
Lecture #2
SOAP
Spring 2024

 Introduction to SOAP Web Services

• Stands for Simple Object Access Protocol

• A messaging protocol used to exchange structured
data over the internet

• Use XML as their message format

Brief History of SOAP Web Services

• SOAP was first introduced by Microsoft in 1998 as a protocol for
exchanging structured data over the internet

• SOAP 1.1 was published as a W3C recommendation in 2000

• SOAP 1.2 was published as a W3C recommendation in 2003

Evolution of SOAP Web Services

• With the introduction of RESTful web services in mid-2000s,
SOAP faced competition

• SOAP 1.2 introduced more flexibility and support for wider range
of transport protocols

• SOAP 1.2 became widely adopted by enterprises for integration
of their systems

Current State of SOAP Web Services

• Continue to be used for enterprise-level integrations and large-
scale applications

• SOAP 1.2 still remains the current version of the SOAP protocol

• Many programming languages and platforms provide built-in
support for SOAP web services

Understanding the
Web Services Architecture

Client-Server Model

• Web services architecture is based on the client-server model for
distributed computing

• The client is the software component that consumes the services
provided by the server

• The server is the software component that provides the services
to the client

Standardized Protocols

• Web services architecture uses standardized protocols to ensure
interoperability between different software components

• HTTP is the standard protocol for web communication

• XML and SOAP are commonly used for data exchange in web
services

SOAP vs RESTful

• Web services can be classified as either SOAP or RESTful

• SOAP web services use the SOAP protocol for message
transmission

• RESTful web services use the REST architecture and typically
use the HTTP protocol

 Key Characteristics
of

SOAP Web Services

XML-Based Message Format

• SOAP web services use an XML-based message format

• This makes it easier to exchange structured data

• Ensures interoperability between different systems

Designed for Distributed Computing

• SOAP web services are designed for distributed computing

• Facilitate communication between different software components

• Can be located on different systems or platforms

Built-in Error Handling and Security

• SOAP web services have built-in error handling capabilities

• This makes it easier to handle errors that may occur during
message transmission or processing

• SOAP web services also support security and transaction
handling

Advantages of SOAP Web Services

• Robust error handling

• Wide industry support

• Built-in security features

Disadvantages of SOAP Web Services

• Complex message structure

• Slower performance compared to
RESTful web services

• Large message size

Comparison between SOAP and
RESTful Web Services

• SOAP:

• Complex message structure

• Uses XML for data exchange

• Robust error handling

• Built-in security features

• RESTful:

• Simple message structure

• Uses JSON for data exchange

• Fast performance

• No built-in error handling or
security features

Comparison between SOAP and
RESTful Web Services

• SOAP:

• Complex message structure

• Uses XML for data exchange

• Robust error handling

• Built-in security features

• RESTful:

• Simple message structure

• Uses JSON for data exchange

• Fast performance

• No built-in error handling or
security features

Comparison between SOAP and
RESTful Web Services

• SOAP:

• Complex message structure

• Uses XML for data exchange

• Robust error handling

• Built-in security features

• RESTful:

• Simple message structure

• Uses JSON for data exchange

• Fast performance

• No built-in error handling or
security features

How SOAP Works

1. Client sends a SOAP request
to the server.

2. Server receives the SOAP
request and processes it.

3. Server sends a SOAP
response back to the client.

4. Client receives the SOAP
response and processes it.

How SOAP Works

1. Client sends a SOAP request
to the server.

2. Server receives the SOAP
request and processes it.

3. Server sends a SOAP
response back to the client.

4. Client receives the SOAP
response and processes it.

Messages and
Envelope Structure

Messages and Envelope Structure

• SOAP messages have a defined
structure that consists of a
mandatory envelope element and
optional header and body elements.

• The envelope element is the root
element of the SOAP message and
contains all other elements.

• The header element is optional and
can contain additional information
about the message, such as
security credentials or routing
information.

• The body element is mandatory and
contains the actual message data.

Understanding Headers

• SOAP headers are optional and
can contain additional
information about the message.

• Headers can be used to provide
additional information, such as
authentication credentials or
routing information.

• Headers are defined using the
soap:Header element.

Understanding the Body

• SOAP body is mandatory and
contains the actual message
data being exchanged between
the client and server.

• The content of the SOAP body
can be any type of data, but it
is typically in XML format.

• The SOAP body is defined
using the soap:Body element.

Understanding Faults

• SOAP faults are used to
indicate errors that occur during
the processing of a SOAP
message.

• SOAP faults are defined using
the soap:Fault element.

• SOAP faults can contain a fault
code, a fault string, and a fault
detail.

Handling SOAP Faults

• Clients can handle SOAP faults
using try-catch blocks.

• When a SOAP fault occurs, the
client can extract the fault code,
fault string, and fault detail from
the SOAP message.

• Clients can use the information
in the SOAP fault message to
take appropriate action, such
as retrying the operation or
notifying the user.

Best Practices for SOAP Faults

• Use meaningful fault codes and
fault strings.

• Provide detailed fault details to
help diagnose and fix errors.

• Use appropriate HTTP status
codes to indicate success or
failure.

SOAP Binding and
Transport Protocol

Binding and Transport Protocol

• SOAP binding specifies how
SOAP messages are mapped
onto a transport protocol.

• SOAP binding can be either
HTTP or SMTP.

• Transport protocol defines how
messages are transmitted over
the network.

SOAP with HTTP and HTTPS

• SOAP with HTTP is the most
common SOAP binding.

• HTTP provides a lightweight
and flexible protocol for
transmitting SOAP messages.

• HTTPS provides a secure
version of HTTP and is
commonly used for SOAP-
based web services that require
encryption and authentication.

SOAP with SMTP and TCP

• SOAP with SMTP is less
common than SOAP with HTTP.

• SMTP is used for SOAP-based
email services.

• SOAP with TCP is less common
than SOAP with HTTP and is
used for low-level network
communication.

Creating a SOAP
Service

Creating a Simple SOAP Web Service in Java

• Java provides several libraries
and tools for creating SOAP-
based web services.

• The Java API for XML Web
Services (JAX-WS) is a
standard Java API for building
SOAP-based web services.

• Creating a simple SOAP web
service in Java involves defining
the service interface,
implementing the service, and
deploying the service to a web
server.

@WebService
public class HelloWorld {

 @WebMethod
 public String sayHello(String name) {
 return "Hello, " + name + "!";
 }

}

Defining the Service Interface

• The service interface defines
the methods that the service
will expose.

• The @WebService and
@WebMethod annotations are
used to define the service
interface.

• The service interface can be
defined using either Java SE or
Java EE.

@WebService
public interface HelloWorld {

 @WebMethod
 public String sayHello(String name);

}

Implementing the Service

• The service implementation
contains the actual
implementation of the methods
defined in the service interface.

• The @WebService and
@WebMethod annotations are
used to define the service
implementation.

• The service implementation can
be defined as a standalone
Java class or as a Java EE
session bean.

@WebService
public class HelloWorldImpl implements HelloWorld {

 @Override
 public String sayHello(String name) {
 return "Hello, " + name + "!";
 }

}

@WebService
public interface HelloWorld {
 @WebMethod
 String sayHello(String name);
}

@WebService(endpointInterface = "com.example.HelloWorld")
public class HelloWorldImpl implements HelloWorld {
 @Override
 public String sayHello(String name) {
 return "Hello, " + name + "!";
 }
}

public class Main {
 public static void main(String[] args) {
 Endpoint.publish("http://localhost:8080/hello", new HelloWorldImpl());
 }
}

Testing the SOAP Web Service

Deploying the Service

Using WSDL to Describe
SOAP Web Services

What is WSDL?

• WSDL describes the
operations, input and output
messages, and the binding
details of a web service.

• WSDL can be used by web
service clients to discover and
interact with the web service.

• WSDL is typically generated
automatically by the web
service development tools.

Anatomy of a WSDL Document

• A WSDL document consists of several
elements that describe the various aspects
of a web service.

• The types element defines the data types
used by the web service.

• The message element defines the
structure of the input and output
messages for each operation.

• The portType element defines the
operations that the web service provides.

• The binding element specifies the protocol
and message format used for each
operation.

• The service element describes the location
and protocol binding for the web service.

Generating WSDL for a SOAP Web Service

• To generate a WSDL file using
wsgen, you need to specify the
Java class that contains the
web service endpoint and the
location where the WSDL file
should be saved.

• Once the WSDL file is
generated, it can be used by
web service clients to discover
and interact with the web
service.

• WSDL can also be used to
generate client code for calling
the web service.

wsgen -cp . com.example.HelloWorldImpl -wsdl -keep

<definitions name="TemperatureConversionService"
 targetNamespace="http://example.com/temperature-conversion"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://example.com/temperature-conversion"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <xsd:schema targetNamespace="http://example.com/temperature-conversion">
 <xsd:element name="Fahrenheit" type="xsd:double"/>
 <xsd:element name="Celsius" type="xsd:double"/>
 </xsd:schema>
 </types>

 <message name="FahrenheitToCelsiusRequest">
 <part name="Fahrenheit" type="xsd:double"/>
 </message>

 <message name="FahrenheitToCelsiusResponse">
 <part name="Celsius" type="xsd:double"/>
 </message>

 <portType name="TemperatureConversion">
 <operation name="FahrenheitToCelsius">
 <input message="tns:FahrenheitToCelsiusRequest"/>

 <message name="FahrenheitToCelsiusResponse">
 <part name="Celsius" type="xsd:double"/>
 </message>

 <portType name="TemperatureConversion">
 <operation name="FahrenheitToCelsius">
 <input message="tns:FahrenheitToCelsiusRequest"/>
 <output message="tns:FahrenheitToCelsiusResponse"/>
 </operation>
 </portType>

 <binding name="TemperatureConversionSoapBinding" type="tns:TemperatureConversion">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="FahrenheitToCelsius">
 <soap:operation soapAction="http://example.com/temperature-conversion/FahrenheitToCelsius"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="TemperatureConversionService">
 <port name="TemperatureConversionSoap" binding="tns:TemperatureConversionSoapBinding">
 <soap:address location="http://example.com/temperature-conversion"/>

 <portType name="TemperatureConversion">
 <operation name="FahrenheitToCelsius">
 <input message="tns:FahrenheitToCelsiusRequest"/>
 <output message="tns:FahrenheitToCelsiusResponse"/>
 </operation>
 </portType>

 <binding name="TemperatureConversionSoapBinding" type="tns:TemperatureConversion">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="FahrenheitToCelsius">
 <soap:operation soapAction="http://example.com/temperature-conversion/FahrenheitToCelsius"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="TemperatureConversionService">
 <port name="TemperatureConversionSoap" binding="tns:TemperatureConversionSoapBinding">
 <soap:address location="http://example.com/temperature-conversion"/>
 </port>
 </service>

</definitions>

Generating Client-Side
Proxy Stubs with WSDL

Generating Client-Side Proxy Stubs with
WSDL

• A client-side proxy stub is a
code generated from the WSDL
that can be used to access the
web service from the client-side
application.

• Generating client-side proxy
stubs with WSDL can be done
using tools such as Apache
Axis, CXF, or the wsimport tool.

Using Apache CXF to Generate Client-Side Proxy
Stubs with WSDL

• Apache CXF is an open-source
web services framework that
can be used to develop and
deploy web services and
clients.

• The wsdl2java tool can be used
to generate client-side proxy
stubs from a WSDL using
Apache CXF.

• The generated code includes
Java classes and interfaces that
can be used to access the web
service.

wsdl2java -d /path/to/output/dir http://example.com/calculator?wsdl

Using wsimport to Generate Client-Side
Proxy Stubs with WSDL

• wsimport is a command-line
tool that is included with the
Java SDK.

• wsimport can be used to
generate client-side proxy stubs
from a WSDL.

• The generated code includes
Java classes and interfaces that
can be used to access the web
service.

wsimport -d /path/to/output/dir http://example.com/calculator?wsdl

Working with SOAP
Clients in .NET

Generating Client-Side Proxy Stubs with
WSDL

• .NET provides several ways to
create a SOAP client.

• One approach is to use the
"Add Service Reference" option
in Visual Studio, which
generates client proxy code
based on the service's WSDL
(Web Services Description
Language) file.

• Another approach is to
manually create a client proxy
by adding a Service Reference
to the service's WSDL file.

// Generate a client proxy using the "Add Service Reference"
// option in Visual Studio
var client = new MyServiceClient();

// Manually create a client proxy using a WSDL file
var wsdlUrl = "http://example.com/myservice?wsdl";
var binding = new BasicHttpBinding();
var endpoint = new EndpointAddress(wsdlUrl);
var client = new MyServiceClient(binding, endpoint);

Consuming a SOAP Web Service in .NET

• Once a SOAP client has been
created, developers can
consume a SOAP web service
using the client proxy.

• To call a web service method,
developers simply invoke the
corresponding method on the
client proxy object.

• The client proxy object handles
all communication with the web
service and returns the
method's response to the caller.

try
{
 // Call a method on the SOAP service using the client proxy
 var result = client.MyMethod(param1, param2);

 // Handle the method's response
 Console.WriteLine("Result: " + result);
}
catch (FaultException ex)
{
 // Handle the SOAP fault
 Console.WriteLine("SOAP Fault: " + ex.Message);
}

WS-Security

Consuming a SOAP Web Service in .NET

• WS-Security is a widely used
specification for securing SOAP
messages

• It defines a set of security
tokens and mechanisms for
protecting the confidentiality
and integrity of SOAP
messages

• WS-Security can be used to
secure SOAP messages in
various scenarios, including
authentication, encryption, and
digital signatures

WS-Security Architecture
• WS-Security uses a layered

architecture for securing SOAP
messages

• At the bottom layer, security
tokens are used to authenticate
users and provide proof of identity

• At the middle layer, message
encryption and signature are used
to ensure message confidentiality
and integrity

• At the top layer, security policies
are defined to specify which
security measures should be
applied to the SOAP message

Example Code for WS-Security
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.ServiceModel.Security;

// create a new binding with WS-Security
var binding = new BasicHttpBinding();
binding.Security.Mode = BasicHttpSecurityMode.TransportWithMessageCredential;
binding.Security.Message.ClientCredentialType = BasicHttpMessageCredentialType.UserName;

// create a new client with the binding
var client = new CalculatorServiceClient(binding, new EndpointAddress("http://example.com/calculator"));

// add WS-Security headers to the SOAP message
client.ClientCredentials.UserName.UserName = "username";
client.ClientCredentials.UserName.Password = "password";

// call the Add method
var result = client.Add(2, 3);

Example Code for WS-Security
// create a new client using the Apache CXF library
JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
factory.setServiceClass(MyWebService.class);
factory.setAddress("http://example.com/MyWebService");

MyWebService client = (MyWebService) factory.create();

// create a new WSS4J interceptor and set its properties
Map<String, Object> outProps = new HashMap<>();
outProps.put(WSHandlerConstants.ACTION, WSHandlerConstants.USERNAME_TOKEN);
outProps.put(WSHandlerConstants.USER, "myUsername");
outProps.put(WSHandlerConstants.PASSWORD_TYPE, WSConstants.PW_TEXT);
outProps.put(WSHandlerConstants.PW_CALLBACK_CLASS, ClientPasswordCallback.class.getName());

WSS4JOutInterceptor wssOut = new WSS4JOutInterceptor(outProps);

// add the interceptor to the client's endpoint
ClientProxy.getClient(client).getOutInterceptors().add(wssOut);

// call a method on the client
String result = client.myMethod("some parameter");

Overview of SOAP Attachments

Introduction to SOAP Attachments

• Definition of SOAP Attachments

• Importance of SOAP
Attachments

• Brief History of SOAP
Attachments

Types of SOAP Attachments

• Inline Attachments

• SwA (SOAP with Attachments)

• MTOM (Message Transmission
Optimization Mechanism)

Pros and Cons of SOAP Attachments

• Pros:

• Enables transmission of complex data
types

• Provides a mechanism to transfer binary
or text data

• Increases performance by reducing
message size

• Cons:

• Increases complexity of the SOAP
message

• Requires additional processing by the
SOAP client and server

• May require additional security
measures

Best Practices for Using SOAP
Attachments

• Use MTOM for large binary data

• Use SwA for small to medium-
sized binary data

• Use Inline Attachments for text
data

• Consider the impact on
message size and performance

• Ensure the security of the
attachments

SOAP Routing

How SOAP Routing Works

Benefits of SOAP Routing

• Simplifies network architecture

• Improves scalability

• Enables flexible routing based
on message content

Routing Rules
• XPath Routing Rule: This rule allows

the routing of a message based on
the value of an XPath expression.

• Regular Expression Routing Rule:
This rule allows the routing of a
message based on the matching of
a regular expression.

• Content-Based Routing Rule: This
rule allows the routing of a message
based on the contents of the
message.

• Header Routing Rule: This rule
allows the routing of a message
based on the value of a SOAP
header.

<rule-definition name="RouteByCountry">
 <xpath-rule match="/Envelope/Body/Order[country='USA']"/>
 <target-endpoint>http://example.com/ordersUSA</target-endpoint>
</rule-definition>

SOAP Intermediaries

Routing Rules
• Message handlers: intercept

and modify SOAP messages as
they flow through a SOAP
engine

• Transport handlers: intercept
and modify the underlying
transport protocol, such as
HTTP, before or after the SOAP
message is processed

• Service providers: act as a
service endpoint and process
SOAP requests like a regular
web service

Message Handler in Apache Axis

import org.apache.axis.MessageContext;
import org.apache.axis.handlers.BasicHandler;

public class MyHandler extends BasicHandler {

 public void invoke(MessageContext msgContext) {
 // Implement logic for handling the message
 // This could include modifying the message or logging information
 }

}

Implementing a transport handler in
Apache Axis

public class MyTransportHandler extends AbstractHandler {

 public InvocationResponse invoke(MessageContext msgContext) throws AxisFault {
 // get the message
 Message msg = msgContext.getRequestMessage();

 // manipulate the message
 // ...

 // call the next handler in the chain
 return invokeNext(msgContext);
 }
}

Universal Description, Discovery, and
Integration (UDDI) Overview

UDDI Architecture

• UDDI registry

• UDDI server

• UDDI client

UDDI Registry

import org.apache.juddi.api_v3.*;
import org.uddi.api_v3.*;
import org.uddi.api_v3.KeyType.*;
import org.uddi.api_v3.Name.*;
import org.uddi.api_v3.Description.*;
import org.uddi.api_v3.FindService.*;
import org.uddi.api_v3.ServiceList.*;
import org.uddi.api_v3.ServiceInfos.*;
import org.uddi.api_v3.ServiceInfo.*;
import org.uddi.api_v3.GetServiceDetail.*;
import org.uddi.api_v3.ServiceDetail.*;

UDDIInquiryPortType inquiry = new UDDIClient().getTransport().getUDDIInquiryService();
FindService fs = new FindService();
Name name = new Name();
name.setValue("Stock Quote Service");
fs.getName().add(name);
ServiceList sl = inquiry.findService(fs);
for (ServiceInfo si : sl.getServiceInfos().getServiceInfo()) {
 GetServiceDetail gsd = new GetServiceDetail();
 gsd.getServiceKey().add(si.getServiceKey());
 ServiceDetail sd = inquiry.getServiceDetail(gsd);
 System.out.println(sd);
}

Lecture outcomes

• SOAP Basics

• Benefits

• Architecture

• WSDL

• UDDI

