

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 ...
 <wsp:Policy wsu:Id="ExampleServicePolicy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:ExactlyOne>
 <wsp:All>
 <http:BasicAuthentication xmlns:http="http://
schemas.microsoft.com/wse/2003/06/http"/>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 ...
</wsdl:definitions>

Comparing WSDL and OpenAPI/Swagger

What is OpenAPI/Swagger?

• OpenAPI/Swagger is a specification for
building and documenting APIs.

• It defines a standard, language-agnostic
interface for RESTful APIs.

• It allows developers to generate client
code, server stubs, and interactive
documentation automatically.

How does OpenAPI/Swagger work?

• The OpenAPI/Swagger specification is written
in YAML or JSON.

• It defines the API endpoints, request
parameters, response payloads, and other
details.

• The specification can be used to generate
client code, server stubs, and interactive
documentation.

Code Example

openapi: "3.0.0"
info:
 title: "My API"
 description: "This is a sample API"
 version: "1.0.0"
servers:
 - url: "https://api.example.com"
paths:
 /users:
 get:
 summary: "Get a list of users"
 responses:
 '200':
 description: "Successful response"
 content:
 application/json:
 schema:
 type: "array"
 items:
 type: "object"
 properties:

openapi: "3.0.0"
info:
 title: "My API"
 description: "This is a sample API"
 version: "1.0.0"
servers:
 - url: "https://api.example.com"
paths:
 /users:
 get:
 summary: "Get a list of users"
 responses:
 '200':
 description: "Successful response"
 content:
 application/json:
 schema:
 type: "array"
 items:
 type: "object"
 properties:
 id:
 type: "integer"
 description: "User ID"
 name:
 type: "string"
 description: "User name"

Key Features of OpenAPI/Swagger

• OpenAPI specification defines a standard,
language-agnostic interface for REST APIs.

• The specification is machine-readable, which
means it can be easily interpreted by tools and
software.

• OpenAPI provides a comprehensive documentation
for APIs, including endpoints, methods,
parameters, request/response structures, and error
codes.

paths:
 /pets:
 get:
 summary: Returns all pets
 responses:
 '200':
 description: A list of pets.
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

Benefits of OpenAPI/Swagger

• OpenAPI makes it easier to build and maintain APIs
by providing a standardized interface that is easy to
use and understand.

• The specification is self-documenting, which
means that it can be used to generate API
documentation automatically.

• OpenAPI can be used to generate client libraries in
a variety of programming languages, which makes
it easier for developers to use your API.

openapi: 3.0.0
info:
 title: Petstore API
 version: 1.0.0
servers:
 - url: https://api.example.com/v1
paths:
 /pets:
 get:
 summary: Returns all pets
 responses:
 '200':
 description: A list of pets.
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

Benefits of OpenAPI/Swagger

• OpenAPI makes it easier to build and maintain APIs
by providing a standardized interface that is easy to
use and understand.

• The specification is self-documenting, which
means that it can be used to generate API
documentation automatically.

• OpenAPI can be used to generate client libraries in
a variety of programming languages, which makes
it easier for developers to use your API.

openapi: 3.0.0
info:
 title: Petstore API
 version: 1.0.0
servers:
 - url: https://api.example.com/v1
paths:
 /pets:
 get:
 summary: Returns all pets
 responses:
 '200':
 description: A list of pets.
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

Limitations of OpenAPI/Swagger

• OpenAPI is limited to RESTful APIs and does not
support other types of APIs, such as SOAP or
GraphQL.

• The specification can become overly complex for
larger APIs, which can make it difficult to
maintain.

• OpenAPI can be time-consuming to implement,
especially for smaller APIs with limited resources.

openapi: 3.0.0
info:
 title: Petstore API
 version: 1.0.0
servers:
 - url: https://api.example.com/v1
paths:
 /pets:
 get:
 summary: Returns all pets
 responses:
 '200':
 description: A list of pets.
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

Drawbacks of OpenAPI/Swagger

• OpenAPI is limited to describing the structure and
behavior of APIs and does not provide guidance on
best practices or design patterns.

• The specification can be restrictive and may not
support all of the features or behaviors of your API.

• OpenAPI does not provide any mechanism for
testing or validating APIs, which can make it
difficult to ensure compliance with the
specification.

swagger: '2.0'
info:
 version: 1.0.0
 title: Swagger Petstore
 description: A sample API that uses a petstore
 as an example to demonstrate features
 in the swagger-2.0 specification
host: petstore.swagger.io
basePath: /v2
schemes:
 - http
paths:
 /pet/{petId}:
 get:
 summary: Find pet by ID
 description: Returns a single pet
 operationId: getPetById
 produces:
 - application/json
 parameters:
 - name: petId
 in: path
 description: ID of pet

Syntax Comparison: WSDL vs OpenAPI/Swagger

• WSDL uses XML to define services,
messages, operations, and endpoints.

• OpenAPI/Swagger uses YAML or JSON to
define API paths, operations, parameters, and
responses.

• WSDL requires separate files for each
endpoint, while OpenAPI/Swagger defines all
endpoints in a single file.

<definitions name="MyService" targetNamespace="http://example.com/myservice.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://example.com/myservice.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="RequestMessage">
 <part name="param" type="xsd:string"/>
 </message>

 <message name="ResponseMessage">
 <part name="result" type="xsd:string"/>
 </message>

 <portType name="MyPortType">
 <operation name="MyOperation">
 <input message="tns:RequestMessage"/>
 <output message="tns:ResponseMessage"/>
 </operation>
 </portType>

 <binding name="MyBinding" type="tns:MyPortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="MyOperation">
 <soap:operation soapAction="http://example.com/MyService/MyOperation" style="document"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="MyService">
 <port name="MyPort" binding="tns:MyBinding">
 <soap:address location="http://example.com/myservice"/>
 </port>
 </service>

</definitions>

Syntax Comparison: WSDL vs. OpenAPI/Swagger

• WSDL uses SOAP for communication and data
exchange, while OpenAPI/Swagger uses a variety of
formats, including JSON and XML.

• WSDL defines both the message structure and the
transport protocol, while OpenAPI/Swagger only defines
the message structure.

• WSDL allows for more fine-grained control over
message and operation definitions, while OpenAPI/
Swagger has a simpler syntax for defining API
operations.

openapi: 3.0.0
info:
 title: Petstore API
 version: 1.0.0
servers:
 - url: https://api.example.com/v1
paths:
 /pets:
 get:
 summary: Returns all pets
 responses:
 '200':
 description: A list of pets.
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

Syntax Comparison: WSDL vs. OpenAPI/Swagger

• WSDL supports more complex types and
operations than OpenAPI/Swagger.

• OpenAPI/Swagger supports more modern API
technologies, such as REST and JSON, while
WSDL is primarily used with SOAP.

• WSDL has been around for longer and has a larger
developer community, while OpenAPI/Swagger is
more lightweight and easier to use for smaller
projects.

<xs:element name="getStockPriceRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="stockSymbol" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="getStockPriceResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="price" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

OpenAPI/Swagger Conclusion

• OpenAPI/Swagger is a powerful tool for
building and documenting REST APIs.

• The specification provides a standardized,
machine-readable interface that is easy to use
and understand.

• OpenAPI/Swagger can help to increase
adoption and usage of your API, which can
lead to increased business opportunities.

swagger: '2.0'
info:
 version: 1.0.0
 title: Swagger Petstore
 description: A sample API that uses a
 petstore as an example to demonstrate
 features in the swagger-2.0 specification
host: petstore.swagger.io
basePath: /v2
schemes:
 - http
paths:
 /pet/{petId}:
 get:
 summary: Find pet by ID
 description: Returns a single pet
 operationId: getPetById
 produces:
 - application/json
 parameters:
 - name: petId
 in: path
 description: ID of pet

Non-Functional Descriptions in WSDL

Non-Functional Descriptions in WSDL

• WSDL includes non-functional descriptions, which
provide additional information about the service that
cannot be conveyed through the functional descriptions
alone.

• Non-functional descriptions in WSDL include information
such as security requirements, quality of service
parameters, and endpoint information.

• These non-functional descriptions are critical to ensuring
that the service can be properly consumed and
managed by clients and other applications.

<wsdl:service name="StockQuoteService">
 <wsdl:port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.com/stockquote"/>
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsa:EndpointReference>
 <wsa:Address>http://example.com/stockquote</wsa:Address>
 <wsa:ReferenceParameters>
 <wsa:Metadata>
 <wsdl:service name="StockQuoteService">
 <wsdl:port name="StockQuotePort">
 <wsdlsoap:address location="http://example.com/stockquote"/>
 <wsd:UsingAddressing xmlns:wsd="http://www.w3.org/2006/05/addressing/wsdl"/>
 </wsdl:port>
 </wsdl:service>
 </wsa:Metadata>
 </wsa:ReferenceParameters>
 </wsa:EndpointReference>
 </wsdl:port>
</wsdl:service>

Non-Functional Descriptions in WSDL

• Performance can be specified using WS-Policy, which
provides a standard way of specifying performance
requirements such as response time and throughput.

• WS-Addressing can be used to specify message
addressing requirements, such as the source and
destination of messages.

• However, the use of these non-functional descriptions
can add complexity to WSDL and may require
additional tools or frameworks to implement.

<wsdl:binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <wsp:PolicyReference URI="#StockQuoteSoapBindingPolicy"/>
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetStockPrice">
 <soap:operation soapAction="http://example.com/GetStockPrice"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsp:PolicyReference URI="#GetStockPricePolicy"/>
 </wsdl:operation>
</wsdl:binding>

Registering and Discovering Web Services

Service Registries

• Service registries are a type of service
discovery mechanism used to locate web
services.

• Service registries provide a central location for
web services to register their availability and for
clients to discover available services.

• Service registries can be implemented using
various technologies such as UDDI and Consul.

{
 "name": "my-web-service",
 "tags": ["web", "service"],
 "address": "localhost",
 "port": 8080
}

Service Registries

• Service registries can be implemented as
standalone systems or as part of a larger service
mesh infrastructure.

• Standalone service registries can be implemented
using open source software such as Eureka or
ZooKeeper.

• Service mesh infrastructure typically includes
service registry functionality as well as other
features such as traffic management and security.

<wsdl:service name="StockQuoteService">
 <wsdl:port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.com/StockQuoteService"/>
 </wsdl:port>
</wsdl:service>

Service Discovery

• Service discovery is the process of
automatically locating web services.

• Service discovery can be accomplished
using various mechanisms such as DNS,
service registries, or load balancers.

• Service discovery enables dynamic routing
of requests to available web services.

GET /api/v1/stock-quote HTTP/1.1
Host: service-discovery.example.com

Service Discovery

• DNS-based service discovery uses DNS records to
publish service endpoints and discover available
services.

• Service registries provide a central location for web
services to register their availability and for clients
to discover available services.

• Load balancers can be used for service discovery
by routing traffic to available endpoints based on
defined load balancing rules.

{
 "name": "my-web-service",
 "tags": ["web", "service"],
 "address": "localhost",
 "port": 8080
}

Service Discovery

• Service discovery can be implemented as part of
a larger service mesh infrastructure.

• Service mesh infrastructure typically includes
service discovery functionality as well as other
features such as traffic management and security.

• Service mesh infrastructure can be implemented
using open source software such as Istio or
Linkerd.

<wsdl:service name="StockQuoteService">
 <wsdl:port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://example.com/StockQuoteService"/>
 </wsdl:port>
</wsdl:service>

UDDI: Universal Description,
Discovery, and Integration

• UDDI is a platform-independent, XML-based
registry for businesses to list their services
and for clients to discover available services.

• UDDI supports a hierarchical structure of
service providers, service descriptions, and
service bindings.

• UDDI enables searching for services based on
keywords, service categories, and location. <bindingTemplate>

 <accessPoint useType="endPoint">
 http://example.com/StockQuoteService
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:categorization:types"
 instanceParms="stock quote, finance"/>
 </tModelInstanceDetails>
</bindingTemplate>

UDDI: Universal Description,
Discovery, and Integration

• UDDI provides mechanisms for service providers to
manage the lifecycle of their services, including
publishing, updating, and deleting services.

• UDDI includes security mechanisms such as
authentication and authorization to control access
to the registry.

• UDDI can be used in combination with other
service discovery mechanisms such as DNS-based
discovery and service meshes.

<bindingTemplate>
 <accessPoint useType="endPoint">
 http://example.com/StockQuoteService
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:categorization:types"
 instanceParms="stock quote, finance"/>
 </tModelInstanceDetails>
 <bindingDescription>
 Provides stock quote information for US equities.
 </bindingDescription>
</bindingTemplate>

UDDI: Universal Description,
Discovery, and Integration

• UDDI has largely been replaced by newer service
discovery mechanisms such as service registries
and service meshes.

• UDDI has limited adoption due to complexity, lack
of standardization, and the rise of RESTful web
services.

• UDDI is still used in some industries such as
healthcare and government where interoperability
between different systems is critical.

<businessService>
 <name>Payment Processing Service</name>
 <description>Provides payment processing for e-commerce sites</description>
 <bindingTemplates>
 <bindingTemplate>
 <accessPoint>http://example.com/payments</accessPoint>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

Mapping WSDL Services to UDDI

• WSDL service maps to a UDDI business entity

• Each WSDL port maps to a UDDI binding
template

• A single WSDL port can map to multiple UDDI
binding templates if multiple protocols are used

• UDDI tModels can be used to store additional
service metadata not present in WSDL files

<!-- WSDL -->
<wsdl:service name="MyService">
 <wsdl:port name="MyPort" binding="tns:MyBinding">
 <soap:address location="http://example.com/myservice"/>
 </wsdl:port>
</wsdl:service>

<!-- UDDI Mapping -->
<business name="MyService">
 <bindingTemplate>
 <accessPoint useType="http" url="http://example.com/myservice"/>
 </bindingTemplate>
</business>

Mapping WSDL Services to UDDI

• WSDL types can be mapped to UDDI
tModels

• UDDI tModels can be used to describe
service metadata such as security
policies, quality of service, etc.

• A WSDL type can map to multiple UDDI
tModels if multiple facets are present

<!-- WSDL -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="MyElement" type="xs:string"/>
</xs:schema>

<!-- UDDI Mapping -->
<tModel name="MyElement">
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:categorization:types"
 keyName="type" keyValue="string"/>
 </categoryBag>
</tModel>

Mapping WSDL Services to UDDI

• Pros:

• Enables automatic registration of web services on a UDDI registry

• Makes it easier to discover and consume web services from a
centralized registry

• Facilitates the reuse of existing WSDL descriptions and metadata

• Cons:

• Limited support for modern web service protocols and standards

• Requires significant setup and configuration of both the WSDL and
UDDI registry

• Limited tooling and community support for the WSDL to UDDI
mapping model.

Introduction to UDDI API

• UDDI API consists of two parts:

• UDDI Inquiry API

• UDDI Publish API

UDDI Inquiry API
• The UDDI Inquiry API provides read-only

access to the UDDI registry.

• It is used to discover the available services
and retrieve their details from the registry.

• The UDDI Inquiry API allows searching for
services using different criteria such as
business name, service name, or service
category.

UDDI Publish API

• The UDDI Publish API provides write access
to the UDDI registry.

• It is used to publish new services and
update the details of existing services in the
registry.

• The UDDI Publish API allows creating new
businesses, services, and binding templates.

UDDI API Limitations

• The UDDI API has not gained widespread
adoption due to several limitations.

• It is a complex and heavy-weight
standard, making it difficult to implement
and use.

• UDDI requires a centralized registry, which
can become a single point of failure.

Introduction to Querying the UDDI
Model

• Querying is the process of searching for and
retrieving information from the UDDI registry

• The UDDI model defines a set of APIs that
enable clients to query the registry

• The UDDI query language is based on XML
and supports a wide range of query types
and filters

UDDI Query Language Basics

• This example shows a UDDI query that searches for a
business with the name "example business"

• The query is sent using the find_business API, which is used
to search for businesses in the registry

• The authInfo element contains the authentication token that is
required to access the registry

<?xml version="1.0"?>
<find_business
xmlns="urn:uddi-org:api_v3"
xmlns:uddi="urn:uddi-org:api_v3"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <authInfo>REPLACE_WITH_AUTH_TOKEN</authInfo>
 <name>example business</name>
</find_business>

UDDI Usage Model and Deployment
Variants

• UDDI usage model can vary depending on the needs of the
organization.

• There are different deployment variants of UDDI to meet the
needs of different organizations.

• The deployment of UDDI can be done on a local server, a
public server or in the cloud.

UDDI Deployment Variants

• Local server deployment is suitable for organizations that
prefer to keep their services on-premise.

• Public server deployment is suitable for organizations that
want to make their services available to the public.

• Cloud deployment is suitable for organizations that want a
scalable and flexible solution.

UDDI Adoption Challenges

• Adoption of UDDI can be challenging due to its complexity.

• UDDI adoption can require significant resources and
investment.

• Organizations may face challenges in integrating UDDI with
their existing systems.

Addressing and Notification

Web Services and Stateful Resources

• In stateful resources, data changes over time, and the
application's state changes along with it.

• Web services are inherently stateless, meaning that they don't
maintain information about previous requests.

• To deal with stateful resources, developers need to use a
variety of techniques, such as cookies or hidden form fields.

A shopping cart is an example of a stateful resource.
In a web service, we can represent a shopping cart as
an object with its own state, and each item added to
the cart changes the state of the object.

Stateful vs. Stateless Web Services

• Stateless web services do not maintain any state information
between requests.

• Stateless web services are easier to scale because they do
not require any session management.

• Stateless web services require that all of the information
needed for a request is included in that request.

A stateless web service might be used for retrieving
information from a database. Each request includes
all the information needed to retrieve the data,
so there is no need to maintain any session information.

Techniques for Managing Stateful
Resources in Web Services

• Cookies are a popular way to manage stateful resources.

• Hidden form fields can also be used to manage stateful
resources.

• Developers can also use a unique identifier in each request to
identify the session associated with that request.

A session token could be used to identify the
session associated with a particular request.
The token would be included in each request,
allowing the server to associate the request
with the correct session.

WS-Resource Framework
Introduction

• The WS-Resource Framework is a set of specifications that
provides a framework for working with stateful resources in web
services.

• The framework defines the following components: WS-Resource,
WS-ResourceProperties, and WS-ResourceLifetime.

• The WS-Resource Framework is intended to enable interoperable
communication between different web service implementations.

WS-Resource Framework
Components

• WS-Resource: A web service that provides access to a stateful resource. A
WS-Resource can be accessed through a set of operations, which can create,
read, update, and delete the stateful resource.

• WS-ResourceProperties: A mechanism for describing the stateful resource
being accessed. The WS-ResourceProperties specification defines an XML
format for describing the properties of a WS-Resource.

• WS-ResourceLifetime: A set of operations for managing the lifetime of a WS-
Resource. The WS-ResourceLifetime specification defines a set of operations
for creating, destroying, and renewing a WS-Resource.

Pros and Cons of
WS-Resource Framework

• Pros:

• Provides a framework for working with stateful resources in web services.

• Enables interoperable communication between different web service
implementations.

• Offers a standardized mechanism for managing the lifetime of a WS-Resource.

• Cons:

• The WS-Resource Framework can be complex to implement and use.

• The framework may not be appropriate for all web service scenarios.

• The use of WS-ResourceProperties may introduce additional overhead in web
service communication.

Web Services Notification

• Web Services Notification (WSN) is a specification for publishing and
subscribing to notifications in a web services environment.

• It allows service providers to send notifications to interested parties about
events that have occurred.

• WSN provides a flexible and extensible framework for notification delivery
that is independent of the underlying transport protocol.

WSN Features

• WSN defines a standard set of message formats for publishing and
subscribing to notifications.

• It provides a flexible and extensible framework for notification delivery,
allowing for different delivery modes, such as publish/subscribe and
request/response.

• WSN also includes mechanisms for handling security and reliability.

WSN Example
• Here is an example of a WSN message format for publishing a

notification:

• This message publishes a notification with the topic "/example/topic" and the message content
"Notification message content."

• Interested parties can subscribe to this topic and receive notifications when they are published.

<wsnt:Notify xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2">
<wsnt:NotificationMessage
<wsnt:Topic>
/example/topic
</wsnt:Topic>
<wsnt:Message>
Notification message content.
</wsnt:Message>
</wsnt:NotificationMessage>
</wsnt:Notify>

Web Services Eventing
• Web Services Eventing is a standard for asynchronous event notification between web

services.

• It allows a service to notify another service about the occurrence of an event or state
change in the first service.

• This enables a decoupled architecture, where services are not tightly coupled to each other.

<wsa:Action>http://example.org/events/myEvent</wsa:Action>
<wsa:MessageID>urn:uuid:abc12345-6789-0abc-defg-1234567890hi</wsa:MessageID>
<wsa:ReplyTo>
 <wsa:Address>http://example.org/services/eventConsumer</wsa:Address>
</wsa:ReplyTo>

How Web Services
Eventing Works

• Web Services Eventing uses a combination of the WS-Eventing and WS-Addressing specifications to enable event-based
communication.

• Publishers create events and send them to an event source, which is typically a message broker or a dedicated eventing service.

• Subscribers register with the event source to receive events that match their interests, typically by specifying a set of filters.

• When an event is published that matches a subscriber's filters, the event source sends the event to the subscriber.

EndpointReferenceType eventSource = ...; // create event source endpoint
EndpointReferenceType subscriber = ...; // create subscriber endpoint

// create WS-Eventing subscription manager
SubscriptionManager subscriptionManager = SubscriptionManager.getInstance();

// create subscription request
SubscriptionRequest subscriptionRequest = new SubscriptionRequest(eventSource, subscriber);

// add filter to the subscription request

EndpointReferenceType eventSource = ...; // create event source endpoint
EndpointReferenceType subscriber = ...; // create subscriber endpoint

// create WS-Eventing subscription manager
SubscriptionManager subscriptionManager = SubscriptionManager.getInstance();

// create subscription request
SubscriptionRequest subscriptionRequest = new SubscriptionRequest(eventSource, subscriber);

// add filter to the subscription request
Filter filter = new Filter();
filter.addTopic("my-topic");
subscriptionRequest.setFilter(filter);

// subscribe to the event source
subscriptionManager.subscribe(subscriptionRequest);

// publish event to the event source
Event event = new Event();
event.setTopic("my-topic");
event.setMessage("Hello, world!");
subscriptionManager.publish(event);

Lecture outcomes

• WSDL

• UDDI

• Registry

• Addressing

• Notifications

