
SMA 2025

Practical Mobile Application Security

Lecture #4

• Part 1: The Attacker's Playbook - Introduction to the OWASP Mobile Top 10 (2024).
•	 Part 2: The Security Tester's Toolkit - SAST, DAST, and IAST.
•	 Part 3: Under the Hood - Reverse Engineering Android (APK) & iOS (IPA) files.
•	 Part 4: Writing Bulletproof Code - Secure Coding Best Practices.
•	 Part 5: Live Demo - A mini vulnerability assessment.

Today's Agenda

• Lecture 1: We learned about the CIA triad and the mobile threat landscape.
•	 Lecture 2: We saw how social engineering targets users and how to manage permissions and

local data securely.
•	 Lecture 3: We explored the app stores, the vetting process, and the dangers of sideloading.
Today's Goal: To think like an attacker, find vulnerabilities, and then put on our developer hat to
fix them.

Recap & The Goal

An Introduction to the OWASP Mobile Top 10

Part 1: The Attacker's Playbook

The Open Worldwide Application Security Project
•	 A worldwide non-profit organization focused on improving the security of software.
•	 All of their resources are free, open, and created by a community of experts.
•	 They are most famous for their "Top 10" lists, which raise awareness of the most critical security

risks.

What is OWASP?

This is the "cheat sheet" for mobile security assessment. It tells you the 10 most common and critical risk categories.
•	 M1: Improper Credential Usage
•	 M2: Inadequate Supply Chain Security
•	 M3: Insecure Authentication/Authorization
•	 M4: Insufficient Input/Output Validation
•	 M5: Insecure Communication
•	 M6: Inadequate Privacy Controls
•	 M7: Insufficient Binary Protections
•	 M8: Security Misconfiguration
•	 M9: Insecure Data Storage
•	 M10: Insufficient Cryptography

The OWASP Mobile Top 10 (2024)

This is the new #1 risk. It focuses on how your app handles secrets (keys, tokens, passwords).
•	 Examples:Hardcoding API keys or passwords in the source code (we'll find this later!).
•	 Storing sensitive session tokens in insecure locations like or .
•	 Improperly using or managing keys in the Android Keystore or iOS Keychain.

M1: Improper Credential Usage

This is a new category about the risks from third-party code.
•	 Goes beyond just your code: Are you using an old, vulnerable analytics or advertising SDK?
•	 Are you vetting the open-source libraries you add to your or ?
•	 A vulnerability in a library you use is a vulnerability in your app.

M2: Inadequate Supply Chain Security

This merges the old M4 and M6. It's about who you are (Authentication) and what you can do
(Authorization).
•	 Using weak password policies.
•	 Poor session management (e.g., tokens that never expire).
•	 Not protecting against brute-force attacks on a login.
•	 Critical Flaw: Performing authorization checks on the client-side instead of the server-side

(e.g., an flag in the app's code).

M3: Insecure Authentication/Authorization

We'll see examples of these throughout the lecture:
•	 M4 (Insufficient Input/Output Validation): (Old M7) Flaws like local SQL injection. We'll cover this in

Part 4.
•	 M5 (Insecure Communication): (Old M3) Using HTTP, no certificate pinning. We'll cover this in Part 4.
•	 M7 (Insufficient Binary Protections): (Old M8+M9) This combines Code Tampering and Reverse

Engineering. This is what we'll discuss in Part 3.
•	 M8 (Security Misconfiguration): (Old M10) Renamed. Leaving debug code, backdoors, or developer

menus.
•	 M9 (Insecure Data Storage): (Old M2) Storing sensitive data insecurely on the device.
•	 M10 (Insufficient Cryptography): (Old M5) Using broken algorithms or "rolling your own" crypto.

The Rest of the 2024 List

SAST, DAST, and IAST

Part 2: The Security Tester's Toolkit

• Static Application Security Testing (SAST)
• “White-box” testing. You have the source code.
•	 "Black-box" testing. You only have the running application.
•	 "Gray-box" testing. A hybrid of the two.

The Three Pillars of AppSec Testing

Static Application Security Testing
•	 Analyzes an application's source code (or compiled code) from the inside out.
•	 It does this without executing the application.
•	 Think of it as a super-powered linter that is focused exclusively on security flaws.

What is SAST?

It builds a model of your application and looks for dangerous patterns.
•	 Control-Flow Analysis: How does the application execute?
•	 Data-Flow Analysis (Taint Analysis): How does data move through the application? Does

user input ever reach a dangerous function without being cleaned? (As seen in Lecture 3).

How SAST Works

• Android Studio / Xcode: The built-in code inspectors can find basic security issues.
•	 Semgrep: A powerful, open-source, and fast SAST tool that uses simple rules.
•	 Mobile Security Framework (MobSF): An all-in-one open-source tool that can perform static

analysis on compiled APKs and IPAs.
•	 Commercial Tools: Veracode, Checkmarx, SonarQube.

SAST Tools for Mobile

Let's say we want to find developers who have hardcoded an AWS access key.
[Code Snippet: Kotlin]
// A developer accidentally commits a secret key
 class ApiClient {
 private val awsAccessKey = "AKIAIOSFODNN7EXAMPLE" // Bad! (M1)
 // ...
 }
[Code Snippet: YAML (Semgrep Rule)] see: https://github.com/semgrep/semgrep
A simplified Semgrep rule
 rules:
 - id: aws-access-key
 pattern: '"AKIA[0-9A-Z]{16}"'
 message: "An AWS access key has been hardcoded in the source."
 languages: [java, kotlin, swift]
 severity: ERROR

SAST Example: Finding a Hardcoded Key

Dynamic Application Security Testing
•	 Analyzes a running application from the outside in.
•	 It has no knowledge of the source code. It behaves like a real-world attacker.
•	 It focuses on the application's inputs and outputs, especially network traffic.

What is DAST?

• Proxying Traffic: The core of mobile DAST is intercepting the communication between the app
and its backend servers.

•	 Fuzzing: Sending unexpected or malicious data to the app's inputs (e.g., login forms, API
parameters) to see if it crashes or behaves unexpectedly.

•	 Monitoring: Watching for data leaks, crashes, or error messages that reveal information.

How DAST Works

The most important tool for mobile DAST is an intercepting proxy.
•	 Popular Tools:Burp Suite: The industry standard (commercial, with a free edition).
•	 OWASP ZAP: The best open-source alternative.

The DAST Setup: The Intercepting Proxy

How a Proxy Works

This is a critical skill for any mobile security tester.
•	 Configure the Proxy: Set up Burp Suite or ZAP to listen on your computer's IP address.
•	 Configure the Mobile Device: Go to your phone's Wi-Fi settings and manually configure the

proxy to point to your computer's IP and port.
•	 Install the Root Certificate: Open the phone's browser and navigate to the proxy's address

(e.g.,). Download and install the proxy's custom CA certificate. This is the step that allows the
proxy to decrypt HTTPS traffic.

Setting Up a Proxy for Mobile

•	 Vulnerabilities Found:M5: Insecure Communication: The app is using HTTP, not HTTPS.
The password is sent in cleartext.

•	 M3: Insecure Authentication/Authorization: The password "password123" was accepted by
the server, indicating a weak password policy.

DAST Example: Finding an Insecure API Call

Interactive Application Security Testing
•	 The "gray-box" hybrid approach.
•	 It uses an "agent" instrumented inside the running application to combine SAST-like code

analysis with DAST-like observation of real-time behavior.
•	 It's like having a SAST tool that can see exactly what's happening during a DAST scan.

What is IAST?

• An IAST agent is added to the application, often as a a library.
•	 A QA tester or DAST tool interacts with the application.
•	 The agent, running inside the app, watches the code execute.
•	 If it sees tainted data (like user input from a DAST scan) reach a dangerous sink (like a

database query), it reports a vulnerability in real-time.

How IAST Works

SAST vs. DAST vs. IAST

Feature
SAST

(White-box)
DAST

(Black-box)
IAST

(Gray-box)

Require
Source?

Yes No Yes (for instrumentation)

Finds…
Code quality issues,
hardcoded secrets

Runtime issues, server
misconfigurations

Both, with context

Accuracy
Can have many false

positives
High, confirms
exploitability

Highest, low false positives

When to use
Early in development

(CI/CD)
Later in testing,
 on running app

During QA
Integration testing

Reverse Engineering Android (APK) & iOS (IPA) files

Part 3: Under the Hood

• To understand how an app works without the source code.
•	 To find vulnerabilities that SAST might miss, like M1 (Hardcoded Secrets).
•	 To enable M7 (Insufficient Binary Protections) - has a legitimate app been repackaged with

malware (i.e., Code Tampering)?
•	 To bypass client-side security controls (M3).

Why Reverse Engineer? (Enabling M7)

An APK is just a ZIP file. You can rename to and extract it.
•	 AndroidManifest.xml: Declares permissions, components, etc. In binary XML format.
•	 classes.dex: The application's code, compiled into Dalvik Executable format. This is what we

target.
•	 res/: Application resources (images, layouts).
•	 lib/: Native libraries (C/C++ code).
•	 META-INF/: Contains the app's signature.

The Android Package (APK)

• apktool: A command-line tool that can decode an APK's resources (like) and disassemble its
DEX files into a human-readable format called .

•	 JAXD: An amazing tool that can decompile DEX files directly back into mostly-readable Java
code. It has both a command-line and GUI version.

Tools for Decompiling APKs

Goal: Find a hardcoded API key in a vulnerable app.
•	 Obtain the .apk file of our target application.
•	 Open the .apk file directly with JADX.
•	 JADX will decompile the classes.dex file automatically.
•	 Use the search function within JADX to search for common keywords like "api_key", "token",

"password", etc.

Live Demo Plan: Decompiling an APK

JADX-GUI in Action

JADX-GUI in Action

• Hardcoded Secrets (M1): API keys, passwords, encryption keys.
•	 Hidden Endpoints (M8): URLs to staging servers or hidden developer APIs.
•	 Logic Flaws (M3): Is the "isPremiumUser" check done on the client-side? An attacker can

patch this to get premium for free.
•	 Disabled Security Features (M8): Code that is commented out or a boolean flag that disables

certificate pinning in a debug build.

What to Look For in Decompiled Code

An IPA is also just a ZIP file.

Payload/: This directory contains the main app bundle.
Payload/YourApp.app/: Inside the bundle, you'll find:

 Info.plist: The app's metadata.
 YourApp` (the binary): The compiled ARM machine code. This is our target.
 Resources (images, storyboards).
 Frameworks/: Embedded dynamic libraries.

The iOS Package (IPA)

Unlike Android's DEX files, the main binary in an IPA is a fully compiled ARM executable.
•	 You can't decompile it back to Swift or Objective-C easily.
•	 You must work with assembly language (ARM64).
•	 This requires more advanced tools and a much steeper learning curve.

The Challenge of iOS Reverse Engineering

• otool/class-dump: Command-line tools to extract information about the binary's structure and
class interfaces.

•	 Hopper/Ghidra/IDA Pro: Professional disassemblers and decompilers that can analyze the
ARM binary and provide pseudo-code.

•	 Mobile Security Framework (MobSF): Can perform automated static analysis on the IPA to
extract strings, check for security settings, and identify basic flaws.

Tools for Analyzing iOS Binaries

Goal: Find sensitive URLs in an iOS app.
•	 Obtain the .ipa file (this is harder than Android, often requiring a jailbroken device to extract).
•	 Upload the .ipa to MobSF for automated analysis.
•	 MobSF will run its static analysis rules.
•	 We will check the "Strings" section of the report for interesting values, like URLs or keywords.

Live Demo Plan: Analyzing an IPA

How do we make reverse engineering harder? Obfuscation.
•	 Goal: To make the compiled code much more difficult for a human to understand, even after

decompilation.
•	 Techniques:Renaming: Changing class, method, and variable names to meaningless

characters (a,b,c).
•	 String Encryption: Encrypting string literals in the binary and only decrypting them in memory

at runtime.
•	 Control Flow Obfuscation: Inserting junk code and complex jumps to make the logic hard to

follow.

Defense: Obfuscation (M7)

Android has a built-in tool called R8 (which incorporates ProGuard) that provides obfuscation.
Before R8:
class UserProfile {
 fun checkSubscriptionStatus() { ... }
}

After R8 (decompiled):
// The original class and method names are gone
public class a {
 public void a() { ... }
}

Android Obfuscation with R8/ProGuard

• Less Common: The compiled nature of iOS binaries makes them harder to reverse by default,
so fewer developers use obfuscation.

•	 Swift & Name Mangling: The Swift compiler performs "name mangling" which already makes
function names hard to read, providing a small level of natural obfuscation.

•	 Third-Party Tools: Tools like iXGuard or Obfuscator-LLVM can provide much stronger,
commercial-grade obfuscation for iOS apps if needed.

iOS Obfuscation

Secure Coding Practices in Action

Part 4: Writing Bulletproof Code

• We found hardcoded keys (SAST/Reversing). Fix: Don't hardcode them.
•	 We found insecure API calls (DAST). Fix: Use secure communication protocols.
•	 We found logic flaws (Reversing). Fix: Write better, more robust code.

From Offense to Defense

Principle: Never trust data coming from the client or any external source. Always sanitize and
validate it.
•	 This is the primary defense against injection attacks.
•	 While mobile apps are less prone to classic SQL injection than web apps, it's still possible in

local SQLite databases or if the app constructs backend queries from user input.

Secure Coding: Input Validation (M4)

Vulnerable Code (Local SQL Injection):
// User input is directly concatenated into the query
fun searchNotes(db: SQLiteDatabase, query: String) {
 val cursor = db.rawQuery("SELECT * FROM notes WHERE content = '$query'", null)
 // ...
}
// If query = "' OR '1'='1", the query becomes:
// SELECT * FROM notes WHERE content = '' OR '1'='1'
// This returns all notes, bypassing the intended logic.

Secure Code (Parameterization):
// Use '?' as a placeholder and provide the arguments separately.
fun searchNotes(db: SQLiteDatabase, query: String) {
 val cursor = db.rawQuery("SELECT * FROM notes WHERE content = ?", arrayOf(query))
 // The database driver handles safe substitution.
}

Input Validation: Android

The same principle applies on iOS with Core Data.
Vulnerable Code (Injection in):
// User input is directly formatted into the predicate string
let userInput = "' OR 1==1"
let predicate = NSPredicate(format: "noteBody == \(userInput)")
// This can lead to unexpected behavior or data leakage.

Secure Code (Argument Substitution):
// Use %K for keys and %@ for values
let userInput = "My secret note"
let predicate = NSPredicate(format: "noteBody == %@", userInput)
// The framework handles safe substitution.

Input Validation: iOS

The Golden Rule: DO NOT ROLL YOUR OWN CRYPTO.
•	 Cryptography is extremely difficult to get right.
•	 Use well-vetted, high-level, modern libraries for any cryptographic operations.
•	 Never use old, broken algorithms like MD5 or SHA1 for anything security-related.

Secure Coding: Proper Cryptography (M10)

For most symmetric encryption needs, you should use an Authenticated Encryption with
Associated Data (AEAD) cipher.
•	 What it provides:

Confidentiality: The data is encrypted.
•	 Integrity & Authenticity: The data is signed with a MAC (Message Authentication Code). This

prevents an attacker from tampering with the ciphertext.

Modern Cryptography: AEAD

Google's Tink library is the
recommended way to do crypto on
Android.
See: https://developers.google.com/
tink/what-is

Crypto Example: Android
import com.google.crypto.tink.Aead
import com.google.crypto.tink.aead.AeadKeyTemplates
import com.google.crypto.tink.integration.android.TinkAndroid

// 1. Initialize Tink
TinkAndroid.init(applicationContext)

// 2. Generate a new key
val keyHandle = KeystoreHandle.generateNew(AeadKeyTemplates.AES256_GCM)

// 3. Get the AEAD primitive
val aead: Aead = keyHandle.getPrimitive(Aead::class.java)

// 4. Encrypt
val plaintext = "some sensitive data".toByteArray(UTF_8)
val associatedData = "my_associated_data".toByteArray(UTF_8)
val ciphertext: ByteArray = aead.encrypt(plaintext, associatedData)

// 5. Decrypt
val decrypted: ByteArray = aead.decrypt(ciphertext, associatedData)

https://developers.google.com/tink/what-is
https://developers.google.com/tink/what-is
https://developers.google.com/tink/what-is

Apple's CryptoKit framework is the modern, Swifty way to do crypto on iOS.
See: https://developer.apple.com/documentation/cryptokit/

Crypto Example: iOS

import CryptoKit

// 1. Generate a new symmetric key
let key = SymmetricKey(size: .bits256)

// 2. Data to be encrypted
let plaintext = "some sensitive data".data(using: .utf8)!
let associatedData = "my_associated_data".data(using: .utf8)!

// 3. Encrypt using AES-GCM (an AEAD cipher)
let sealedBox = try! AES.GCM.seal(plaintext, using: key, authenticating: associatedData)

// `sealedBox` contains the ciphertext, nonce, and authentication tag

// 4. Decrypt
let decryptedData = try! AES.GCM.open(sealedBox, using: key, authenticating: associatedData)

We saw in the DAST example how an attacker on our Wi-Fi can intercept HTTP traffic. HTTPS is
the first step, but it's not enough.
The Problem: An attacker can still perform a Man-in-the-Middle attack by tricking your phone into
trusting a malicious root certificate (like we did with our Burp Suite setup).

Secure Coding: Secure Communication (M5)

Certificate Pinning is the act of associating a host with their expected X.509 certificate or public
key.
•	 In simple terms: You bake a fingerprint of the server's real certificate into your mobile app.
•	 When the app connects to the server, it compares the server's certificate to the fingerprint it has

stored.
•	 If they don't match, the app knows something is wrong (a MitM attack!) and immediately

terminates the connection.

The Solution: SSL/TLS Certificate Pinning

How Pinning Works

OkHttp, the most popular networking library for Android, has built-in support for pinning.

Pinning Example: Android

import okhttp3.CertificatePinner
import okhttp3.OkHttpClient

val hostname = "publicobject.com"

// Create a CertificatePinner that specifies the SHA-256 hash of the server's public key.
val certificatePinner = CertificatePinner.Builder()
 .add(hostname, "sha256/AAA=")
 .build()

val client = OkHttpClient.Builder()
 .certificatePinner(certificatePinner)
 .build()

// All requests made with this client will now enforce the pin.

On iOS, you can implement pinning by using and implementing a custom .

Pinning Example: iOS

class PinningDelegate: NSObject, URLSessionDelegate {

 // The pinned public key hash
 private let pinnedHash = "AAA="

 func urlSession(_ session: URLSession,
 didReceive challenge: URLAuthenticationChallenge,
 completionHandler: @escaping (URLSession.AuthChallengeDisposition, URLCredential?) -> Void) {

 guard let trust = challenge.protectionSpace.serverTrust,
 SecTrustGetCertificateCount(trust) > 0 else {
 completionHandler(.cancelAuthenticationChallenge, nil)
 return
 }

 // Get the public key from the leaf certificate
 guard let certificate = SecTrustGetCertificateAtIndex(trust, 0),
 let publicKey = SecCertificateCopyKey(certificate),
 let publicKeyData = SecKeyCopyExternalRepresentation(publicKey, nil) as? Data else {

class PinningDelegate: NSObject, URLSessionDelegate {

 // The pinned public key hash
 private let pinnedHash = "AAA="

 func urlSession(_ session: URLSession,
 didReceive challenge: URLAuthenticationChallenge,
 completionHandler: @escaping (URLSession.AuthChallengeDisposition, URLCredential?) -> Void) {

 guard let trust = challenge.protectionSpace.serverTrust,
 SecTrustGetCertificateCount(trust) > 0 else {
 completionHandler(.cancelAuthenticationChallenge, nil)
 return
 }

 // Get the public key from the leaf certificate
 guard let certificate = SecTrustGetCertificateAtIndex(trust, 0),
 let publicKey = SecCertificateCopyKey(certificate),
 let publicKeyData = SecKeyCopyExternalRepresentation(publicKey, nil) as? Data else {
 completionHandler(.cancelAuthenticationChallenge, nil)
 return
 }

 // Hash the public key and compare to our pinned hash
 let remoteHash = sha256(data: publicKeyData)

 if remoteHash == pinnedHash {
 // Success!
 completionHandler(.useCredential, URLCredential(trust: trust))

 return
 }

 // Get the public key from the leaf certificate
 guard let certificate = SecTrustGetCertificateAtIndex(trust, 0),
 let publicKey = SecCertificateCopyKey(certificate),
 let publicKeyData = SecKeyCopyExternalRepresentation(publicKey, nil) as? Data else {
 completionHandler(.cancelAuthenticationChallenge, nil)
 return
 }

 // Hash the public key and compare to our pinned hash
 let remoteHash = sha256(data: publicKeyData)

 if remoteHash == pinnedHash {
 // Success!
 completionHandler(.useCredential, URLCredential(trust: trust))
 } else {
 // Pin mismatch! Fail the connection.
 completionHandler(.cancelAuthenticationChallenge, nil)
 }
 }

 private func sha256(data: Data) -> String {
 // ... implementation of SHA-256 hashing ...
 return "..."
 }
}

• Pros:The most effective defense against network MitM attacks.
•	 Brittleness: If your server's certificate expires and you have to get a new one, your app will

stop working until you release an update with the new pin. This can be a major operational
headache.

•	 Management: You need a solid process for managing and rotating your pinned keys.

The Pros and Cons of Pinning

Questions?

Q&A

