Lecture #2
SOAP

Spring 2024

Introduction to SOAP Web Services

e Stands for Simple Object Access Protocol

A messaging protocol used to exchange structured
data over the internet

e Use XML as their message format

SOAP \
) ~ =ll " -4 =ll - ")
%VZIOP@ <?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance™>
glement -

9 <soap:Body>

/ <Guru99WebService xmlns="http://tempuri.org/">

<TutorialID>int</TutoriallID> 0

</Guru99WebService> 0\ Poyometer
</soap:Body> rwy\red b'd

</soap:Envelope> the web
service

Brief History of SOAP Web Services

e SOAP was first introduced by Microsoft in 1998 as a protocol for
exchanging structured data over the internet

e SOAP 1.1 was published as a W3C recommendation in 2000

e SOAP 1.2 was published as a W3C recommendation in 2003

Evolution of SOAP Web Services

e With the introduction of RESTful web services in mid-2000s,
SOAP faced competition

e SOAP 1.2 introduced more flexibility and support for wider range
of transport protocols

e SOAP 1.2 became widely adopted by enterprises for integration
of their systems

Rest Web Service
Server

HTTP HTTP

Request Response

Client

Current State of SOAP Web Services

e Continue to be used for enterprise-level integrations and large-
scale applications

e SOAP 1.2 still remains the current version of the SOAP protocol

e Many programming languages and platforms provide built-in

support for SOAP web services
m e . S0AP 3 :
= «m»g‘

Understanding the
Web Services Architecture

Client-Server Model

e \Web services architecture is based on the client-server model for
distributed computing

e The client is the software component that consumes the services
provided by the server

e The server is the software component that provides the services
to the client

D _ Internet |
Clients f L

Standardized Protocols

e \Web services architecture uses standardized protocols to ensure
interoperability between different software components

e HTTP is the standard protocol for web communication

e XML and SOAP are commonly used for data exchange in web
services

SOAP vs RESTful

e \WWeb services can be classified as either SOAP or RESTful

e SOAP web services use the SOAP protocol for message
transmission

e RESTful web services use the REST architecture and typically
use the HT TP protocol

SOAP vs.REST APIs

SOAP is like using an envelope REST is like a postcard

Extraoverhead, more bandwidth required, more work Lighterweight, can be cached, easier to update.
on both ends (sealing and opening).

Key Characteristics

of
SOAP Web Services

XML-Based Message Format

e SOAP web services use an XML-based message format
 This makes it easier to exchange structured data

e Ensures interoperability between different systems

Designed for Distributed Computing

e SOAP web services are designed for distributed computing
e Facilitate communication between different software components

e Can be located on different systems or platforms

The distributed computing process

Built-in Error Handling and Security

Problem
Occurs

e SOAP web services have built-in error handling capabilities
Create

 This makes it easier to handle errors that may occur during =xception

message transmission or processing

| | | Throw
e SOAP web services also support security and transaction Exception

handling

Handle
- Exception |

Advantages of SOAP Web Services

 Robust error handling
e \Wide industry support

e Built-in security features

Disadvantages of SOAP Web Services

e Complex message structure

e Slower performance compared to
RESTful web services

e | arge message size

Comparison between SOAP and
RESTful Web Services

e SOAP:
e Complex message structure
 Uses XML for data exchange
* Robust error handling
e Built-in security features

e RESTHul:

e Simple message structure

e Uses JSON for data exchange
e Fast performance

* No built-in error handling or
security features

Comparison between SOAP and
RESTful Web Services

e SOAP:
e Complex message structure
 Uses XML for data exchange
* Robust error handling
e Built-in security features

e RESTHul:

e Simple message structure

e Uses JSON for data exchange
e Fast performance

* No built-in error handling or
security features

Comparison between SOAP and
RESTful Web Services

e SOAP:
e Complex message structure
 Uses XML for data exchange
* Robust error handling
e Built-in security features

e RESTHul:
e Simple message structure

e Uses JSON for data exchange

e Fast performance

* No built-in error handling or
security features

. Server receives the SOAP

. Client receives the SOAP

How SOAP Works

. Client sends a SOAP request
to the server.

n——-l |

Rest Web Service
Server

request and processes It.
Request
. Server sends a SOAP

response back to the client.

HTTP
Response

response and processes It.

. Server receives the SOAP

. Client receives the SOAP

How SOAP Works

. Client sends a SOAP request
to the server.

n——-l |

Rest Web Service
Server

request and processes It.
Request
. Server sends a SOAP

response back to the client.

HTTP
Response

response and processes It.

Messages and
Envelope Structure

Messages and Envelope Structure

SOAP messages have a defined
structure that consists of a
mandatory envelope element and
optional header and body elements.

The envelope element is the root
element of the SOAP message and
contains all other elements.

The header element is optional and
can contain additional information
about the message, such as
security credentials or routing
information.

The body element is mandatory and
contains the actual message data.

HTTP Message

Identifies message as a
SOAP message
(required)

Header

Header entry Processing instructions

Context information

ptona)

Actual message content
(required)

Attachment

Arbitrary content
Attachment (optional)
Attachment

Understanding Headers

HTTP Message

Identifies message as a

SOAP message
(required)
Header
° AP h r |
SO ea_de S are optlonal and M Processing instructions
can contain additional Context information

. . . |
information about the message. (optional)

e Headers can be used to provide Actual message content
additional information, such as (fequired)
authentication credentials or
routing information.

o Headers are defined using the
soap:Header element. N
omtona)

Attachment

Understanding the Body

HTTP Message

Identifies message as a

SOAP message
(required)
Header
°
SOAP bOdy IS mandatOry and M Processing instructions
contains the actual message Context information

I Head t :
data being exchanged between (optional)
the client and server.

Actual message content

e The content of the SOAP body S
can be any type of data, but it
Is typically in XML format.

o The SOAP body is defined
using the soap:Body element. g&ig;yncomem

Attachment

Understanding Faults

e SOAP faults are used to
indicate errors that occur during
the processing of a SOAP
message.

e SOAP faults are defined using
the soap:Fault element.

e SOAP faults can contain a fault
code, a fault string, and a fault
detalil.

<?xml wersion="1.0" encoding="UTF-8"7>
<env: Envelope
xnlns:env="http: //schemas. xunlsoap.org/soap/envelope/"
xmnlns:xsd="http: /f/Sfvvw. w3.org,/Z001 /XM LSchena"
xmlns:xsi="http: //uvvw. w3, org,/Z001 /XMLSchena-instance"
xmlns:enc="http: //schemnas. xnlsoap.orgs/soap/encoding,/"
xmlns:ns0="http: //bank.con/wsdl /BEigBank"
env: encodingsStyle="http: f/schemas. xmnlsoap.org/Ssoap/encoding/" >
<env:Body>
<env:Fault>
<faultcoderenv: Server<ffaultcode=
<faultstring>Internal Server Error
(unexpected encoding style:
expected=http: f/schenas. xnlsoap.org/S/soap/encoding/, actual=)
<ffaultstring>
</env:Fault>
</fenv:Body>
<fenv: Envelope>

Handling SOAP Faults

e Clients can handle SOAP faults
USing try—CatCh blocks. <?xml wersion="1.0" encoding="UTF-8"7:>

<env: Envelope
xnlns:env="http: //schemas. xunlsoap.org/soap/envelope/"

e When a SOAP fault occurs, the Tmlns: xsdsoRtp: frmaw. w3, 0rg/ 2001/ AMLAchasa "

xmlns:xsi="http: //uvvw. w3, org,/Z001 /XMLSchena-instance"

I xmlns:enc="http: //schemnas. xnlsoap.orgs/soap/encoding,/"
client can extract the fault code, T D el el e el

faUIt Stl’ing, and faU|t detall frOm env:encodingStyle="http: //schenas. xnlsoap. org/soap/encoding/" =
<env:Body>
the SOAP message. cenv:Fault>
<faultcoderenv: Server<ffaultcode=
<faultstring>Internal Server Error
e (Clients can use the information (unexpected encoding style: |
_ expected=http: f/schenas. xnlsoap.org/S/soap/encoding/, actual=)
in the SOAP fault message to < faultstring>
: . </env:Fault>
take appropriate action, such < fenv:Body>

as retrying the operation or <fenv: Envelope>
notifying the user.

Best Practices for SOAP Faults

e Use meaningful fault codes and
fault strings.

 Provide detailed fault detalls to
help diagnose and fix errors.

e Use appropriate HTTP status
codes to Iindicate success or
failure.

<?xml wersion="1.0" encoding="UTF-8"7>
<env: Envelope
xnlns:env="http: //schemas. xunlsoap.org/soap/envelope/"
xmnlns:xsd="http: /f/Sfvvw. w3.org,/Z001 /XM LSchena"
xmlns:xsi="http: //uvvw. w3, org,/Z001 /XMLSchena-instance"
xmlns:enc="http: //schemnas. xnlsoap.orgs/soap/encoding,/"
xmlns:ns0="http: //bank.con/wsdl /BEigBank"
env: encodingsStyle="http: f/schemas. xmnlsoap.org/Ssoap/encoding/" >
<env:Body>
<env:Fault>
<faultcoderenv: Server<ffaultcode=
<faultstring>Internal Server Error
(unexpected encoding style:
expected=http: f/schenas. xnlsoap.org/S/soap/encoding/, actual=)
<ffaultstring>
</env:Fault>
</fenv:Body>
<fenv: Envelope>

SOAP Binding and
Transport Protocol

Binding and Transport Protocol

Properties
(including

Ervironment containing per exchanged Fer-Transport Message

MNode properties. Externally - Exchange Context camying
observable and changeable exchange (instance) specific

e SOAP binding specifies how Fropertes N propertes
SOAP messages are mapped '
onto a transport protocol.

Exchange
Cnte ;

Properties Properties -

(including
exchanged

e SOAP binding can be either Propertes ressages)
HTTP or SMTP.

e [ransport protocol defines how
messages are transmitted over
the network.

SOAP with HTTP and HTTPS

e SOAP with HTTP is the most
common SOAP binding.

e HTTP provides a lightweight
and flexible protocol for
transmitting SOAP messages.

e HTTPS provides a secure
version of HTTP and is
commonly used for SOAP-
based web services that require
encryption and authentication.

Runtime Environment

GlassFish / Sun Java System Application Server

ESB / JBI

BPEL Service HTTP Binding Java EE
Engine Component Service Engine

HTTP Connector (Grizzly)

JAX-WS
JAX-RPC
JAXB
WSIT (Tango)

Asynchronous
Processing
NIO

SOAP with SMTP and TCP

Any communications

prOfOCOI
SOAP SOAP

e SOAP with SMTP is less Sender -~ Receiver

common than SOAP with HTTP.

SOAP message

e SMTP is used for SOAP-based HTTP Header [\

email services. S ol | REQUEST
e SOAP with TCP is less common

than SOAP with HTTP and is

HTTP Header k
used for low-level network RESPONSE

communication. SOAP envelope

SOAP header
SOAP Body

Creating a SOAP
Service

Creating a Simple SOAP Web Service in Java

e Java provides several libraries
and tools for creating SOAP-
based web services.

@WebService
e The Java API for XML Web public class HelloWorld {
Services (JAX-WS) is a
standard Java API for building @WebMethod |
SOAP-based web services. public String sayHello(String name) {
return + name +
h

e Creating a simple SOAP web
service in Java involves defining 1
the service interface,
iImplementing the service, and
deploying the service to a web
Server.

Defining the Service Interface

e The service interface defines
the methods that the service

will expose.
@WebService
e The @WebService and public interface HelloWorld {
@WebMethod annotations are O WehMethod

_used to define the service public String sayHello(String name);

interface.

e The service interface can be
defined using either Java SE or
Java EE.

Implementing the Service

 [he service iImplementation
contains the actual
implementation of the methods
defined in the service interface. @WebService
public class HelloWorldImpl implements HelloWorld {

e The @WebService and

@WebMethod annotations are @Override .

d to define th . public String sayHello(String name) {
used to define the service et © name -
implementation. \

 [he service iImplementation can)
be defined as a standalone
Java class or as a Java EE
session bean.

@WebService
public interface HelloWorld {
@WebMethod
String sayHello(String name);
¥

@ WebService(endpointintertace = "com.example.HelloWorld")
public class HelloWorldImpl implements HelloWorld {
@Qverride
public String sayHello(String name) {
return "Hello, " + name + "!";

¥
¥

public class Main {
public static void main(String[] args) {
Endpoint.publish("http://localhost:8080/hello", new HelloWorldImpl());

¥
¥

Testing the SOAP Web Service

000 @ The World's Most Popular APl X + o

& > (C & soapui.org Q M % * = 0O @ :

@ SoapUl

Supported by SMARTBEAR

Accelerating APl Quality Through Testing

Whether open source or commercial, SmartBear testing tools
make it easy to create, manage, and execute end-to-end tests on
REST, SOAP, & GraphQL APIs, JMS, JDBC, and other web services so
you can deliver software faster than ever.

Try ReadyAPI Free

Deploying the Service

\/\/I |dF|\[Apam he

Using WSDL to Describe
SOAP Web Services

What is WSDL?

e WSDL describes the

operations, input and output Types
d the bindi Types What data types will be transmitted
messages, and the binding Messages
details Of 2] Web Service. AbStfaCt Whal messages will be transmitted
Deﬁqutuon of < Messages Port Types
Service What business operations (functions)
e \WSDL can be used by web g
. . . o
service clients to discover and | ' ,',Z?,Sw,., he Mesesges be Sanemitied
interact with the web service. B Lo
S W g.
o o l Bindings l s et
: : | P :
e WSDL is typically generated ocations e
. eIs service ¢
automatically by the web S PO

service development tools.

Anatomy of a WSDL Document

A WSDL document consists of several
elements that describe the various aspects
of a web service.

The types element defines the data types
used by the web service.

The message element defines the
structure of the input and output
messages for each operation.

The portType element defines the
operations that the web service provides.

The binding element specifies the protocol
and message format used for each
operation.

The service element describes the location
and protocol binding for the web service.

Abstract |
Definition of <
Service

Protocol and
physical
locations

Types

What data types will be transmitted
Messages

What messages will be transmitted

Port Types

What business operations (functions)
will be supported

Bindings

How will the messages be transmitted
on the wire?

What message protocol (e.g. SOAP)
specific delails are there?

Service ports
Where is the service located?

Generating WSDL for a SOAP Web Service

e Jo generate a WSDL file using
wsgen, you need to specify the
Java class that contains the
web service endpoint and the
location where the WSDL file
should be saved.

e Once the WSDL file is wsgen -cp . com.example HelloWorldImpl -wsdl -keep
generated, it can be used by
web service clients to discover
and interact with the web
service.

e \WSDL can also be used to
generate client code for calling
the web service.

<definitions name="TemperatureConversionService"
targetNamespace="http://example.com/temperature-conversion"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://example.com/temperature-conversion"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<types>
<xsd:schema targetNamespace="http://example.com/temperature-conversion">
<xsd:element name="Fahrenheit" type="xsd:double"/>
<xsd:element name="Celsius" type="xsd:double"/>
</xsd:schema>
</types>

<message name="FahrenheitToCelsiusRequest">
<part name="Fahrenheit" type="xsd:double"/>
</message>

<message name="FahrenheitToCelsiusResponse">
<part name="Celsius" type="xsd:double"/>
</message>

<portType name="TemperatureConversion">
<operation name="FahrenheitToCelsius">

1111t meccaoca—"tne Fahranheit Thl \alciiicBR anmiinact!" /~

<message name="FahrenheitToCelsiusResponse">
<part name="Celsius" type="xsd:double"/>
</message>

<portType name="TemperatureConversion">
<operation name="FahrenheitToCelsius">
<input message="tns:FahrenheitToCelsiusRequest"/>
<output message="tns:FahrenheitToCelsiusResponse"/>
</operation>
</portType>

<binding name="TemperatureConversionSoapBinding" type="tns: TemperatureConversion">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="FahrenheitToCelsius">
<soap:operation soapAction="http://example.com/temperature-conversion/FahrenheitToCelsius"/>
<input>
<soap:body use="literal"/>
</Input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="TemperatureConversionService">
<port name="TemperatureConversionSoap" binding="tns: TemperatureConversionSoapBinding">

> 1 / > " /
DU TR D Y R L P D Y T -

<portType name="TemperatureConversion">
<operation name="FahrenheitToCelsius">
<input message="tns:FahrenheitToCelsiusRequest"/>
<output message="tns:FahrenheitToCelsiusResponse"/>
</operation>
</portType>

<binding name="TemperatureConversionSoapBinding" type="tns: TemperatureConversion">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="FahrenheitToCelsius">
<soap:operation soapAction="http://example.com/temperature-conversion/FahrenheitToCelsius"/>
<input>
<soap:body use="literal"/>
</Input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="TemperatureConversionService">
<port name="TemperatureConversionSoap" binding="tns: TemperatureConversionSoapBinding">
<soap:address location="http://example.com/temperature-conversion"/>
</port>
</service>

</definitions>

Generating Client-Side
Proxy Stubs with WSDL

Generating Client-Side Proxy Stubs with
WSDL

e A client-side proxy stub is a
code generated from the WSDL
that can be used to access the
web service from the client-side
application.

e (Generating client-side proxy
stubs with WSDL can be done
using tools such as Apache
Axis, CXF, or the wsimport tool.

Using Apache CXF to Generate Client-Side Proxy
Stubs with WSDL

e Apache CXF is an open-source
web services framework that
can be used to develop and
deploy web services and
clients.

e The wsdl|2java tool can be used
to generate client-side proxy
stubs from a WSDL using
Apache CXF.

APACHE CXF

* The generated code includes
Java classes and interfaces that
can be used to access the web
Service.

wsdl2java -d /path/to/output/dir http://example.com/calculator?wsdl

Using wsimport to Generate Client-Side
Proxy Stubs with WSDL

e wsimport is a command-line
tool that Is included with the

Java SDK.
e wsimport can be used to ViNs M-l
generate client-side proxy stubs Wés'?!: Eﬁgsw'ces
from a WSDL. service
* The generated code includes Using the ‘wsimport' tool to generate
Java classes and interfaces that java classes from WSDL
can be used to access the web
Service.

wsimport -d /path/to/output/dir http://example.com/calculator?wsdl

Working with SOAP
Clients in .NET

Generating Client-Side Proxy Stubs with
WSDL

e NET provides several ways to
create a SOAP client.

e One approach is to use the
"Add Service Reference" option
in Visual Studio, which
generates client proxy code
based on the service's WSDL

(Web Services Description var wsdlUrl =

Language) file. var binding = new BasicHttpBinding();

var endpoint = new EndpointAddress(wsdlUrl);

var client = new MyServiceClient(binding, endpoint):

var client = new MyServiceClient();

 Another approach is to
manually create a client proxy
by adding a Service Reference
to the service's WSDL file.

Consuming a SOAP Web Service in .NET

e Once a SOAP client has been
created, developers can try
consume a SOAP web service {
using the client proxy.
var result = client. MyMethod(param1, param?2);
e Jo call a web service method,
developers simply invoke the

. Console.WriteLine + result):
corresponding method on the \ (:
client proxy object. catch (FaultException ex)
{
 The client proxy object handles
all communication with the web Console. WriteLine(+ ex.Message);
service and returns the ¥

method's response to the caller.

WS-Security

Consuming a SOAP Web Service in .NET

e WS-Security is a widely used
specification for securing SOAP
messages

SOAP Envelope
SOAP Header

: : WS Security Header
e |t defines a set of security
tokens and mechanisms for

protecting the confidentiality

and integrity of SOAP
messages

SOAP Envelope Body

e WS-Security can be used to
: M Bod
secure SOAP messages in “HRAE EOR
various scenarios, including

authentication, encryption, and
digital signatures

WS-Security Architecture

WS-Security uses a layered
architecture for securing SOAP
messages

At the bottom layer, security
tokens are used to authenticate
users and provide proof of identity

At the middle layer, message
encryption and signature are used
to ensure message confidentiality
and integrity

At the top layer, security policies
are defined to specify which
security measures should be
applied to the SOAP message

SOAP Envelope
SOAP Header

WS Security Header

Security Token

SOAP Envelope Body

Message Body

Example Code for WS-Security

using System.ServiceModel;
using System.ServiceModel.Channels;
using System.ServiceModel.Security;

var binding = new BasicHttpBinding();
binding .Security.Mode = BasicHttpSecurityMode. TransportWithMessageCredential;
binding.Security.Message .ClientCredential Type = BasicHttpMessageCredential Type.UserName:

var client = new CalculatorServiceClient(binding, new EndpointAddress();

client.ClientCredentials .UserName.UserName = ;
client.ClientCredentials.UserName.Password = :

var result = client. Add(2, 3);

Example Code for WS-Security

JaxWsProxyFactoryBean tactory = new JaxWsProxyFactoryBean();
factory.setServiceClass(MyWebService.class);
factory.setAddress(Ji

MyWebService client = (MyWebService) factory.create();

Map<String, Object> outProps = new HashMap<>();

outProps.put(WSHandlerConstants. ACTION, WSHandlerConstants. USERNAME_TOKEN);
outProps.put(WSHandlerConstants. USER,);
outProps.put(WSHandlerConstants. PASSWORD_TYPE, WSConstants. PW_TEXT);
outProps.put(WSHandlerConstants PW_CALLBACK_CLASS, ClientPasswordCallback.class.getName());

WSS4JOutlnterceptor wssOut = new WSS4JOutlnterceptor(outProps);

ClientProxy.getClient(client).getOutlnterceptors().add(wssOut);

String result = client.myMethod();

Overview of SOAP Attachments

Introduction to SOAP Attachments

SOAP—-ENV: Envelope

SOAP—-ENV: Header

e Definition of SOAP Attachments SOAP-ENV: Body

e |mportance of SOAP
Attachments

e Brief History of SOAP
Attachments

Attachments

Types of SOAP Attachments

SOAP—-ENV: Envelope

SOAP—-ENV: Header

e |nline Attachments SOAP-ENV: Body

e SWA (SOAP with Attachments)

e MTOM (Message Transmission
Optimization Mechanism)

Attachments

Pros and Cons of SOAP Attachments

e Pros: SOAP—-ENV: Envelope

e Enables transmission of complex data .
types P SOAP—-ENV: Header

e Provides a mechanism to transfer binary

or text data SOAP—-ENV: Body

* |Increases performance by reducing
message size

e Cons:

e Increases complexity of the SOAP
message

e Requires additional processing by the Attachments
SOAP client and server

 May require additional security
measures

Best Practices for Using SOAP
Attachments

SOAP—-ENV: Envelope

Use MTOM for large binary data SOAP-ENV: Header

Use SwA for small to medium-
sized binary data SOAP—-ENV: Body

Use Inline Attachments for text
data

Consider the impact on
message size and performance
. Attachments
Ensure the security of the
attachments

SOAP Routing

How SOAP Routing Works

BEA Aqualogic Service Bus

Proxy Service

.4 Normal Loan

: Manager Approval
l

Configuration Repository
Schemas, WSDLs, XQueries, Services

Benefits of SOAP Routing

e Simplifies network architecture BEA AquaLogic Service Bus

Proxy Service

 |mproves scalability

Loan Application
Request Client

ONn Mmess ag e con 't e n‘t Schemas, WSDLs, XQueries, Services

e Enables flexible routing based

Configuration Repository

Routing Rules

XPath Routing Rule: This rule allows
the routing of a message based on
the value of an XPath expression.

Regular Expression Routing Rule:
This rule allows the routing of a
message based on the matching of
a regular expression.

Content-Based Routing Rule: This
rule allows the routing of a message
based on the contents of the
message.

Header Routing Rule: This rule
allows the routing of a message
based on the value of a SOAP
header.

<rule-definition name=" ">
<xpath-rule match=" | "1"/>

<target-endpoint>http://example.com/ordersUS A</target-endpoint>
</rule-definition>

SOAP Intermediaries

Routing Rules

e Message handlers: intercept
and modify SOAP messages as
they flow through a SOAP

engine Inbound SOAP message Outbound SOAP message
“token’” is precassed and removed
<toxen enyroles hotary'> “cache’is lorwarded untouched
e Transport handlers: intercept
and modify the underlying
Known roles:
transport protocol, such as notary”
“intermediary2”
HTTP, before or after the SOAP R
i nown headers:
message Is processed : __ “token” o/ M

<body0ata/l>
</doSoaothingCool>

Intermediary

e Service providers: act as a
service endpoint and process
SOAP requests like a regular
web service

Message Handler in Apache Axis

import org.apache.axis.MessageContext;
import org.apache.axis.handlers.BasicHandler;

public class MyHandler extends BasicHandler {

public void invoke(MessageContext msgContext) {

Implementing a transport handler in
Apache AXxis

public class MyTransportHandler extends AbstractHandler {
public InvocationResponse invoke(MessageContext msgContext) throws AxisFault {

Message msg = msgContext.getRequestMessage();

return mnvokeNext(msgContext):

¥
¥

Universal Description, Discovery, and
Integration (UDDI) Overview

UDDI Architecture

e UDDI registry
e UDDI server

e UDDI client

Authorization
Server

UDDI Registry

Producer

Publishes Searches

Producer Metadata Metadata Consumer

Producer

import org.apache juddi.api_v3.*;
import org.uddi.api_v3.*;

import org.uddi.api_v3.KeyType.*:
import org.uddi.api_v3.Name.*;

import org.uddi.api_v3.Description.™;
import org.uddi.api_v3.FindService.*;
import org.uddi.api_v3.Servicelist.™;
import org.uddi.api_v3.Servicelnfos.*;
import org.uddi.api_v3.Servicelnfo.*;
import org.uddi.api_v3.GetServiceDetail . *;
import org.uddi.api_v3.ServiceDetail .*;

UDDIInquiryPortType inquiry = new UDDIClient().getTransport().getUDDIInquiryService();

FindService fs = new FindService();

Name name = new Name();

name.setValue("Stock Quote Service");

fs.getName().add(name);

ServicelList sl = inquiry.findService(fs);

for (Servicelnto si : sl.getServicelnfos().getServicelnfo()) {
GetServiceDetail gsd = new GetServiceDetail();
gsd.getServiceKey().add(s1.getServiceKey());
ServiceDetail sd = inquiry.getServiceDetail(gsd):
System.out.println(sd);

b

Lecture outcomes

e SOAP Basics

+ Benelits @UTC@M

e Architecture
o WSDL
e UDDI

