Lecture #10
Containers

Spring 2024

Containers: A Modern Way to Deploy Applications

e Containers are lightweight, portable, and
iIsolated from each other.

 They can be used to deploy applications
on a variety of platforms, including servers,
clouds, and even on devices.

e Containers are a popular choice for
deploying microservices architectures.

¥ = a i
Wiz]
e

=TT =
E-dTd

Ny
mf)] |
1 1 o B A
p— ol i -
1

R T W - = | S e
= -
L -~ ’ I I | it s
=0 T el

: Mo p (51 T11¥ 3
. W o 70 ety
T=140°

Structure

Image: The image is a read-only template
that contains the code, runtime, system tools,
system libraries, and settings for a container. Aeaabre: Flat Aol

Headsr Fciensan Plate

Container: A container is a runnable instance

Top £2d Kt

of an image. ol BBl 1 —

' BotiomEnc R

Container runtime: The container runtime is
responsible for managing the lifecycle of

containers. >
Container orchestration platform: A Paas W [BN]| N
container orchestration platform is a tool that (edged with gasketa) © DOGF S *

helps to manage and scale containerized
applications.

Image

e An image is a read-only template that
contains the code, runtime, system tools,

system libraries, and settings for a
container.

 |[mages are created using a tool called a
Dockerfile.

Dockerfile Docker Image Docker Container

* |mages can be shared and reused.

Runtime

e Responsible for managing the lifecycle of
containers.

e Creates, starts, stops, and destroys
containers.

e Provides Isolation between containers.

Controller
Manager

Scheduler

Container Orchestration Platform

e A container orchestration platform is a tool CO N TAl N E R
that helps to manage and scale ORCHESTRATION TOOLS

containerized applications.

e Container orchestration platforms provide 0 Sy

featu resS SUCh as. Kubernetes Amazon Elastic Docker Swarm

Kubernetes Service-EKS

 Automatic deployment

PRL
E
o

e | oad balancing

HasicorpNomad Amazon Elastic
Container Service-ECS

e Autoscaling

 Monitoring @

Openshift Google Container Azure Kubernetes
Engine-GKE Services(AKS)

F\/\/\
'\/\/ W\
\/\/\V\4

\/\/\4

Objectives

e Containers are a way to package and run
applications.

 They are lightweight, portable, and isolated
from each other.

e They can be used to deploy applications
on a variety of platforms, including servers,
clouds, and even on devices.

Benefits

e Portability: Containers can be easily moved
from one environment to another.

e |solation: Containers are isolated from each
other, which means that they cannot affect
each other.

e Efficiency: Containers share the underlying

operating system kernel, which makes
them more efficient than virtual machines.

"B ENE F

TS

Examples of Containers

e Docker

e Kubernetes

OPENSHIFT

kubernetes

e OpenShift

Containers and Virtualization

e Containers are a form of virtualization.

e Containers are more lightweight and
portable than virtual machines.

Traditional Architecture Virtual Architecture

Virtual Machines

e Virtual machines are a way to create
Isolated operating system environments.

e They are more heavyweight than
containers, but they offer more features,
such as the ability to run different operating
systems on the same physical hardware.

e Virtual machines are a good choice for
running legacy applications or applications
that require a specific operating system.

Hypervisors

e Hypervisors are the software that allows
virtual machines to run on the same

physical hardware. P g

e There are two main types of hypervisors:
Type 1 and Type 2.

e Type 1 hypervisors run directly on the Hardware Hypervisor

physical hardware, while Type 2
hypervisors run on top of an operating
system. .

Which is right for you?

e Choose containers if you need a
lightweight and portable way to run
applications.

e Choose virtual machines if you need a
more heavyweight solution that offers more
features.

e Choose a hypervisor if you need to run
multiple virtual machines on the same
physical hardware.

DIY: Running a Container on Linux

Step 1: Prepare the System

Install a Linux distribution that supports
containers

Update the system
Install the necessary tools
Create a user group for containers

Add your user to the container group

sud
sud
sud
sud

o apt install build-essential
o apt update

o apt 1nstall 1xc-utils

o groupadd containers

SUC

o usermod -aG containers SUSER

Step 2: Obtaining the Container

 There are two ways to obtain a container

image: # Pull an image from a registry
docker pull nginx
e Pull it from a registr
ISy # Build an 1image yourself

— docker build -t my-nginx .
e Build it yourself ocker build -t my-nginx

Step 2b: Build and image yourself

FROM nginx:latest

Copy the nginx configuration file to the container
COPY nginx.cont /etc/nginx/nginx.cont

Expose port 80 to the host machine
EXPOSE 80

Start the nginx web server
CMD ["nginx", "-g", "daemon off;"]

docker build -t my-nginx .

Step 3: Setup the group

e Control groups (cgroups) are a Linux kernel
feature that allows you to limit and manage
resources for groups of processes.

e Cgroups can be used to limit CPU usage,
memory usage, disk I/0, and network
bandwidth.

e Jo set up cgroups, you will need to create
a cgroup hierarchy.

mkd
mKkc
mkc
mkd

1r -p /cgrou;
1r -p /cgrou;
1r -p /cgrou;
1r -p /cgrou;

mKkc

D
v/cpu
n/memory
n/disk

1r -p /cgrou;

n/network

Step 3: Setup the group

e Control groups (cgroups) are a Linux kernel
feature that allows you to limit and manage
resources for groups of processes.

e Cgroups can be used to limit CPU usage,
memory usage, disk I/0, and network

bandwidth.

e Jo set up cgroups, you will need to create

a cgroup hierarchy.

cgroups add -g cpu0 nginx

mkd
mKkc
mkc
mkd

1r -p /cgrou;
1r -p /cgrou;
1r -p /cgrou;
1r -p /cgrou;

mKkc

D
v/cpu
n/memory
n/disk

1r -p /cgrou;

n/network

Step 3: Setup the group

e Control groups (cgroups) are a Linux kernel
feature that allows you to limit and manage
resources for groups of processes.

e Cgroups can be used to limit CPU usage,
memory usage, disk I/0, and network

bandwidth.

e Jo set up cgroups, you will need to create

a cgroup hierarchy.

cgroups add -g cpu0 nginx
cgroups set -r cpu.shares=50 nginx

cgroups stat -c cpu nginx

mkd
mKkc
mkc
mkd

1r -p /cgrou;
1r -p /cgrou;
1r -p /cgrou;
1r -p /cgrou;

mKkc

D
v/cpu
n/memory
n/disk

1r -p /cgrou;

n/network

Step 3: Run the Container

o run a container, you will need to use the
docker run command.

e The docker run command takes a number
of arguments, including the name of the
image to run, the command to run inside
the container, and the environment
variables to set.

e For example, to run the nginx web server

on port 80, you would use the following
command:

docker run -p 80:80 nginx

Docker

e Engine
e Daemon

e Registry

e Client

docker

Docker Engine

e |s the core component of Docker that
manages containers.

e Responsible for creating, starting,
stopping, and removing containers.

e Manages the resources that are allocated
to containers.

Docker API

Distribution

Containerd

Docker CLI

Docker Engine

Orchestration

Docker Build
(BuildKit)

Volumes

Networking

suibn|d

Docker Daemon

* A background process that runs on the
host machine and manages the Docker
Engine.

 Responsible for communicating with the
Docker Registry and downloading Docker
Images.

* Manages the containers that are running | | S—
on the host machine.

docker pull - ,.

docker run

Docker Registry

e A central repository where Docker images
can be stored and shared.

 Docker images are essentially read-only

templates that can be used to create
containers.

* Docker images can be created from

scratch or they can be built from other ent | DOCKER_HOST
Docker images.

docker pull - ,.

docker run

Docker Client

e A command-line tool that allows you to
interact with the Docker Engine.

e Used to create, start, stop, and remove
containers.

e Used to manage the resources that are
allocated to containers.

DOCKER_HOST

docker pull - ,.

docker run

Writing Docker Files

e A Docker file is a text file that contains the

. . e , FROM nginx:latest
iInstructions for building a Docker image.

COPY . /usr/share/nginx/html
e Docker files are written in a simple, human-

readable format. EXPOSE 80

e Docker files can be used to build Docker CMD ["nginx", "-g", "daemon off;"]
iImages for any application.

Writing Docker Files

e A typical Docker file will include the following
steps:

e FROM: This specifies the base image that the
Docker image will be built on. FROM nginx:latest

e RUN: This specifies commands that will be

run when the Docker image is built. COPY . /usr/share/nginx/html

e COPY: This specifies files or directories that EXPOSE 80

will be copied into the Docker image.
P J CMD ["nginx", "-g", "daemon off;"]

e EXPOSE: This specifies ports that will be
exposed by the Docker image.

e CMD: This specifies the command that will be
run when the Docker image is started.

More Docker Instructions

ARG: Defines an environment variable that can be used in
the Docker file. ARG VERSION=1.0

AND: Specifies that the following commands should be run)) :) :
only if the previous command succeeds. RUN apt-get update && apt-get install -y nginx
ENTRYPOINT: The command that will be run when the ENTRYPOINT nginx
Docker image is started.

S _ WORKDIR /usr/share/nginx/html
WORKDIR: The working directory for the Docker image.

STOPSIGNAL: The signal that will be sent to the Docker STOPSIGNAL SIGTERM
container when it is stopped.
USER nginx
USER: The user that will run the commands in the Docker
mage. LABEL app=nginx

LABEL.: A label for the Docker image.

ENV PORT=80
ENV: An environment variable for the Docker image.

Docker Commands

e Some of the most common Docker commands
Include:

e docker build: Builds a Docker image from a
Dockerfile.

e docker run: Starts a Docker container from an
image.

e docker stop: Stops a Docker container.
e docker remove: Removes a Docker container.
e docker inspect: Inspects a Docker container.

e docker logs: Displays the logs for a Docker
container.

Build a Docker image from a Dockerfile
docker build -t my-app .

Start a Docker container from an image
docker run -p 80:80 my-app

Stop a Docker container
docker stop my-app

Remove a Docker container
docker rm my-app

Inspect a Docker container
docker inspect my-app

Display the logs for a Docker container
docker logs my-app

More Docker Commands

List all containers
docker Is

Show the history of a container
docker history my-container

Search for Docker images
docker search nginx

Pull an image from a registry
docker pull nginx

Tag an 1mage
docker tag nginx:latest my-nginx

Push an 1image to a registry
docker push my-nginx

Rename a container
docker rename my-container my-new-container

Attach to a running container

R | 1 1 ®
PR Y B I PR

Tag an 1mage
docker tag nginx:latest my-nginx

Push an 1image to a registry
docker push my-nginx

Rename a container
docker rename my-container my-new-container

Attach to a running container
docker attach my-container

Commit a container's changes to an image
docker commit my-container my-new-image

Get statistics for a container
docker stats my-container

Wait for a container to finish
docker wait my-container

Ditt the changes between a container's image and its filesystem
docker diff my-container

Copy files from a container to the host
docker cp my-container:/path/to/file /path/to/destination

Connectivity and Storage

 Docker links: Docker links allow containers
to communicate with each other by name.

e Docker networks: Docker networks allow
containers to communicate with each other
over a network.

e Docker volumes: Docker volumes allow
containers to share data with each other
and with the host machine.

Docker Connectivity

e Docker containers can be connected to the
host machine's network using a variety of
methods, such as:

 Bridged networking: Bridged networking
allows containers to connect to the host

machine's network as if they were physical E |
eth0: 172.17.0.2 eth0: 10.0.0.254
machines.

» Host networking: Host networking allows
containers to share the host machine's
network interface.

eth0: 192.168.1.2

e Overlay networks: Overlay networks allow
containers to connect to a network that is
shared by multiple hosts.

Docker Storage

e Docker volumes can be created as:

e | ocal volumes: Local volumes are
stored on the host machine's
filesystem.

e Named volumes: Named volumes are
stored in a shared location, such as a
Docker registry.

e Tmpfs volumes: Tmpfs volumes are
stored in temporary memory.

Docker Swarm

e A container orchestration system that
allows you to run and manage Docker
containers across multiple machines.

e A powerful tool that can be used to deploy
and manage large-scale applications.

e Fasy to use and can be managed using the
Docker CLI or the Docker Swarm UI.

¢ W
T &2
P

4

Benefits of Using Docker Swarm

e Scalability
 High availability
e Fase of use

o Cost-effectiveness

How to Use Docker Swarm

e To use Docker Swarm, you first need to
create a Docker Swarm cluster.
docker swarm 1nit
e Once you have created a Docker Swarm

cluster, you can then deploy applications to
the cluster.

e You can manage Docker Swarm clusters
using the Docker CLI or the Docker Swarm
UI.

How to Use Docker Swarm

e To use Docker Swarm, you first need to
create a Docker Swarm cluster. docker swarm init
e Once you have created a Docker Swarm

cluster, you can then deploy applications to
the cluster.

docker stack deploy -c <stack-file> <stack-name>

e You can manage Docker Swarm clusters
using the Docker CLI or the Docker Swarm
UI.

;

) _Ii
\ %gd

<

Introduction to Kubernets

 An open-source container orchestration
system.

e Used to automate deployment, scaling,
and management of containerized
applications.

e Used to deploy applications on a single
machine or on a cluster of machines.

kubernetes

Benefits of Using Kubernetes

Scalablility: Kubernetes is highly scalable and
can be used to deploy and manage

applications of any size.

High availablility: Kubernetes is highly available

and can continue to run applicat
some of the underlying nodes fa

ons even If

Ease of use: Kubernetes is easy to use and can
be managed using a variety of tools, including
the command-line, the web Ul, and the kubectl

command-line tool.

Cost-effectiveness: Kubernetes is cost-
effective and can be used to save money on
hardware and infrastructure costs.

Service discovery
and
load balancing

Automated rollouts
and rollbacks

Storage orchestration

Kubernetes
Features

Self-healing

Secret and
configuration
management

Automatic
bin packing

How to Use Kubernetes

e To use Kubernetes, you first need to create
a Kubernetes cluster.

* Once you have created a Kubernetes — 1
cluster, you can then deploy applications to LIoEent] Creali® GRS

the cluster. kubectl apply -f <manifest-file>

 You can manage Kubernetes clusters using
the command-line, the web UI, or the
kubectl command-line tool.

Kubernetes Components

* The Kubernetes architecture is made up of the following
components:

 Nodes
 Pods

e Services
e Controllers
e Schedulers Master

* API Server
e etcd

o Kubelet

e Kubectl Node Node

Container Container Container
runtime runtime runtime

Kubernetes Communication

e Kubernetes components communicate
with each other using a variety of
protocols, including:

e REST: The API Server uses the REST
protocol to expose resources to clients.

Request:10.0.0.2:80

e gRPC: Controllers and kubelets use the
gRPC protocol to communicate with
each other.

10.0.0.2:30

e etcd: etcd uses the Raft protocol to
store configuration data.

Setting Up a Kubernetes Cluster

e On-Premises

e Are typically set up on a dedicated set of
machines.

e Offer the highest level of control and
security.

On-Premises Data Center 3 k8s cluster on GCP
e Can be more expensive to set up and EEraTT? | |)
' ' 5 ¥
maintain than other types of clusters. @ ewooan | L T @ oo sens

inlets | tcp:8123 @/ inlets

tcp:3306 E tcp:3306

Setting Up a Kubernetes Cluster

e Cloud-Based
* Are hosted by a cloud provider.

e Typically more scalable and easier to
manage than on-premises clusters.

e Can be more expensive than on-premises
ClUSterS, depending On the prOVider and " On-Premises Data Center 3 k8s cluster on GCP
the features you need. Sy f

Q%% " inlets-pro client

inlets

tcp:3306 i tcp:3306

Setting Up a Kubernetes Cluster

e Managed
 Provided by a third-party vendor.

e Offer a turnkey solution for deploying and
managing Kubernetes clusters.

e Can be more expensive than self-

managed clusters, but they can save you Google Kubernetes Engine

time and hassle.

Lecture outcomes

e Containers @ U TC @ M

e \irtualization
* Docker X
e Kubernets

