
Lecture #11

Serverless

WSMT2023

Introduction to Serverless

Serverless computing is a cloud computing
model in which the cloud provider
dynamically manages the allocation of
machine resources. This eliminates the
need for:

- Server administration

- Provisioning

- Maintenance

Freeing up developers to focus on their
applications.

History

• 2008: Google App Engine.

History

• 2008: Google App Engine.

• 2010: Amazon Web Services (AWS).

History

• 2008: Google App Engine.

• 2010: Amazon Web Services (AWS).

• 2014: Microsoft Azure launches Functions.

History

• 2008: Google App Engine.

• 2010: Amazon Web Services (AWS).

• 2014: Microsoft Azure launches Functions.

• 2015: Google Cloud Platform (GCP).

History

• 2008: Google App Engine.

• 2010: Amazon Web Services (AWS).

• 2014: Microsoft Azure launches Functions.

• 2015: Google Cloud Platform (GCP).

• 2016: IBM Cloud Functions.

Benefits

• It offers a number of benefits over traditional
server-based computing, including:

• Reduced costs

• Increased scalability

• Improved agility

• Serverless computing is a good fit for a variety of
applications, including:

• Backend services

• Event-driven applications

• Microservices

Cloud Computing Models

• Infrastructure as a Service (IaaS) provides
the basic building blocks for cloud IT.

Cloud Computing Models

• Infrastructure as a Service (IaaS).

• Software as a Service (SaaS) provides you
with access to a complete software
application that is hosted and managed by
the cloud provider. You don't need to
install or maintain any software on your
own computers.

Cloud Computing Models

• Infrastructure as a Service (IaaS).

• Software as a Service (SaaS).

• Platform as a Service (PaaS) - provides a
development environment where you can
build, test, and deploy applications without
having to worry about the underlying
infrastructure.

Cloud Computing Models

• Infrastructure as a Service (IaaS).

• Software as a Service (SaaS).

• Platform as a Service (PaaS).

• Backend as a Service (BaaS) provides
backend services for mobile and web
applications, such as user authentication,
push notifications, and data storage.

Cloud Computing Models

• Infrastructure as a Service (IaaS).

• Software as a Service (SaaS).

• Platform as a Service (PaaS).

• Backend as a Service (BaaS).

• Function as a Service (FaaS) provides a
way to run code without having to worry
about managing servers or infrastructure.

Types of Serverless Computing

• Function-as-a-Service (FaaS)

• Backend-as-a-Service (BaaS)

• Platform-as-a-Service (PaaS)

Function-as-a-Service (FaaS)

• The most popular type of serverless
computing.

• Allows developers to run code in response
to events, such as HTTP requests,
database changes, or file uploads.

• Ideal for event-driven applications and for
applications that need to be highly
scalable and cost-effective.

• Some popular providers include AWS
Lambda, Azure Functions, and Google
Cloud Functions.

Backend-as-a-Service (BaaS)

• Provides developers with a backend
infrastructure, such as databases, storage,
and APIs.

• Ideal for developers who want to focus on
developing their applications without
having to worry about the underlying
infrastructure.

• Some popular providers include AWS
Amplify, Azure App Service, and Google
Cloud Platform App Engine.

Platform-as-a-Service (PaaS)

• Provides developers with a complete
development environment, including a
programming language, a runt ime
environment, and a debugger.

• Ideal for developers who want to quickly
a n d e a s i l y d e v e l o p a n d d e p l o y
applications.

• Some popular providers include AWS
Elastic Beanstalk, Azure App Service, and
Google Cloud Platform App Engine.

Building Serverless Applications
With Google Cloud Run

• A serverless compute platform.

• Allows you to run stateless containers.

• Automatically scales your containers
based on demand.

Getting Started

• To get started with Google Cloud Run, you
will need to:

• Create a Google Cloud Platform (GCP)
project.

• Enable the Cloud Run API.

• Create a Dockerfile.

• Build your container image.

• Deploy your container image to Cloud
Run.

Create a Google Cloud Platform (GCP) project.

Cloud Run API

Dockerfile

FROM python:3.7-alpine

WORKDIR /app

COPY requirements.txt ./

RUN pip install -r requirements.txt

COPY app.py ./

CMD ["python", "app.py"]

Container Image

docker build -t my-app .

Container Image

docker build -t my-app .

Deploy the Image

gcloud run deploy my-app --image=my-app

Container Image

docker build -t my-app .

Deploy the Image

gcloud run deploy my-app --image=my-app

Access the Image
https://my-app.cloud.run

Container Lifecycle

• Creation: The container is created from a container image.

• Start: The container is started and begins listening for requests.

• Run: The container processes requests until it is terminated.

• Stop: The container is stopped and no longer listens for requests.

• Termination: The container is terminated and its resources are released.

What is CPU Throttling?

• CPU throttling is a feature of Google Cloud Run.

• CPU throttling allows you to control how much CPU your container can use.

• By default, Cloud Run will throttle your container's CPU usage to 50%.

Reasons to Throttling

• Reduce cost.

• Improve performance.

How to Use CPU Throttling

runtime: python37

env:
 PORT: 8080

handlers:
- url: /.*
 script: main.py

resources:
 cpu: 25

Task Scheduling

• You can schedule tasks in Cloud Run using the following methods:

• Cron jobs: Cron jobs allow you to run tasks on a recurring schedule.

• Event-driven tasks: Event-driven tasks allow you to run tasks in response to
events.

Task Scheduling and Throttling

• Throttle the CPU usage of your containers in Cloud Run using the following
methods:

• CPU quota: CPU quota allows you to specify the maximum amount of
CPU that a container can use.

• CPU requests: CPU requests allow you to specify the minimum amount of
CPU that a container needs.

cron:
- description: "Run my task every day at 10am"
 schedule: "0 10 * * *"
 command: "gcloud run invoke my-task"

Task Scheduling and Throttling

• Throttle the CPU usage of your containers in Cloud Run using the following
methods:

• CPU quota: CPU quota allows you to specify the maximum amount of
CPU that a container can use.

• CPU requests: CPU requests allow you to specify the minimum amount of
CPU that a container needs.

cron:
- description: "Run my task every day at 10am"
 schedule: "0 10 * * *"
 command: "gcloud run invoke my-task"

CPU Quota

gcloud run set-cpu-quota REGION SERVICE_NAME CPU_QUOTA

• Where:

• REGION is the region where the service is running.

• SERVICE_NAME is the name of the service.

• CPU_QUOTA is the number of CPU cores that you
want to allocate to the service.

CPU Quota

gcloud run set-cpu-quota REGION SERVICE_NAME CPU_QUOTA

• Where:

• REGION is the region where the service is running.

• SERVICE_NAME is the name of the service.

• CPU_QUOTA is the number of CPU cores that you
want to allocate to the service.

gcloud run set-cpu-quota us-central1 my-service 1

CPU Requests

gcloud run set-cpu-request REGION SERVICE_NAME CONTAINER_NAME CPU_REQUEST

• Where:

• REGION is the region where the service is running.

• SERVICE_NAME is the name of the service.

• CONTAINER_NAME is the name of the container.

• CPU_REQUEST is the number of CPU cores that
you want to request for the container.

CPU Requests

gcloud run set-cpu-request REGION SERVICE_NAME CONTAINER_NAME CPU_REQUEST

• Where:

• REGION is the region where the service is running.

• SERVICE_NAME is the name of the service.

• CONTAINER_NAME is the name of the container.

• CPU_REQUEST is the number of CPU cores that
you want to request for the container.

gcloud run set-cpu-request us-central1 my-service my-container 0.5

Load Balancing

Cloud Run uses a round-robin load balancer to distribute
traffic across your containers. This means that each
container will receive an equal number of requests.

Autoscaler

Autoscaler automatically scales your containers up or
down based on demand. The autoscaler uses a variety
of factors to determine when to scale, including:

- the number of requests per second.

- the CPU usage.

- the memory usage.

Example

loadBalancer:
 enabled: true
 type: ROUND_ROBIN

autoscaler:
 minCount: 1
 maxCount: 10

Building Serverless Applications
With AWS

• A serverless compute platform.

• Allows you to run stateless containers.

• Automatically scales your containers
based on demand.

AWS Serverless Services

• AWS Lambda: AWS Lambda is a service that
allows you to run code without having to
provision or manage servers.

• AWS API Gateway: AWS API Gateway is a
service that allows you to create, publish,
monitor, and secure RESTful APIs.

• AWS DynamoDB: AWS DynamoDB is a fully
managed NoSQL database service.

• AWS CloudFormation: AWS CloudFormation
is a service that allows you to create and
manage AWS resources as a single unit.

Create an AWS account

Install the AWS CLI

Create a Lambda function

def hello(event, context):
 return "Hello, " + event['name']

Create a deployment package

1. Create a directory for your Lambda function.
2. In the directory, create a file called `index.py` and paste your Lambda function's code into it.
3. If your Lambda function uses any dependencies, add them to the directory.
4. Zip up the directory.

mkdir my_function
cd my_function
echo "def my_function(event, context):
 return event['message'] + '!'" > index.py
pip install numpy
zip -r my_function.zip .

Create an execution role for your Lambda function

aws iam create-role --role-name my-lambda-role --assume-role-policy-document file://trust-policy.json

Create an execution role for your Lambda function

aws iam create-role --role-name my-lambda-role --assume-role-policy-document file://trust-policy.json

Attach the AWSLambdaBasicExecutionRole policy to the role
aws iam attach-policy
 --policy-arn arn:aws:iam::aws:policy/AWSLambdaBasicExecutionRole
 --role-name my-lambda-role

Create an execution role for your Lambda function

aws iam create-role --role-name my-lambda-role --assume-role-policy-document file://trust-policy.json

Attach the AWSLambdaBasicExecutionRole policy to the role
aws iam attach-policy
 --policy-arn arn:aws:iam::aws:policy/AWSLambdaBasicExecutionRole
 --role-name my-lambda-role

Deploy the Lambda function

aws lambda create-function --function-name my-lambda-function
 --runtime python3.8
 --role arn:aws:iam::<your-account-id>:role/my-lambda-role
 --handler index.my_function
 --zip-file file://my_function.zip

AWS API Gateway

• Visual editor

• CORS support

• Authorization and access
control

• Monitoring and logging

• Deployment

Lecture outcomes

• History

• Cloud Models

• Serverless Types

• Google Cloud Run

• AWS

