Lecture #3
WSDL

Registering and Discovering
Spring 2024

WSDL

e WSDL stands for Web Services Description Language
e WSDL is an XML-based language used for describing web services

e WSDL is used to describe the functionality offered by a web service, its inputs
and outputs, and how to access it

Types
What data types will be transmitted
Messages

Abstract | What messages will be transmitted
Definition of < Port Types

Service What business operations (functions)
will be supported

Bindings

How will the messages be transmitted
on the wire?

What message protocol (e.g. SOAP)
specific details are there?

Service ports
Where is the service located?

Protocol and
physical
locations

Structure of WSDL

e WSDL is composed of three main parts:
e Service description: describes the functionality of the web service
e Types definition: defines the data types used in the web service

e Message exchange patterns: describes how messages are
exchanged between client and server

Types
What data types will be transmitted
Messages

Abstract | What messages will be transmitted
Definition of < Port Types

Service What business operations (functions)
will be supported

Bindings

How will the messages be transmitted
on the wire?

What message protocol (e.g. SOAP)
specific details are there?

Service ports
Where is the service located?

Protocol and
physical
locations

Example of WSDL

<wsdl:definitions name="StockQuoteService"
targetNamespace="http://example.com/stockquote.wsdl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<wsdl:types>
<xs:schema targetNamespace="http://example.com/stockquote.wsdl">
<xs:element name="GetStockPriceRequest">
<xs:complexType>
<Xxs:sequence>
<xs:element name="symbol" type="xs:string"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="GetStockPriceResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="price" type="xs:decimal"/>
</Xs:sequence>
</xs:complexType>

</xs:element>
Pl) P

<xs:element name="GetStockPriceResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="price" type="xs:decimal"/>
</Xxs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
</wsdl:types>

<wsdl:message name="GetStockPriceRequest">

<wsdl:part name="parameters" element="tns:GetStockPriceRequest"/>
</wsdl:message>
<wsdl:message name="GetStockPriceResponse">

<wsdl:part name="parameters" element="tns:GetStockPriceResponse"/>
</wsdl:message>

<wsdl:portType name="StockQuotePortType">
<wsdl:operation name="GetStockPrice">
<wsdl:input message="tns:GetStockPriceRequest"/>
<wsdl:output message="tns:GetStockPriceResponse"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetStockPrice">

<wsdl:operation name="GetStockPrice">
<wsdl:input message="tns:GetStockPriceRequest"/>
<wsdl:output message="tns:GetStockPriceResponse"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetStockPrice">
<soap:operation soapAction="http://example.com/GetStockPrice"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:1input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="StockQuoteService">
<wsdl:port name="StockQuoteSoapPort" binding="tns:StockQuoteSoapBinding">
<soap:address location="http://example.com/stockquote"/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

WSDL Versioning and Extensions

e WSDL allows for versioning of web services, enabling clients to use different
versions of a service

e WSDL also supports extensions, allowing developers to add custom
functionality to their web services

e WSDL versioning and extensions are important for maintaining compatibility and
flexibility in web services

WSDL Versioning

e WSDL versioning allows for multiple versions of a web service to coexist

A new version of a web service can be created by adding or modifying elements
in the WSDL file

e Clients can use a specific version of a web service by specifying the version in
the request

WSDL Extensions

e WSDL extensions allow developers to add custom functionality to their web
services

e Extensions are defined using XML Schema and can be added to the WSDL file
as needed

e Popular extensions include WS-Addressing, WS-Security, and WS-Policy

WS-Addressing

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsa="http://www.w3.0org/2005/08/addressing">

e WS-Addressing provides a standard way to

include addressing information in SOAP <wsdl:message name="MyRequest">

messages <wsa:Action>http://example.org/MyService/Request</wsa: Action>
e |t enables the identification of the intended </wsdl:message>

recipient of a message and the reply address <wsdl:message name="MyResponse">

<wsa:Action>http://example.org/MyService/Response</wsa: Action>

e WS-Addressing also supports message
correlation and the propagation of security </wsdl:message>
and policy information
</wsdl:definitions>

WS-Addressing

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsa="http://www.w3.0org/2005/08/addressing">

e WS-Addressing provides a standard way to

include addressing information in SOAP <wsdl:message name="MyRequest">

messages <wsa:Action>http://example.org/MyService/Request</wsa: Action>
e |t enables the identification of the intended </wsdl:message>

recipient of a message and the reply address <wsdl:message name="MyResponse">

<wsa:Action>http://example.org/MyService/Response</wsa: Action>

e WS-Addressing also supports message
correlation and the propagation of security </wsdl:message>
and policy information
</wsdl:definitions>

WS-Security

<wsdl:definitions xmins:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsa="http://www.w3.0org/2005/08/addressing">

e WS-Security provides a standard way to

secure SOAP messages over different <wsse:policy wsu:ld="ExampleServicePolicy"
transport protocols xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
0as1s-200401-wss-wssecurity-utility-1.0.xsd">
e |t supports message integrity, confidentiality, <wsse:usernameToken>
and authentication <wsse:username/>
<wsse:password/>
e WS-Security also provides a framework for </wsse:usernameToken>
exchanging security tokens between service </wsse:policy>

providers and consumers
</wsdl:definitions>

WS-Policy

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsa="http://www.w3.org/2005/08/addressing">

e WS-Policy provides a framework for <wsp:Policy wsu:Id="ExampleServicePolicy"
describing the capabillities and requirements of xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
web services oasi1s-200401-wss-wssecurity-utility-1.0.xsd">
<wsp:ExactlyOne>
* |t enables service providers to describe their <wsp:All>
policies and clients to specify their policy <http:BasicAuthentication xmlns:http="http://
requirements schemas.microsoft.com/wse/2003/06/http"/>
</wsp:All>
* WS-Policy also provides a standard way to </wsp:ExactlyOne>
express security requirements and preferences </wsp:Policy>

</wsdl:definitions>

Comparing WSDL and OpenAPIl/Swagger

What is OpenAPIl/Swagger?

e OpenAPIl/Swagger is a specification for

building and documenting APIs.
.‘ Open AP|

e |t defines a standard, language-agnostic 9 \’ Specification
interface for RESTful APlIs.

* |t allows developers to generate client @ Swagger

code, server stubs, and interactive
documentation automatically.

How does OpenAPIl/Swagger work?

e The OpenAPIl/Swagger specification is written
in YAML or JSON.

e |t defines the API endpoints, request
parameters, response payloads, and other
detalls.

* The specification can be used to generate
client code, server stubs, and interactive
documentation.

a%4 Open API
) V' Specification

Code Example ® oo

openapi:
info:
title:
description:
version:
SErVers:
- url:
paths:
/users:
get:
summary:
responses:
200'":
description:
content:
application/json:
schema:
type:
items:

type:

openapi: "3.0.0"
info:
title: "My API"
description: "This 1s a sample API"
version: "1.0.0"
SErvers:
- url: "https://api.example.com”
paths:
/users:
get:
summary: "Get a list of users"
responses:
200'":
description: "Successtul response’
content:
application/json:
schema:
type: "array”
items:
type: "object”
properties:
1d.:
type: "integer"
description: "User [D"
name:
type: "string"
description: "User name”

!

a4 Open AP
7\ Specification

@ Swagger

Key Features of OpenAPIl/Swagger

paths:
/pets:
* OpenAPI specification defines a standard, get.
language-agnostic interface for REST APIs. summary: Returns all pets
responses:
* The specification is machine-readable, which 900"
means it can be easily interpreted by tools and description: A list of pets.
software.
content:
e OpenAPI provides a comprehensive documentation application/json:
for APls, including endpoints, methods, schema:
parameters, request/response structures, and error type: array
codes. 1tems:

$ref:

Benefits of OpenAPl/Swagger

* OpenAPI makes it easier to build and maintain APIs
by providing a standardized interface that is easy to
use and understand.

* The specification is self-documenting, which
means that it can be used to generate API
documentation automatically.

* OpenAPI can be used to generate client libraries in
a variety of programming languages, which makes
it easier for developers to use your API.

openapi: 3.0.0
info:
title: Petstore API
version: 1.0.0
SErVers:
- url: https://ap1.example.com/v1
paths:
/pets:
get:
summary: Returns all pets
responses:
200'":
description: A list of pets.
content:
application/json:
schema:
type: array
items:
$ref:

Benefits of OpenAPl/Swagger

* OpenAPI makes it easier to build and maintain APIs
by providing a standardized interface that is easy to
use and understand.

* The specification is self-documenting, which
means that it can be used to generate API
documentation automatically.

* OpenAPI can be used to generate client libraries in
a variety of programming languages, which makes
it easier for developers to use your API.

openapi: 3.0.0
info:
title: Petstore API
version: 1.0.0
SErVers:
- url: https://ap1.example.com/v1
paths:
/pets:
get:
summary: Returns all pets
responses:
200'":
description: A list of pets.
content:
application/json:
schema:
type: array
items:
$ref:

Limitations of OpenAPIl/Swagger

openapi: 3.0.0
info:
title: Petstore API
version: 1.0.0

e OpenAPIl is limited to RESTful APIs and does not SCLVETS,
support other types of APIs, such as SOAP or - url: https://ap1.example.com/v1
GraphQL. paths:
/pets:
* The specification can become overly complex for get:
larger APIs, which can make it difficult to summary: Returns all pets
maintain. responses:
200';
* OpenAPI can be time-consuming to implement, description: A list of pets.
especially for smaller APIs with limited resources. et
application/json:
schema:
type: array
1tems:

$ref:

Drawbacks of OpenAPIl/Swagger

swagger:
info:

version: 1.0.0

title: Swagger Petstore

description: A sample API that uses a petstore

* OpenAPl is limited to describing the structure and as an example to demonstrate features
behavior of APIs and does not provide guidance on in the swagger-2.0 specification
best practices or design patterns. host: petstore.swagger.io
basePath: /v2
* The specification can be restrictive and may not S et
support all of the features or behaviors of your API. http
* OpenAPI does not provide any mechanism for paths:
testing or validating APIs, which can make it /pet/{petld
difficult to ensure compliance with the get.
specification. summary: Find pet by ID

description: Returns a single pet
operationld: getPetByld
produces:
- application/json
parameters:
- name: petld
in: path
description: ID of pet

Syntax Comparison: WSDL vs OpenAPIl/Swagger

e WSDL uses XML to define services,
messages, operations, and endpoints.

e OpenAPIl/Swagger uses YAML or JSON to
define API| paths, operations, parameters, and

reSponses.

e WSDL requires separate files for each
endpoint, while OpenAPIl/Swagger defines all

endpoints in a single file.

<definitions name= " targetNamespace="
xmlns="
xmlns:tns="
xmlns:xsd="

<message name=" ">
<part name=" " type=" ">
</message>

<message name=" ">
<part name=" " type=" ">
</message>

<portType name=" ">
<operation name=" ">
<input message=" ">
<output message=" ">
</operation>
</portType>

<binding name=" " type="
<soap:binding style=" " transport="
<operation name=" ">
<soap:operation soapAction="
<input>
<soap:body use=" ">
</input>
<output>
<soap:body use=" ">
</output>
</operation>
</binding>

<service name=" ">
<port name=" " binding="
<soap:address location="
</port>
</service>

</definitions>

H/>

||/>

" style="

H/>

Syntax Comparison: WSDL vs. OpenAPIl/Swagger

e WSDL uses SOAP for communication and data
exchange, while OpenAPIl/Swagger uses a variety of
formats, including JSON and XML.

e WSDL defines both the message structure and the
transport protocol, while OpenAPl/Swagger only defines
the message structure.

 WSDL allows for more fine-grained control over
message and operation definitions, while OpenAPI/
Swagger has a simpler syntax for defining API
operations.

openapi: 3.0.0
info:
title: Petstore API
version: 1.0.0
SErVers:
- url: https://ap1.example.com/v1
paths:
/pets:
get:
summary: Returns all pets
responses:
200'":
description: A list of pets.
content:
application/json:
schema:
type: array
items:
$ref:

Syntax Comparison: WSDL vs. OpenAPIl/Swagger

e WSDL supports more complex types and
operations than OpenAPIl/Swagger.

* OpenAPIl/Swagger supports more modern API
technologies, such as REST and JSON, while
WSDL is primarily used with SOAP.

e WSDL has been around for longer and has a larger
developer community, while OpenAPIl/Swagger is
more lightweight and easier to use for smaller
projects.

<xs:element name="
<xs:complexType>
<xs:sequence>

<xs:element name="

</Xxs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="
<xs:complexType>
<xs:sequence>

<xS:element name="

</Xs:sequence>
</xs:complexType>
</xs:element>

H>

n type:”

H>

" type:”

H/>

H/>

OpenAPIl/Swagger Conclusion

swagger:
info:
version: 1.0.0
title: Swagger Petstore
description: A sample API that uses a
petstore as an example to demonstrate
features 1n the swagger-2.0 specification

host: petstore.swagger.10
basePath: /v2

e OpenAPIl/Swagger is a powerful tool for
building and documenting REST APIs.

 The specification provides a standardized,

machine-readable interface that is easy to use SChhetItneS:
and understand. - http
paths:
e OpenAPI/Swagger can help to increase /Peti {petld}:
get:

adoption and usage of your API, which can

lead to increased business opportunities. summary: Find pet by 1D

description: Returns a single pet
operationld: getPetByld
produces:
- application/json
parameters:
- name: petld
in: path
description: ID of pet

Non-Functional Descriptions in WSDL

Non-Functional Descriptions in WSDL

<wsdl:service name="StockQuoteService">
<wsdl:port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">

e WSDL includes non-functional descriptions, which <soap:address location="http://example.com/stockquote" />
provide additional information about the service that <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
cannot be conveyed through the functional descriptions ~ <"s#:Fndpomtieference>
alone <wsa:Address>http://example.com/stockquote</wsa: Address>

<wsa:ReferenceParameters>
<wsa:Metadata>
<wsdl:service name="StockQuoteService">
<wsdl:port name="StockQuotePort">
<wsdlsoap:address location="http://example.com/stockquote" />
<wsd:UsingAddressing xmlns:wsd="http://www.w3.0rg/2006/05/addressing/wsdl"/>
</wsdl:port>
</wsdl:service>
</wsa:Metadata>
</wsa:ReferenceParameters>
</wsa:EndpointReference>
</wsdl:port>
</wsdl:service>

* Non-functional descriptions in WSDL include information
such as security requirements, quality of service
parameters, and endpoint information.

* These non-functional descriptions are critical to ensuring
that the service can be properly consumed and
managed by clients and other applications.

Non-Functional Descriptions in WSDL

 Performance can be specified using WS-Policy, which
provides a standard way of specifying performance
requirements such as response time and throughput.

 WS-Addressing can be used to specify message
addressing requirements, such as the source and
destination of messages.

» However, the use of these non-functional descriptions
can add complexity to WSDL and may require
additional tools or frameworks to implement.

<wsdl:binding name="
<wsp:PolicyReference URI="
<soap:binding style="
<wsdl:operation name="
<soap:operation soapAction="
<wsdl:input>
<soap:body use=" ">
</wsdl:input>
<wsdl:output>
<soap:body use=" ">
</wsdl:output>
<wsp:PolicyReference URI="
</wsdl:operation>
</wsdl:binding>

" transport=
H>

"

" type:"

H/>

||/>

H>

H/>

Registering and Discovering Web Services

Service Registries

e Service registries are a type of service
discovery mechanism used to locate web
services.

e Service registries provide a central location for
web services to register their availability and for
clients to discover available services.

* Service registries can be implemented using
various technologies such as UDDI and Consul.

"name'":
"tags": |
"address':
"port": 8080

Service Registries

e Service registries can be implemented as
standalone systems or as part of a larger service
mesh infrastructure.

e Standalone service registries can be implemented
using open source software such as Eureka or
ZooKeeper.

e Service mesh infrastructure typically includes
service registry functionality as well as other
features such as traffic management and security.

<wsdl:service name="
<wsdl:port name="
<soap:address location="'
</wsdl:port>
</wsdl:service>

!

H>
" binding="

/>

H>

Service Discovery

e Service discovery is the process of
automatically locating web services.

e Service discovery can be accomplished GET /api/v1/stock-quote HTTP/1.1
using various mechanisms such as DNS, Host: service-discovery.example.com
service registries, or load balancers.

e Service discovery enables dynamic routing
of requests to available web services.

Service Discovery

e DNS-based service discovery uses DNS records to
publish service endpoints and discover available
services.

e Service registries provide a central location for web
services to register their availability and for clients
to discover available services.

* | oad balancers can be used for service discovery
by routing traffic to available endpoints based on
defined load balancing rules.

"name":
"tags": |
"address':
"port": 8080

Service Discovery

e Service discovery can be implemented as part of
a larger service mesh infrastructure.

e Service mesh infrastructure typically includes
service discovery functionality as well as other
features such as traffic management and security.

e Service mesh infrastructure can be implemented

using open source software such as Istio or
Linkerd.

<wsdl:service name="
<wsdl:port name="
<soap:address location="
</wsdl:port>
</wsdl:service>

H>
" binding="

H/>

H>

UDDI: Universal Description,
Discovery, and Integration

e UDDI is a platform-independent, XML-based

registry for businesses to list their services

and for clients to discover available services.

 UDDI supports a hierarchical structure of

service providers, service descriptions, and

service bindings.

e UDDI enables searching for services based on

keywords, service categories, and location.

<bindingTemplate>
<accessPoint useType=" ">
http://example.com/StockQuoteService
</accessPoint>
<tModellnstanceDetails>
<tModellnstancelnfo tModelKey="
instanceParms="
</tModellnstanceDetails>
</bindingTemplate>

/>

"

UDDI: Universal Description,
Discovery, and Integration

 UDDI provides mechanisms for service providers to
manage the lifecycle of their services, including
publishing, updating, and deleting services.

 UDDI includes security mechanisms such as
authentication and authorization to control access
to the registry.

 UDDI can be used in combination with other
service discovery mechanisms such as DNS-based
discovery and service meshes.

<bindingTemplate>
<accessPoint useType=" ">
http://example.com/StockQuoteService
</accessPoint>

<tModellnstanceDetails>
<tModellnstancelnfo tModelKey="
instanceParms=" ">
</tModellnstanceDetails>
<bindingDescription>
Provides stock quote information for US equities.
</bindingDescription>
</bindingTemplate>

"

UDDI: Universal Description,
Discovery, and Integration

 UDDI has largely been replaced by newer service
discovery mechanisms such as service registries
and service meshes.

 UDDI has limited adoption due to complexity, lack
of standardization, and the rise of RESTful web
Services.

 UDDI is still used in some industries such as
healthcare and government where interoperability
between different systems is critical.

<businessService>
<name>Payment Processing Service</name>
<description>Provides payment processing for e-commerce sites</description>
<bindingTemplates>
<bindingTemplate>
<accessPoint>http://example.com/payments</accessPoint>
</bindingTemplate>
</bindingTemplates>
</businessService>

Mapping WSDL Services to UDDI

WSDL service maps to a UDDI business entity

Each WSDL port maps to a UDDI binding
template

A single WSDL port can map to multiple UDDI
binding templates if multiple protocols are used

UDDI tModels can be used to store additional
service metadata not present in WSDL files

<wsdl:service name=" ">

<wsdl:port name=" " binding="

<soap:address location="
</wsdl:port>
</wsdl:service>

<business name=" S
<bindingTemplate>
<accessPoint useType="http" url="
</bindingTemplate>
</business>

H>

H/>

/>

Mapping WSDL Services to UDDI

e WSDL types can be mapped to UDDI
tModels

e UDDI tModels can be used to describe
service metadata such as security
policies, quality of service, etc.

e AWSDL type can map to multiple UDDI L |

tModels if multiple facets are present <xs:element name=" " type="
</xs:schema>

<tModel name=" ">
<categoryBag>
<keyedReterence tModelKey="
keyName=" " keyValue=" ">
</categoryBag>

</tModel>

Mapping WSDL Services to UDDI

e Pros:
 Enables automatic registration of web services on a UDDI registry

e Makes it easier to discover and consume web services from a
centralized registry

* Facilitates the reuse of existing WSDL descriptions and metadata
e Cons:
e | imited support for modern web service protocols and standards

* Requires significant setup and configuration of both the WSDL and
UDDI registry

e Limited tooling and community support for the WSDL to UDDI
mapping model.

Introduction to UDDI API

e UDDI API consists of two parts:
e UDDI Inquiry API

 UDDI Publish AP]

UDDI Inquiry API

* The UDDI Inquiry API provides read-only
access to the UDDI registry.

e |t is used to discover the available services
and retrieve their details from the registry.

 The UDDI Inquiry API allows searching for
services using different criteria such as
business name, service hame, or service
category.

UDDI Publish API

e The UDDI Publish API provides write access
to the UDDI reqistry.

e |t is used to publish new services and
update the details of existing services in the
registry.

 The UDDI Publish API allows creating new
businesses, services, and binding templates.

UDDI API Limitations

e The UDDI API has not gained widespread
adoption due to several limitations.

e |t is a complex and heavy-weight
standard, making it difficult to implement
and use.

 UDDI requires a centralized registry, which
can become a single point of failure.

Introduction to Querying the UDDI
Model

e Querying is the process of searching for and
retrieving information from the UDDI registry

e The UDDI model defines a set of APIs that
enable clients to query the registry

e The UDDI query language is based on XML
and supports a wide range of query types
and filters

UDDI Query Language Basics

<find_ business

xmlns="

xmlns:uddi="

xmlns:soapenv=" ">
<authInfo>REPLACE WITH AUTH TOKEN</authlnfo>
<name>example business</name>

</find business>

"

"

 This example shows a UDDI query that searches for a
business with the name "example business”

e The query is sent using the find_business API, which is used
to search for businesses in the registry

e The authlnfo element contains the authentication token that is
required to access the registry

UDDI Usage Model and Deployment
Variants

e UDDI usage model can vary depending on the needs of the
organization.

 There are different deployment variants of UDDI to meet the
needs of different organizations.

e The deployment of UDDI can be done on a local server, a
public server or in the cloud.

UDDI Deployment Variants

e | ocal server deployment is suitable for organizations that
prefer to keep their services on-premise.

 Public server deployment is suitable for organizations that
want to make their services available to the public.

e Cloud deployment is suitable for organizations that want a
scalable and flexible solution.

UDDI Adoption Challenges

 Adoption of UDDI can be challenging due to its complexity.

e UDDI adoption can require significant resources and
investment.

e Organizations may face challenges in integrating UDDI with
their existing systems.

Addressing and Notification

Web Services and Stateful Resources

e |n stateful resources, data changes over time, and the
application's state changes along with it.

 \WWeb services are inherently stateless, meaning that they don't
maintain information about previous requests.

 To deal with stateful resources, developers need to use a
variety of techniques, such as cookies or hidden form fields.

A shopping cart 1s an example of a stateful resource.
In a web service, we can represent a shopping cart as
an object with its own state, and each item added to
the cart changes the state of the object.

Stateful vs. Stateless Web Services

e Stateless web services do not maintain any state information
between requests.

e Stateless web services are easier to scale because they do
not require any session management.

e Stateless web services require that all of the information
needed for a request is included in that request.

A stateless web service might be used for retrieving
information from a database. Each request includes

all the information needed to retrieve the data,

so there 1s no need to maintain any session information.

Techniques for Managing Stateful
Resources in Web Services

e Cookies are a popular way to manage stateful resources.

e Hidden form fields can also be used to manage stateful
resources.

e Developers can also use a unique identifier in each request to
identify the session associated with that request.

A session token could be used to 1dentity the
session assoclated with a particular request.
The token would be included in each request,
allowing the server to associate the request
with the correct session.

WS-Resource Framework
Introduction

e The WS-Resource Framework is a set of specifications that
provides a framework for working with stateful resources in web

services.

* The framework defines the following components: WS-Resource,
WS-ResourceProperties, and WS-Resourcelifetime.

e The WS-Resource Framework is intended to enable interoperable
communication between different web service implementations.

WS-Resource Framework
Components

 WWS-Resource: A web service that provides access to a stateful resource. A
WS-Resource can be accessed through a set of operations, which can create,
read, update, and delete the stateful resource.

 WS-ResourceProperties: A mechanism for describing the stateful resource
being accessed. The WS-ResourceProperties specification defines an XML
format for describing the properties of a WS-Resource.

* WS-Resourcelifetime: A set of operations for managing the lifetime of a WS-
Resource. The WS-ResourcelLifetime specification defines a set of operations
for creating, destroying, and renewing a WS-Resource.

Pros and Cons of
WS-Resource Framework

e Pros:
 Provides a framework for working with stateful resources in web services.

e Enables interoperable communication between different web service
implementations.

e Offers a standardized mechanism for managing the lifetime of a WS-Resource.
e Cons:

e The WS-Resource Framework can be complex to implement and use.

 The framework may not be appropriate for all web service scenarios.

 The use of WS-ResourceProperties may introduce additional overhead in web
service communication.

Web Services Notification

e Web Services Notification (WSN) is a specification for publishing and
subscribing to notifications in a web services environment.

e |t allows service providers to send notifications to interested parties about
events that have occurred.

e WSN provides a flexible and extensible framework for notification delivery
that is independent of the underlying transport protocol.

WSN Features

e WSN defines a standard set of message formats for publishing and
subscribing to notifications.

e |t provides a flexible and extensible framework for notification delivery,
allowing for different delivery modes, such as publish/subscribe and
request/response.

e WSN also includes mechanisms for handling security and reliability.

WSN Example

e Here is an example of a WSN message format for publishing a
notification:

<wsnt:Notify xmlns:wsnt=" ">
<wsnt:NotificationMessage

<wsnt: Topic>

/example/topic

</wsnt: Topic>

<wsnt:Message>

Notification message content.

</wsnt:Message>

</wsnt:NotificationMessage>

</wsnt:Notify>

e This message publishes a notification with the topic "/example/topic" and the message content
"Notification message content.”

* |nterested parties can subscribe to this topic and receive notifications when they are published.

Web Services Eventing

 Web Services Eventing is a standard for asynchronous event notification between web
services.

* |t allows a service to notify another service about the occurrence of an event or state
change in the first service.

* This enables a decoupled architecture, where services are not tightly coupled to each other.

<wsa:Action>http://example.org/events/myEvent</wsa: Action>
<wsa:MessagelD>urn:uuid:abc12345-6789-0abc-detg-1234567890h1</wsa:MessagelD>
<wsa:ReplyTo>

<wsa:Address>http://example.org/services/eventConsumer</wsa: Address>
</wsa:ReplyTo>

How Web Services
Eventing Works

Web Services Eventing uses a combination of the WS-Eventing and WS-Addressing specifications to enable event-based
communication.

Publishers create events and send them to an event source, which is typically a message broker or a dedicated eventing service.
Subscribers register with the event source to receive events that match their interests, typically by specifying a set of filters.

When an event is published that matches a subscriber's filters, the event source sends the event to the subscriber.

EndpointReferenceType eventSource = ...;
EndpointReferenceType subscriber = ...;

SubscriptionManager subscriptionManager = SubscriptionManager.getlnstance();

SubscriptionRequest subscriptionRequest = new SubscriptionRequest(eventSource, subscriber);

EndpointReterenceType eventSource = ...;
EndpointReferenceType subscriber = ...;

SubscriptionManager subscriptionManager = SubscriptionManager.getlnstance();

SubscriptionRequest subscriptionRequest = new SubscriptionRequest(eventSource, subscriber);

Filter filter = new Filter();
filter.addTopic("'my-topic");
subscriptionRequest.setFilter(filter);

subscriptionManager.subscribe(subscriptionRequest):

Event event = new Event();
event.setTopic("my-topic");
event.setMessage("'Hello, world!");
subscriptionManager.publish(event);

Lecture outcomes

e WSDL

. UDDI @UTC@M

e Registry \
e Addressing

e Notifications

