
Lecture #10  
Containers

Spring 2024



Containers: A Modern Way to Deploy Applications

• Containers are lightweight, portable, and 
isolated from each other.


• They can be used to deploy applications 
on a variety of platforms, including servers, 
clouds, and even on devices.


• Containers are a popular choice for 
deploying microservices architectures.



Structure
• Image: The image is a read-only template 

that contains the code, runtime, system tools, 
system libraries, and settings for a container.


• Container: A container is a runnable instance 
of an image.


• Container runtime: The container runtime is 
responsible for managing the lifecycle of 
containers.


• Container orchestration platform: A 
container orchestration platform is a tool that 
helps to manage and scale containerized 
applications.



Image

• An image is a read-only template that 
contains the code, runtime, system tools, 
system libraries, and settings for a 
container.


• Images are created using a tool called a 
Dockerfile.


• Images can be shared and reused.



Runtime

• Responsible for managing the lifecycle of 
containers.


• Creates, starts, stops, and destroys 
containers.


• Provides isolation between containers.



Container Orchestration Platform

• A container orchestration platform is a tool 
that helps to manage and scale 
containerized applications.


• Container orchestration platforms provide 
features such as:


• Automatic deployment


• Load balancing


• Autoscaling


• Monitoring



Objectives

• Containers are a way to package and run 
applications.


• They are lightweight, portable, and isolated 
from each other.


• They can be used to deploy applications 
on a variety of platforms, including servers, 
clouds, and even on devices.



Benefits

• Portability: Containers can be easily moved 
from one environment to another.


• Isolation: Containers are isolated from each 
other, which means that they cannot affect 
each other.


• Efficiency: Containers share the underlying 
operating system kernel, which makes 
them more efficient than virtual machines.



Examples of Containers

• Docker


• Kubernetes


• OpenShift



Containers and Virtualization

• Containers are a form of virtualization.


• Containers are more lightweight and 
portable than virtual machines.



Virtual Machines

• Virtual machines are a way to create 
isolated operating system environments.


• They are more heavyweight than 
containers, but they offer more features, 
such as the ability to run different operating 
systems on the same physical hardware.


• Virtual machines are a good choice for 
running legacy applications or applications 
that require a specific operating system.



Hypervisors

• Hypervisors are the software that allows 
virtual machines to run on the same 
physical hardware.


• There are two main types of hypervisors: 
Type 1 and Type 2.


• Type 1 hypervisors run directly on the 
physical hardware, while Type 2 
hypervisors run on top of an operating 
system.



Which is right for you?

• Choose containers if you need a 
lightweight and portable way to run 
applications.


• Choose virtual machines if you need a 
more heavyweight solution that offers more 
features.


• Choose a hypervisor if you need to run 
multiple virtual machines on the same 
physical hardware.



DIY: Running a Container on Linux



Step 1: Prepare the System

• Install a Linux distribution that supports 
containers


• Update the system


• Install the necessary tools


• Create a user group for containers


• Add your user to the container group

sudo apt install build-essential
sudo apt update
sudo apt install lxc-utils
sudo groupadd containers
sudo usermod -aG containers $USER



Step 2: Obtaining the Container

• There are two ways to obtain a container 
image:


• Pull it from a registry


• Build it yourself

# Pull an image from a registry
docker pull nginx

# Build an image yourself
docker build -t my-nginx .



Step 2b: Build and image yourself

FROM nginx:latest

# Copy the nginx configuration file to the container
COPY nginx.conf /etc/nginx/nginx.conf

# Expose port 80 to the host machine
EXPOSE 80

# Start the nginx web server
CMD ["nginx", "-g", "daemon off;"]

docker build -t my-nginx .



Step 3: Setup the group

• Control groups (cgroups) are a Linux kernel 
feature that allows you to limit and manage 
resources for groups of processes.


• Cgroups can be used to limit CPU usage, 
memory usage, disk I/O, and network 
bandwidth.


• To set up cgroups, you will need to create 
a cgroup hierarchy.

# Create a cgroup hierarchy
mkdir -p /cgroup
mkdir -p /cgroup/cpu
mkdir -p /cgroup/memory
mkdir -p /cgroup/disk
mkdir -p /cgroup/network



Step 3: Setup the group

• Control groups (cgroups) are a Linux kernel 
feature that allows you to limit and manage 
resources for groups of processes.


• Cgroups can be used to limit CPU usage, 
memory usage, disk I/O, and network 
bandwidth.


• To set up cgroups, you will need to create 
a cgroup hierarchy.

# Create a cgroup hierarchy
mkdir -p /cgroup
mkdir -p /cgroup/cpu
mkdir -p /cgroup/memory
mkdir -p /cgroup/disk
mkdir -p /cgroup/network

cgroups add -g cpu0 nginx



Step 3: Setup the group

• Control groups (cgroups) are a Linux kernel 
feature that allows you to limit and manage 
resources for groups of processes.


• Cgroups can be used to limit CPU usage, 
memory usage, disk I/O, and network 
bandwidth.


• To set up cgroups, you will need to create 
a cgroup hierarchy.

# Create a cgroup hierarchy
mkdir -p /cgroup
mkdir -p /cgroup/cpu
mkdir -p /cgroup/memory
mkdir -p /cgroup/disk
mkdir -p /cgroup/network

cgroups add -g cpu0 nginx

cgroups set -r cpu.shares=50 nginx

cgroups stat -c cpu nginx



Step 3: Run the Container

• To run a container, you will need to use the 
docker run command.


• The docker run command takes a number 
of arguments, including the name of the 
image to run, the command to run inside 
the container, and the environment 
variables to set.


• For example, to run the nginx web server 
on port 80, you would use the following 
command:

docker run -p 80:80 nginx



Docker

• Engine


• Daemon


• Registry


• Client



Docker Engine

• Is the core component of Docker that 
manages containers.


• Responsible for creating, starting, 
stopping, and removing containers.


• Manages the resources that are allocated 
to containers.



Docker Daemon

• A background process that runs on the 
host machine and manages the Docker 
Engine.


• Responsible for communicating with the 
Docker Registry and downloading Docker 
images.


• Manages the containers that are running 
on the host machine.



Docker Registry

• A central repository where Docker images 
can be stored and shared.


• Docker images are essentially read-only 
templates that can be used to create 
containers.


• Docker images can be created from 
scratch or they can be built from other 
Docker images.



Docker Client

• A command-line tool that allows you to 
interact with the Docker Engine.


• Used to create, start, stop, and remove 
containers.


• Used to manage the resources that are 
allocated to containers.



Writing Docker Files

• A Docker file is a text file that contains the 
instructions for building a Docker image.


• Docker files are written in a simple, human-
readable format.


• Docker files can be used to build Docker 
images for any application.

FROM nginx:latest

COPY . /usr/share/nginx/html

EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]



Writing Docker Files

• A typical Docker file will include the following 
steps:


• FROM: This specifies the base image that the 
Docker image will be built on.


• RUN: This specifies commands that will be 
run when the Docker image is built.


• COPY: This specifies files or directories that 
will be copied into the Docker image.


• EXPOSE: This specifies ports that will be 
exposed by the Docker image.


• CMD: This specifies the command that will be 
run when the Docker image is started.

FROM nginx:latest

COPY . /usr/share/nginx/html

EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]



More Docker Instructions
• ARG: Defines an environment variable that can be used in 

the Docker file.


• AND: Specifies that the following commands should be run 
only if the previous command succeeds.


• ENTRYPOINT: The command that will be run when the 
Docker image is started.


• WORKDIR: The working directory for the Docker image.


• STOPSIGNAL: The signal that will be sent to the Docker 
container when it is stopped.


• USER: The user that will run the commands in the Docker 
image.


• LABEL: A label for the Docker image.


• ENV: An environment variable for the Docker image.

ARG VERSION=1.0

RUN apt-get update && apt-get install -y nginx

ENTRYPOINT nginx

WORKDIR /usr/share/nginx/html

STOPSIGNAL SIGTERM

USER nginx

LABEL app=nginx

ENV PORT=80



Docker Commands

• Some of the most common Docker commands 
include:


• docker build: Builds a Docker image from a 
Dockerfile.


• docker run: Starts a Docker container from an 
image.


• docker stop: Stops a Docker container.


• docker remove: Removes a Docker container.


• docker inspect: Inspects a Docker container.


• docker logs: Displays the logs for a Docker 
container.

# Build a Docker image from a Dockerfile
docker build -t my-app .

# Start a Docker container from an image
docker run -p 80:80 my-app

# Stop a Docker container
docker stop my-app

# Remove a Docker container
docker rm my-app

# Inspect a Docker container
docker inspect my-app

# Display the logs for a Docker container
docker logs my-app



More Docker Commands
# List all containers
docker ls

# Show the history of a container
docker history my-container

# Search for Docker images
docker search nginx

# Pull an image from a registry
docker pull nginx

# Tag an image
docker tag nginx:latest my-nginx

# Push an image to a registry
docker push my-nginx

# Rename a container
docker rename my-container my-new-container

# Attach to a running container
docker attach my-container



# Tag an image
docker tag nginx:latest my-nginx

# Push an image to a registry
docker push my-nginx

# Rename a container
docker rename my-container my-new-container

# Attach to a running container
docker attach my-container

# Commit a container's changes to an image
docker commit my-container my-new-image

# Get statistics for a container
docker stats my-container

# Wait for a container to finish
docker wait my-container

# Diff the changes between a container's image and its filesystem
docker diff my-container

# Copy files from a container to the host
docker cp my-container:/path/to/file /path/to/destination



Connectivity and Storage

• Docker links: Docker links allow containers 
to communicate with each other by name.


• Docker networks: Docker networks allow 
containers to communicate with each other 
over a network.


• Docker volumes: Docker volumes allow 
containers to share data with each other 
and with the host machine.



Docker Connectivity

• Docker containers can be connected to the 
host machine's network using a variety of 
methods, such as:


• Bridged networking: Bridged networking 
allows containers to connect to the host 
machine's network as if they were physical 
machines.


• Host networking: Host networking allows 
containers to share the host machine's 
network interface.


• Overlay networks: Overlay networks allow 
containers to connect to a network that is 
shared by multiple hosts.



Docker Storage

• Docker volumes can be created as:


• Local volumes: Local volumes are 
stored on the host machine's 
filesystem.


• Named volumes: Named volumes are 
stored in a shared location, such as a 
Docker registry.


• Tmpfs volumes: Tmpfs volumes are 
stored in temporary memory.



Docker Swarm

• A container orchestration system that 
allows you to run and manage Docker 
containers across multiple machines.


• A powerful tool that can be used to deploy 
and manage large-scale applications.


• Easy to use and can be managed using the 
Docker CLI or the Docker Swarm UI.



Benefits of Using Docker Swarm

• Scalability


• High availability


• Ease of use


• Cost-effectiveness



How to Use Docker Swarm

• To use Docker Swarm, you first need to 
create a Docker Swarm cluster.


• Once you have created a Docker Swarm 
cluster, you can then deploy applications to 
the cluster.


• You can manage Docker Swarm clusters 
using the Docker CLI or the Docker Swarm 
UI.

docker swarm init



How to Use Docker Swarm

• To use Docker Swarm, you first need to 
create a Docker Swarm cluster.


• Once you have created a Docker Swarm 
cluster, you can then deploy applications to 
the cluster.


• You can manage Docker Swarm clusters 
using the Docker CLI or the Docker Swarm 
UI.

docker swarm init

docker stack deploy -c <stack-file> <stack-name>



Introduction to Kubernets

• An open-source container orchestration 
system.


• Used to automate deployment, scaling, 
and management of containerized 
applications.


• Used to deploy applications on a single 
machine or on a cluster of machines.



Benefits of Using Kubernetes

• Scalability: Kubernetes is highly scalable and 
can be used to deploy and manage 
applications of any size.


• High availability: Kubernetes is highly available 
and can continue to run applications even if 
some of the underlying nodes fail.


• Ease of use: Kubernetes is easy to use and can 
be managed using a variety of tools, including 
the command-line, the web UI, and the kubectl 
command-line tool.


• Cost-effectiveness: Kubernetes is cost-
effective and can be used to save money on 
hardware and infrastructure costs.



How to Use Kubernetes

• To use Kubernetes, you first need to create 
a Kubernetes cluster.


• Once you have created a Kubernetes 
cluster, you can then deploy applications to 
the cluster.


• You can manage Kubernetes clusters using 
the command-line, the web UI, or the 
kubectl command-line tool.

kubectl create cluster

kubectl apply -f <manifest-file>



Kubernetes Components
• The Kubernetes architecture is made up of the following 

components:


• Nodes


• Pods


• Services


• Controllers


• Schedulers


• API Server


• etcd


• Kubelet


• Kubectl



Kubernetes Communication

• Kubernetes components communicate 
with each other using a variety of 
protocols, including:


• REST: The API Server uses the REST 
protocol to expose resources to clients.


• gRPC: Controllers and kubelets use the 
gRPC protocol to communicate with 
each other.


• etcd: etcd uses the Raft protocol to 
store configuration data.



Setting Up a Kubernetes Cluster

• On-Premises


• Are typically set up on a dedicated set of 
machines.


• Offer the highest level of control and 
security.


• Can be more expensive to set up and 
maintain than other types of clusters.



Setting Up a Kubernetes Cluster

• Cloud-Based


• Are hosted by a cloud provider.


• Typically more scalable and easier to 
manage than on-premises clusters.


• Can be more expensive than on-premises 
clusters, depending on the provider and 
the features you need.



Setting Up a Kubernetes Cluster

• Managed 


• Provided by a third-party vendor.


• Offer a turnkey solution for deploying and 
managing Kubernetes clusters.


• Can be more expensive than self-
managed clusters, but they can save you 
time and hassle.



Lecture outcomes

• Containers


• Virtualization


• Docker


• Kubernets


